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Abstract

Modern language models excel at integrating across long temporal scales needed
to encode linguistic meaning and show non-trivial similarities to biological neural
systems. Prior work suggests that human brain responses to language exhibit
hierarchically organized "integration windows" that substantially constrain the
overall influence of an input token (e.g., a word) on the neural response. However,
little prior work has attempted to use integration windows to characterize com-
putations in large language models (LLMs). We developed a simple word-swap
procedure for estimating integration windows from black-box language models
that does not depend on access to gradients or knowledge of the model architecture
(e.g., attention weights). Using this method, we show that trained LLMs exhibit
stereotyped integration windows that are well-fit by a convex combination of an
exponential and a power-law function, with a partial transition from exponential to
power-law dynamics across network layers. We then introduce a metric for quanti-
fying the extent to which these integration windows vary with structural boundaries
(e.g., sentence boundaries), and using this metric, we show that integration win-
dows become increasingly yoked to structure at later network layers. None of
these findings were observed in an untrained model, which as expected integrated
uniformly across its input. These results suggest that LLMs learn to integrate
information in natural language using a stereotyped pattern: integrating across
position-yoked, exponential windows at early layers, followed by structure-yoked,
power-law windows at later layers. The methods we describe in this paper provide a
general-purpose toolkit for understanding temporal integration in language models,
facilitating cross-disciplinary research at the intersection of biological and artificial
intelligence.
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1 Introduction

Natural language is hierarchically structured at many scales (e.g., phrases, sentences, and narrative
structures), and the temporal extent of these structures is highly variable. Intelligent systems must
therefore have mechanisms to flexibly integrate across diverse and variable temporal scales to infer
meaning from linguistic inputs (Hochreiter and Schmidhuber [1996], Tallec and Ollivier [2018],
Mahto et al. [2020]). Large language models (LLMs) excel at this task as demonstrated by their
impressive performance on a wide range of linguistic benchmarks (Radford et al. [2019], Devlin et al.
[2019], Brown et al. [2020], Raffel et al. [2020], Chowdhery et al. [2022], Touvron et al. [2023]).
Recent studies have shown that features from these models are also highly predictive of human brain
responses in high-level language regions of the human cortex (Schrimpf et al. [2021], Jain et al.
[2023]), suggesting that LLMs may be powerful tools for understanding and modeling temporal
integration in the brain (Caucheteux et al. [2021b]).

Figure 1: Schematic of integration windows. A, Illustra-
tion of a causal, exponentially distributed integration window
where nearby words in the past have a greater influence on the
response. B, Example integration windows with different func-
tional forms: exponential (blue), power-law (pink), gamma-
distributed (green), and uniform (brown). C, A structure-
yoked integration window that dynamically contours to lin-
guistic boundaries (e.g., sentence breaks). D, A position-
yoked window that is unaffected by structural boundaries.

Prior work has shown that brain responses
to speech and language exhibit structured
"integration windows" that substantially
constrain the influence of an input token
(e.g., word) on the neural response (Fig.
1A) (Theunissen and Miller [1995], Lerner
et al. [2011], Chien and Honey [2020],
Norman-Haignere et al. [2022]). Inte-
gration windows have been studied for
decades in the neuroscience literature and
are thought to be central to the hierar-
chical organization of the brain (Hickok
and Poeppel [2007], Sharpee et al. [2011],
Lerner et al. [2011], Norman-Haignere
et al. [2022]). By comparison, much less is
known about whether LLMs exhibit struc-
tured integration windows, which is rel-
evant for understanding the mechanisms
used by these models to integrate across
the multi-scale structure of language, and
whether these mechanisms bear any resem-
blance to those used by the brain to encode
linguistic meaning.

Modern attention-based architectures can
in principle integrate uniformly across their entire input (Vaswani et al. [2017]). However, as we
demonstrate, training can alter the effective integration window of a network and cause that window
to differ substantially from the integration window implied by a model’s architecture (Luo et al.
[2016], Keshishian et al. [2021]), and little prior work has attempted to empirically measure the
integration window of trained LLMs. To address this gap, we developed a set of general-purpose
methods for estimating integration windows from black-box language models and applied these
methods to characterize LLM integration windows. We focused initially on GPT-2 (Radford et al.
[2019]) because it is popular, publicly available, has shown good brain predictivity (Schrimpf et al.
[2021], Jain et al. [2023]), and, like the brain, is causal. We assessed the generality of our findings by
repeating our analyses for two other LLMs (LLaMA and roBERTa; Liu et al. [2019], Touvron et al.
[2023]) and varying important properties of our analysis.

