Nonnegative Tensor Completion via Integer Optimization

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Caleb Bugg, Chen Chen, Anil Aswani

Abstract

Unlike matrix completion, tensor completion does not have an algorithm that is known to achieve the information-theoretic sample complexity rate. This paper develops a new algorithm for the special case of completion for nonnegative tensors. We prove that our algorithm converges in a linear (in numerical tolerance) number of oracle steps, while achieving the information-theoretic rate. Our approach is to define a new norm for nonnegative tensors using the gauge of a particular 0-1 polytope; integer linear programming can, in turn, be used to solve linear separation problems over this polytope. We combine this insight with a variant of the Frank-Wolfe algorithm to construct our numerical algorithm, and we demonstrate its effectiveness and scalability through computational experiments using a laptop on tensors with up to one-hundred million entries.