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Abstract

Multi-modal knowledge graph embeddings (KGE) have caught more and more
attention in learning representations of entities and relations for link prediction
tasks. Different from previous uni-modal KGE approaches, multi-modal KGE
can leverage expressive knowledge from a wealth of modalities (image, text, etc.),
leading to more comprehensive representations of real-world entities. However,
the critical challenge along this course lies in that the multi-modal embedding
spaces are usually heterogeneous. In this sense, direct fusion will destroy the
inherent spatial structure of different modal embeddings. To overcome this chal-
lenge, we revisit multi-modal KGE from a distributional alignment perspective and
propose optimal transport knowledge graph embeddings (OTKGE). Specifically,
we model the multi-modal fusion procedure as a transport plan moving different
modal embeddings to a unified space by minimizing the Wasserstein distance
between multi-modal distributions. Theoretically, we show that by minimizing the
Wasserstein distance between the individual modalities and the unified embedding
space, the final results are guaranteed to maintain consistency and comprehensive-
ness. Moreover, experimental results on well-established multi-modal knowledge
graph completion benchmarks show that our OTKGE achieves state-of-the-art
performance.

1 Introduction

In the past decades, with the emergence and development of numerous knowledge graphs (KGs)
[1, 2], a spectrum of related applications has been widely facilitated, e.g., question answering [3, 4],
semantic search [5, 6], and recommendation systems [7, 8]. Due to the incompleteness of real-world
knowledge graphs, link prediction becomes an important procedure for constructing knowledge
graphs. To achieve this goal, Knowledge Graph Embedding (KGE) [9, 10, 11, 12, 13] attracts more
and more attention. It can learn the low-dimensional representations of entities and relations and thus
predict missing links.

Nowadays, most of the KGE methods [11, 12, 13] mainly focus on the uni-modal knowledge graphs
represented with pure symbols or concepts. However, most data sources we can access exhibit a
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multi-modal property, where information from text, image, and video coexists and comprehensively
describes the underlying target. In recent years, researchers [14, 15, 16, 17] point out that knowledge
extracted from such multi-modal data can significantly improve the quality of the learned knowledge
graph representations. To that end, the study of the multi-modal KGE raises a new wave, and a great
many meaningful work [18, 16, 19, 15, 20] emerges and achieves remarkable success. Specifically,
they usually embed the multi-modal knowledge (e.g., texts, pictures) of the entity into different
spaces, then fuse these multi-modal embeddings with the help of operations such as concat or mean.
The resulting embedding is ultimately employed as a unified representation for the multi-modal entity.
However, since the embeddings of different modalities are usually in various heterogeneous spaces,
direct fusion might destroy the intrinsic distribution and thus lead to inconsistent and incomprehensive
representation in the unified space. Based on this fact, this paper focuses on the following question:
Can we find a new KGE model, which is capable of learning unified representations of multi-modal
entities while overcoming the problem of spatial heterogeneity?

Figure 1: An illustration of the opti-
mal transport (OT) for multi-modal en-
tities. Green and red colors represent
the different modalities. Lines represent
distributions of different modal entities
while circles and triangles represent the
embeddings of different modal entities.

To address this issue, we propose a novel multi-modal
KGE method called Optimal Transport Knowledge Graph
Embeddings (OTKGE). Specifically, we formulate the
fusion procedure of multi-modal knowledge as an opti-
mal transport (OT) problem [21]. As shown in Figure
1, OT can move different modal embeddings to a unified
aligned space by an optimal transport plan while overcom-
ing spatial heterogeneity by minimizing the Wasserstein
distance between different distributions. In this way, we
can facilitate the information interaction between multi-
modal embeddings and obtain a unified representation by
the Wasserstein barycenter. On top of this, we theoretically
demonstrate that the divergence between the distribution
of individual source modality and that of the unified space
can be bounded by the Wasserstein distance, suggesting
that our proposed method can overcome the spatial hetero-
geneity issue. Moreover, experimental results demonstrate
the superiority of OTKGE on multi-modal knowledge graph completion tasks.

In a nutshell, our contributions are summarized as three-fold:

• For the modal fusion problem in multi-modal KGE, we propose a new fusion approach
based on optimal transport, which can effectively tackle the modal spatial heterogeneity by
reducing the Wasserstein distance between different modal distributions.

• Theoretically, we provide an upper bound for the target errors from source multi-modal
spaces to the unified space in OT fusion. It can provide a theoretical guarantee for modal
fusion while overcoming spatial heterogeneity.

• Extensive experiments show that OTKGE achieves state-of-the-art performance on two
multi-modal knowledge graph completion tasks.

2 Related Work

The study of knowledge graphs has attracted widespread attention in recent years. According to the
number of used modalities, the previous methods mainly fall into two branches including uni-modal
KGEs and multi-modal KGEs.

2.1 Uni-modal Knowledge Greaph Embeddings

In the past decades, researchers have proposed various embedding approaches to achieve uni-modal
KGE, named translational distance models, semantic matching models, and neural network models.
First of all, translational distance models are derived from the popular method TransE [9], which
proposes to model the relation as the translation operation between entities, and adopts the principle
head entity+relation = tail entity. Subsequently, there are many variants of TransE, e.g., TransH
[10], TransR [22] and TransD [23], which model the relation as the projection operation and model
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the entity as the vectors, respectively. Despite the practical advantages, they cannot model some
relation patterns (e.g., symmetric, inverse, and composition) [12].