Our paper makes the following contributions:

• We introduce a word-swap procedure for systematically measuring integration windows from
language models, which does not depend on any information about the model architecture.

• We show that LLMs exhibit stereotyped integration windows that substantially constrain the influ-
ence of an input token and follow a simple function form that is well-fit by a convex combination
of an exponential and a power-law function.

• Using these convex fits, we show that that integration windows expand substantially in later
network layers driven in part by a shift from exponential to power-law dynamics.
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• We introduce a metric for quantifying the degree to which integration windows vary with structural
boundaries in language.

• Using this metric, we show that there is a substantial increase in structure-yoked integration across
the layers of LLMs.

• We show that these properties (1) are present across three different LLM models (2) generalize
across different structural lengths, types, and boundaries and (3) are absent from an untrained
model, demonstrating that they are learned from the structure of natural language.

Code implementing our methods and corresponding analyses is available at https://github.com/
dskrill/TemporalIntegration.git.

2 Relationship with prior work

A large body of prior work has focused on characterizing attention weights in LLMs, and how these
weights vary with linguistic structure, word position, and network layer (Clark et al. [2019], Vig
and Belinkov [2019],Abnar and Zuidema [2020]). Multiple studies have observed that attention
weights align with syntactic and semantic information, with lower layers preferentially encoding
local syntactic structure and higher layers encoding more complex semantic relationships (Tenney
et al. [2019]). Tenney et al. [2019] demonstrated that LLMs effectively rediscover the classical NLP
pipeline, with regions of the trained networks corresponding to part-of-speech (POS) tagging, parsing,
named entity recognition (NER), semantic roles, and coreference. There is also evidence that the
range of attended-to tokens expands from lower to higher network layers (Vig and Belinkov [2019]),
potentially increasing the timescale of analysis.

However, none of these prior studies have assessed whether LLMs exhibit an integration window
that constrains the influence of an input token on a unit’s response. Indeed, it was not obvious a
priori whether LLMs would have an integration window at all, given that transformer models can in
principle integrate uniformly over their entire input. Moreover, attention-based metrics are limited to
transformer models and thus cannot be used to evaluate and compare machine learning models with
distinct architectures (e.g., LSTMs) or compare biological and artificial systems. By comparison, our
methods are applicable to any language model, and using these methods, we show that LLMs exhibit
integration windows that substantially constrain the influence of an input token on unit responses,
vary substantially across layers, obey a simple functional form, and vary with structural boundaries at
later network layers.

Prior empirical and theoretical work has characterized temporal dependencies in natural language
(Chomsky [1965]. For example, the mutual information between English words declines with distance
according to a power-law (Lin and Tegmark [2016]), and there have been efforts to incorporate this
type of power-law structure into recurrent neural network language models (Tallec and Ollivier
[2018], Mahto et al. [2020]). However, little is known about how these temporal dependencies shape
integration dynamics in modern LLMs, and whether the different layers of LLMs obey power-law
dynamics or some other functional form (e.g., exponential decay).

Keshishian et al. [2021] studied integration windows in automatic speech recognition (ASR) models
trained to transcribe speech from audio. This study found that integration windows at late network
layers of DeepSpeech2 (Amodei et al. [2015]) expanded and contracted when the audio waveform
was physically stretched or compressed, suggesting its integration windows reflect structure duration.
This study however only investigated time-domain audio models, and as a consequence, many of the
methods and findings are not applicable to language models.

