Multi-agent Performative Prediction with Greedy Deployment and Consensus Seeking Agents

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Qiang LI, Chung-Yiu Yau, Hoi-To Wai

Abstract

We consider a scenario where multiple agents are learning a common decision vector from data which can be influenced by the agents’ decisions. This leads to the problem of multi-agent performative prediction (Multi-PfD). In this paper, we formulate Multi-PfD as a decentralized optimization problem that minimizes a sum of loss functions, where each loss function is based on a distribution influenced by the local decision vector. We first prove the necessary and sufficient condition for the Multi-PfD problem to admit a unique multi-agent performative stable (Multi-PS) solution. We show that enforcing consensus leads to a laxer condition for existence of Multi-PS solution with respect to the distributions’ sensitivities, compared to the single agent case. Then, we study a decentralized extension to  the greedy deployment scheme [Mendler-Dünner et al., 2020], called the DSGD-GD  scheme. We show that DSGD-GD converges to the Multi-PS solution and analyze its non asymptotic convergence rate. Numerical results validate our analysis.