3 Measuring overall integration windows with word swaps

An integration window, by definition, constrains the influence of an input token depending on the
position of that token (Theunissen and Miller [1995], Norman-Haignere et al. [2022]) (Fig. 1A).
For a causal model, such as GPT-2, the integration window extends backwards from the position of
the model response since only tokens that precede the model response can influence it. We sought
to characterize the functional form of LLM integration windows (Fig. 1B) and test whether they
dynamically vary with linguistic structures (Fig. 1C) or, alternatively, are a fixed function of relative
distance between the token and model response (Fig. 1D).
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3.1 Word swap procedure

We measured the response of model units to two input sequences with a single swapped word (Fig.
2A). For each unit, we then calculated the magnitude of the response difference between the two
sequences at each model position, as well as the distance between the position of the swapped
word and the position of the model response (∆). The integration window was calculated as the
distant-dependent change in response magnitudes, averaged across many sequences and words swaps
(Fig. 2A). Word swaps were sampled from a list of the 5 most probable words given the context
(excluding the actual word) as computed by BigBird roBERTa Zaheer et al. [2021] (masking out the
target word to be swapped).

To formalize this idea, denote the jth word of the ith sequence as wi[j] and the paired sequence with
the kth word swapped as wk∗

i [j]. The corresponding activation sequences for a single model unit
are denoted by ai[j] and ak∗i [j] (where ai[j] = f(wi)[j], ak∗i [j] = f(wk∗

i )[j] and f(·) is given by a
language model that maps an input sequence to the response of a single unit; the unit index is omitted
to simplify notation since all analyses are applied separately to each unit). The integration window of
the unit is defined as (I and K are the number of sequences and swaps, respectively):

θ[∆] =
1

IK

I∑
i=1

K∑
k=1

|ai[k +∆]− ak∗i [k +∆]| (1)

Because the scale of θ[∆] is arbitrary, we normalized it by its maximum value which empirically
always occurred at distance 0:

θnorm[∆] =
θ[∆]

θ[0]
(2)

3.2 Experiments

We applied this procedure to measure integration windows from GPT-2 (using the smallest version of
GPT-2 with 124M parameters, 12 layers, and 12 attention heads per layer; embedding dimension set
to 768; vocabulary size equal to 50,256). We used sequences of 600 words extracted from the Brown
Corpus (Francis and Kucera [1979]) (accessed using the NLTK library; Loper and Bird [2002]).
In all of our experiments, we removed punctuation, capitalization and any tokens that delineated
structural boundaries (e.g., [CLS], [SEP]). We also excluded sequences that contain non-alphabetical
characters.

We found that the influence of a word depends strongly on the distance between the position of
the model and the swapped word (Fig. 2B). This distance-dependent effect varied substantially
across layers, with consistently longer integration windows in later network layers, suggesting that
LLMs integrate hierarchically across linguistic structure, first analyzing short-term structure and then
longer-term temporal structure.

To characterize the shape of these integration windows, we fit a wide variety of functional forms,
motivated by the prior literature characterizing heavy-tailed distributions (Newman [2005], Mitzen-
macher [2003], Altmann et al. [2009]) (equations of all forms tested are given in the appendix).
Fitting was performed by minimizing the mean-squared error between the measured and predicted
integration window, using the curve_fit function from the Scipy library (Virtanen et al. [2020]).
Model accuracy was measured as the mean-squared error on test data, separate from that used to
fit the model. Results were similar using other performance metrics (Kolmogorov-Smirnov (KS)
test-statistic and Bayesian Information Criterion).

We found that a simple, 3-parameter functional form - a convex combination of an exponential and
power-law - provided the best fit across all layers tested (Fig. 2C):

θnorm[∆] ≈ c(∆ + 1)−a + (1− c)e−b∆ (3)
where c is the convex combination parameter (constrained to lie between 0 and 1) that controls the
relative contribution of the power-law and the exponential function, and the parameters a and b
control the rate of decline for these two functions, respectively, with higher values indicating faster
decline and thus shorter integration times (a and b were constrained to take values between 0 and 10).

For GPT-2, we found that all of the model parameters changed substantially across layers (Fig. 2E).
The convex combination parameter (c) increased nearly three-fold from layer 1 (median value across
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Figure 2: Characterizing the functional form of LLM integration windows. A, Schematic illustration of a
unit response to two word sequences (blue and light circles) with a single word swapped. Unit responses differ
after the swap due to causality. Integration windows are calculated by computing the magnitude of the response
difference (vertical bracket) as a function of the distance between the position of the swapped word and the
position of the model response (∆, horizontal bracket), averaged across many sequences and swaps (eq. 1). B,
Integration windows for individual units from several layers of GPT-2 with the median across units overlaid.
The influence of a word swap decreases sharply with distance (note logarithmic scale). C, Quantification of the
goodness-of-fit for a variety of functional forms. The exponential-power fits were better across all layers. D,
Integration windows for several example units fit using an exponential, power-law, or convex combination of
both (see eq. 3). E, Violin plots showing the distribution of fit parameter values across all units from different
layers. The convex combination parameter (c, left) reveals a transition from exponential to power-law dynamics
across layers, and the power-law (a, middle) and exponential rate (b, right) parameters reveal a slowing of
integration times for each functional form individually. F Violin plots showing the distribution of fit parameter
values across all units from different layers of LLaMA.5



units: 0.108) to 11 (median: 0.274) (p ≪ 0.001; Mann–Whitney U test), indicating a substantial
change from exponential to power-law dynamics. Since power-law functions decline much more
slowly than exponential functions, this implies a substantial lengthening of integration timescales at
later layers. However, we note that even at later layers the median convex combination parameter (c)
hovered around 0.25, indicating that exponential dynamics remain present. We note that although the
values of c are relatively low, the overall contribution of the power-law function to the total mass of
the integration window exceeds the contribution of the exponential function due to its heavier tail (by
20-fold in the final layer of GPT-2).

We also observed substantial drops in the power-law (a) and exponential (b) parameters, indicating a
slower decline and thus a longer timescale. The power-law parameter showed the biggest decreases
at mid-to-late layers where the contribution from the power-law fits was greatest (median value
of a decreased two-fold from layers 3 (1.022) to 12 (0.512); p ≪ .0001), while the exponential
parameter decreased the most in early-to-mid layers where its contribution was greatest (median
value of b decreased six-fold from layers 2 (4.386) to 6 (0.697); p ≪ 0.001). Collectively, These
findings demonstrate a substantial lengthening of integration timescales across LLM layers, driven by
a change from exponential to power-law dynamics, as well as an increase in integration times for
each functional form separately.

To assess the generality of our findings, we repeated our analyses using two different models (1):
LLaMA a state-of-the-art causal LLM that is substantially larger than GPT-2 and trained on more
data (Touvron et al. [2023]) (2) roBERTa a non-causal LLM trained on a masked word prediction
task (Liu et al. [2019]). In LLaMA, we again observed a substantial increase in integration timescales
across model layers that was well-predicted by a convex combination of an exponential and power-
law (Appendix fig. 1B). Compared with GPT-2, the change across LLaMA’s layers was primarily
driven by a change from exponential to power-law dynamics with comparatively little change in the
decay rates for each functional form individually (Fig. 2F). For roBERTa, we observed symmetric
integration windows (Appendix fig. 1D), which when collapsed across past and future integration
windows showed similar trends to those for GPT-2 (Appendix fig. 1E).

4 Assessing structure-yoked integration

The temporal extent of linguistic structures, such as sentences, is constantly varying. To account
for such variation, LLMs might dynamically adapt their integration window so as to contour to
structural boundaries (Fig. 1C). We refer to integration windows that vary with structural boundaries
as "structure-yoked" and integration windows that are unaffected by structural boundaries and only
depend on the distance between model and swap position (∆) as "position-yoked" (Fig. 1D).

To investigate whether structure-yoked integration is present in LLMs, we repeated our word-swap
procedure using sequences composed of five 12-word sentences (Fig. 3A), in order to test whether
integration windows varied with the boundary between those sentences. We again removed all
punctuation, capitalization, and structure-denoting tokens (e.g., [CLS], [SEP]) to ensure there were
no trivial boundary cues. We found that sentence-final words yielded slightly more tokens on average
and thus restricted our analysis to sentences comprised only of single-token words to avoid this
potential confound. When swapping words, we ensured that the mean embedding distance was the
same for all positions in the 60-word sequence so as to guarantee that any observed differences did
not reflect differences in the embedding layer. Specifically, for each swap, we sampled a desired
embedding distance from a uniform distribution and then sampled a word whose distance from the
original word was close to this target value when swapped in (the uniform distribution and distance
tolerance were hand selected so as to provide a feasible target for the vast majority of words needing
swaps; in the rare case when there was not a valid target, we sampled randomly). Sampled words
were not constrained to be probable in this analysis, but results were similar using only probable
swaps without the distance constraint.

We then applied our word swap procedure to the sequences, but rather than computing a single overall
integration window (θ[∆]), we computed a matrix (Θ[j, k]) that encodes the change in response
magnitudes as a function of both the model position (j) and swap (k) position (rather than the distance
(∆) between the two) (Fig. 3B):
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Figure 3: Emergence of structure-yoked integration across LLM layers. A, An example sequence composed
of five 12-word sentences, each with unique color. No information about sentence boundaries was provided
to the network. B, The average magnitude of response changes induced by word swaps as a function of both
the model (rows) and swap (columns) position with sentence boundaries overlaid (gray lines) (for GPT-2).
The emergence of structure-yoked integration is visually apparent from the triangular structure present at later
network layers (see eq. 4). C, Schematic illustrating the calculation of the integration change metric (see eq. 5).
D, Integration change metric for several layers of GPT-2, showing the emergence of a boundary-specific change
at later network layers. Dashed lines indicate sentence boundaries. E, Violin plots showing the distribution of
the integration change metric at sentence boundaries across units for all GPT-2 layers (see eq. 6). F The average
magnitude of response changes for LLaMA as a function of model and swap position. G Integration change
metric for several layers of LLaMA, showing the emergence of a boundary-specific change at later network
layers.

Θ[j, k] =
1

I

I∑
i=1

|ai[j]− ak∗i [j]| (4)

We can think of this matrix as reflecting as a time-varying integration window where θj [∆] =
Θ[j, j −∆] reflects the integration window at model position j.

As expected, when we averaged this matrix across units within a layer (Fig. 3B), we observed a strong
effect of distance between model and swap position for all contextual layers, which manifests as a
reduction in integration magnitudes for cells further from the diagonal (the diagonal corresponding to
distance 0). This distance-dependent decline was slower at later layers, consistent with our previous
analyses.

The second feature that is visually apparent from these matrices is a "triangular" organization that
emerges at later network layers. This triangular organization is caused by a drop in the measured
integration window at the boundary between sentences, which suggests the emergence of structure-
yoked integration. To quantify this effect, we computed a measure of the local change in the
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integration window (N was set equal to one less than the structure duration, here N = 12− 1; results
were robust to this parameter):

δ[k] =

k−1∑
j=k−N

Θ[j, k]−Θ[j − 1, k − 1] (5)

This equation measures the average change in the integration window at a given swap position
(averaged across model position) in a manner that controls for the effect of absolute distance,
since the distance between the swap and model position is the same for the two quantities being
subtracted. Visually, this equation corresponds to subtracting two offset, off-diagonal columns from
the integration matrix (see Fig. 3C for schematic).

We found that the value of our integration change metric (δ[k]) was close to 0, except at the boundary
between sentences at later network layers (Fig. 3D). This boundary-specific change demonstrates that
there is a drop in the integration window at the juncture between sentences in these layers, but not at
other points in the sequence. This pattern suggests that the average value of our integration change
metric (δ[k]) at structural boundaries provides a useful measure of structure-yoked integration:

η =

B−1∑
k=1

δ[kS + 1] (6)

where S equals the length of each structure (here S = 12 words) and B equals the number of
structures (here B = 5 sentences). When we plotted this boundary metric across layers (Fig. 3E), we
observed a clear increase in structure-yoked integration from early to late network layers (the median
value of δ[k] increased from 0.003 (layer 1) to 0.074 (layer 12); p ≪ 0.001; Mann–Whitney U test).
This finding suggests a transition from position-yoked to structure-yoked integration across the layers
of GPT-2. A similar increase in structure-yoked integration was observed for both LLaMA (Fig. 3G)
and roBERTa (Appendix fig. 2B), suggesting that the emergence of structure-yoked integration is a
common feature of LLMs.

4.1 Generalization across different structural lengths, types, and natural contexts

We next sought to examine the generality and robustness of our effects across different types of
linguistic structures and contexts.

We examined whether the degree of structure-yoked integration depends on the structure’s temporal
extent by varying the length of the component sentences (using our base GPT-2 model). We found
that our boundary metric (6) was similar when measured for short (8 words) and long (36 words)
sentences (Fig. 4A), demonstrating generalization across structural extent. We also tested whether a
similar boundary effect could be observed for a different type of linguistic structure, by repeating our
analyses using sequences composed of noun phrases (6 words) rather than sentences (specifically,
noun "chunks" as computed by spaCy, which do not allow nested noun phrases within them; Honnibal
and Montani [2020]). We observed a similar increase in our boundary yoking metric across network
layers, demonstrating that structure yoking is not specific to sentences (Fig. 4B).

In our original paradigm, we concatenated randomly selected 12-word sentences and the resulting
sequences therefore lack coherent linguistic content across sentence boundaries. To test whether
structure-yoked integration was present at natural structural boundaries, we repeated our analyses
using 84-word sequences, excerpted from paragraphs (Brown Corpus) such that each sequence had a
12-word sentence aligned at the middle of the sequence (Fig. 4E). We observed a clear boundary
effect at the start and end of this 12-word sentence that increased across network layers (Fig. 4D),
demonstrating that our findings generalize to natural structural boundaries. The magnitude of the
boundary change was somewhat smaller than that observed for randomly selected 12-word sentences,
plausibly due to greater across-sentence integration for natural sequences that have coherent across-
sentence linguistic structure.

Finally, we attempted to investigate hierarchical integration of linguistic structures. Specifically, we
used ChatGPT-4 to generate sequences composed of exactly 3 paragraphs, each with 3, 12-word
sentences. We then calculated our boundary strength metric at paragraph and sentence boundaries
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Figure 4: Generalization across different structural lengths, types, and natural contexts. A, A similar
increase in structure-yoked integration was observed for sentences composed of 8 and 36 words (same format
as Fig. 3C). Results in all panels are based on GPT-2. B, A similar increase in structure-yoked integration
was observed for sequences composed of noun phrases instead of sentences. C, Examples of two sequences of
words that contain a 12-word sentence aligned to the middle of the sequence (indicated by color). D, Boundary
change metric calculated from natural sequences with centrally-aligned sentences, demonstrating the emergence
of structure yoking for fully naturalistic contexts. E, Boundary change metric computed for hierarchically
structured sequences composed of 3 paragraphs, each with 3, 12-word sentences (generated by ChatGPT-4). The
boundary change metric was computed separately for paragraph boundaries and sentence boundaries (excluding
paragraph boundaries). We did not observe a greater change at paragraph vs. sentence boundaries.

(excluding paragraph boundaries). We did not observe greater structure yoking at paragraph bound-
aries (Fig. 4E), in contrast with what might be expected from hierarchical integration. However, the
sequences generated by ChatGPT-4 did not always have a clear topic change at paragraph boundaries,
which might have limited our ability to detect hierarchical integration.

5 Dependence on training

We tested whether the integration windows observed in trained LLMs were learned from the structure
of natural language by repeating our analyses for an untrained GPT-2 model (Fig. 5; using the
default settings from Huggingface; Wolf et al. [2020]). We found that integration windows from the
model were flat across all network layers, consistent with the idea that attention-based architectures
are capable of integrating uniformly over their input (Fig. 5A). The integration value for ∆ = 0
was higher than for other distances, likely due to residual connections whose integration window is
effectively a spike at 0. When we repeated our structure-yoking analyses, we found that our boundary
metric was close to 0 for all network layers (Fig. 5B), providing further validation that our boundary
metric provides a meaningful measure of structure-dependent processing in LLMs.
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6 Conclusions, limitations, and broader significance

Results for GPT-2 with 
random weights
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Figure 5: Dependence on
training. Key findings are ab-
sent from an untrained GPT-2
model demonstrating they are
learned from the structure of
language. A, An untrained
model shows flat integration
windows with the exception of
∆ = 0. B An untrained model
shows no evidence of structure-
yoked integration.

We have introduced a simple word-swap procedure for estimating
integration windows in black-box neural language models and their
dependence on linguistic structure. Using this procedure, we found
that LLMs have stereotyped integration windows that substantially
constrain the influence of an input word and follow a simple functional
form, being well-approximated by a convex combination of an expo-
nential and a power-law function. Across the layers of the network, we
found there was a substantial increase in integration times driven partly
by a transition from exponential to power-law dynamics. Finally, we
found that integration windows at late network layers began to partially
contour to the boundaries of linguistic structures, and we developed a
metric to quantify this boundary-specific change. All of our findings
were robust across different model architectures, the procedure used
to swap words, and the length and type of linguistic structures manip-
ulated, and were absent from an untrained model, demonstrating that
they were learned from the structure of natural language. Thus our
findings help to reveal how LLMs learn to flexibly integrate across the
multiscale structure of natural language, and provide a flexible toolkit
to study temporal integration in black-box language models.

Given finite time, there were limits on the number of different model
architectures and linguistic structures we were able to test. Future
work, for example, could examine how temporal integration windows
differ between transformer models and recurrent neural networks, as
well as examine a broader range of linguistic structures. While, we
characterized how structure-yoked integration varies across the layers
of an LLM, we did not investigate how units within a layer vary. For
example, units or heads within a layer might specialize for integrating
across particular types of linguistic structure, as suggested by prior
work (Lakretz et al. [2019], Manning et al. [2020]).

The goal of our work was to understand existing language models,
not advance the state-of-the-art. However, we believe there are many
potential applications of our work. For example, one could investigate
weight initialization schemes (or architectural improvements) that im-
pose the functional forms demonstrated here at the start of training
so that the network only needs to learn variations on this form (e.g.,
structure-yoked integration), which might improve speed or performance. Our metrics might also
provide useful tools for diagnosing model limitations, such as an inability to yoke to larger-scale
structures.

Our methods and findings have relevance to understanding neural integration windows in biological
neural systems. Currently, little is known about what functional form best describes neural integration
windows in the brain and whether/how these windows vary with structural boundaries (Chien and
Honey [2020], Norman-Haignere et al. [2022], in part due to methodological limitations. LLMs are
state-of-art in terms of predicting human brain responses to natural language ( Schrimpf et al. [2021]),
and there is considerable interest in whether the computations of these systems resemble those in the
brain as well as utilizing these systems to generate new scientific insights (Anderson et al. [2021],
Caucheteux et al. [2023], Tang et al. [2023]). Because our methods are model-agnostic, they are
potentially applicable to measuring and modeling integration windows in biological neural systems,
and our findings provide testable predictions for how neural integration windows in the brain will be
structured if they are similar to those in LLMs.
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Appendix

Functional forms

Equations for all functional forms tested is below:

• Log-Normal: f(x|µ, σ) = exp
(
− (ln(x)−µ)2

2σ2

)
• Log-Cauchy: f(x|σ, µ) = σ

σ2+(ln(x)−µ)2

• Exponential: f(x|λ) = exp(−λx)

• Power Law: f(x|α) = (x+ 1)−α

• Zipf-Alekseev: f(x|α, β) = (x+ 1)−α−β ln(x+1)

• Exponential + Exponential: f(x|λ1, λ2, c) = c · exp(−λ1x) + (1− c) · exp(−λ2x)

• Exponential + Power: f(x|λ, α, c) = c · (x+ 1)−α + (1− c) · e−λx
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Appendix Figure 1. Additional plots showing integration windows for LLaMA and BERT. A, Integration
windows for individual units from several layers of LLaMA with the median across units overlaid. The influence
of a word swap decreases sharply with distance (note logarithmic scale). B, Quantification of the goodness-of-fit
for a variety of functional forms for LLaMA. The exponential-power fits were better at predicting integration
windows across all layers, as with GPT-2. C, Integration windows for several example units from LLaMA
fit using an exponential, power-law, or convex combination of both (see eq. 3). D, Integration windows for
individual units from several layers of roBERTa. Negative distances indicate integration across future tokens and
positive distances indicate integration across past tokens. E, Violin plots showing the distribution of fit parameter
values across all units from different layers of roBERTa. Results were very similar to those for GPT-2.
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Appendix Figure 2. Emergence of structure-yoked integration in roBERTa. A, The average magnitude of
response changes induced by word swaps as a function of both the model (rows) and swap (columns) position
with sentence boundaries overlaid (gray lines). Results are similar to those for GPT-2, except the effects extend
to both past and future tokens. B, Violin plots showing the distribution of the integration change metric at
sentence boundaries across units for layers of roBERTa showing a substantial increase across layers, similar to
GPT-2.
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