Semantic matching approaches aim to capture and match latent semantics between entities, which
models the plausibility of the triple by semantic matching. For instance, some representative methods
are RESCAL [24], DistMult [25], ComplEx [11], and HolE [26]. It is worth mentioning that RotatE
[12] models the relation as the rotation in two-dimensional space, thus realizing the goal to model
symmetry/antisymmetry, inversion, and composition patterns. Inspired by RotatE, there are also
some variants of RotatE, such as QuatE [13], DualE [27], and ROTH [28], which introduce rotations
into other geometric spaces.

In addition to the conventional methods, there are also some models using neural networks to produce
KGE with remarkable effects, such as R-GCN [29], ConvE [30], ConvKB [31], KBGAT [32], and
A2N [33]. However, some of them are usually computationally expensive and may require pre-train
embeddings.

2.2 Multi-modal Knowledge Graph Embeddings

Beyond uni-modal KGE methods, recently a great many multi-modal KGE methods have been
proposed, which can be divided into neural network methods and translation methods.

Neural network methods utilize neural networks to learn embeddings for structural and multi-modal
knowledge. For instance, MMRFAN [17] and MKRL [14] adopt the unified space to learn the textual
knowledge and visual knowledge of entities and thus realize the multi-modal KGE. Unfortunately,
these models such as MMRFAN are designed for some specific cases (e.g., medical knowledge
graphs), and they may be not suitable for other general graph structures [20].

Translation methods follow the principle of TransE and model the relation as the translation for multi-
modal entities. For instance, DKRL [18] learns the representations of KGs by exploiting the textual
and structural information while IKRL [16] learns representations by integrating visual information
and structured information. However, both two models can only use one of the textual information
and visual information. To tackle this problem, [19] proposes to take the sum of sub-energy functions
as the overall score function, which aims to utilize the textual information, visual information, and
structured KGs simultaneously. Then TransAE [15] adds a multi-modal autoencoder based on TransE,
which can achieve the goal to obtain the embeddings of multi-modal KGE. Afterward, MMKRL [20]
integrates structured knowledge and multi-modal knowledge in a unified space with the assistance of
concat fusion operation. In a word, these models fuse heterogeneous multi-modal spaces by concat or
mean operations, neglecting the differences between distributions. Therefore, learning embeddings
for multi-modal knowledge graphs is still an open problem to be tackled.

3 Background on Optimal Transport

Before giving an overview of the optimal transport (OT) problem, we first introduce its definition and
present a short introduction of the related background. Specifically, OT serves as a way to compare
two probability distributions, which can provide a transport plan to transfer one point to another.

Optimal Transport Problem [21]. Suppose we have two set of pointsX = (x(1), · · · ,x(n)) ∈ Rn
and Y = (y(1), · · · ,y(m)) ∈ Rm with the Dirac (unit mass) distribution denoted as δ(·). Our first
goal is to obtain the empirical probability measures µ and ν forX and Y , respectively. To achieve
this, we let µ =

∑n
i=1 αiδ(x

(i)) and ν =
∑m
i=1 βiδ(y

(i)), where the weight α = (α1, · · · , αn) and
β = (β1, · · · , βm) can be regarded as the probability simplexes. Subsequently, we design a ground
cost to measure the distance from point x(i) to y(j), which is denoted as Cij . Further, we need to
calculate the transport coupling T between µ and ν, and the Tij can measure the joint probability
observing x(i) and y(j). Conveniently, it can be obtained in the procedure of solving the following:
OT(µ, ν,C) := minT 〈T ,C〉, where {T ∈ R(n×m)

+ |T1m = α,T T1n = β}. It is worth noting
that 〈T ,C〉 := tr(T TC) is formulated as the Frobenius inner product of matrices.

Wasserstein Distance. If we formulate the cost function with the p-norm, i.e.,Cij = ||x(i),y(j)||pp,
then the p-th Wasserstein distance between two empirical probabilistic measure can be defined as
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Figure 2: The overall framework for OT fusion. ES ,EI ,EV ,EF are structural, linguistic, visual,
and unified embeddings, respectively. TI ,TS ,TV are optimal transport plans. ÊS , ÊI , ÊV are the
according aligned embeddings, respectively. In our method, TS is an identity matrix and ÊS = ES
since the multi-modal knowledge is to align with the structural knowledge.

Wp(µ, ν) := OT (µ, ν; || · ||pp)1/p [34, 35, 36]. In this paper, we will set p = 1, 2 for the sake of
convenience, respectively.

4 Methodology

In this section, we introduce a new KGE method, termed Optimal Transport Knowledge Graph
Embeddings (OTKGE) for multi-modal knowledge graphs. First, we present the definition of the
multi-modal KGE problem.

Problem Setup. Given a multi-modal knowledge graph G = (E ,R, T ), where E is the set of
entities,R is the set of relations, and T = {(h, r, t)|h, t ∈ E , r ∈ R} is the set of KG triples. Here
the entity e is equipped with a structural embedding eS , linguistic embedding eI and visual
embedding eV . Specifically, the uni-modal KGE method only focuses on eS while multi-modal
KGE can leverage multi-modal embeddings.

Representations for Entities and Relations. An important procedure in the KGE is to perform
semantic matching between entities. To this end, previous work mainly focuses on studying how to
model the relation and embedding space for uni-modal KGE. In this paper, we take a step beyond to
leverage the multi-modal knowledge for the representation of entities and relations.

Supposing we have obtained the structural embeddings (by uni-modal KGE or initialization) and
multi-modal embeddings (by pretrained models) of the entity in KGs, then here our goal is to learn
the unified embeddings. Due to the heterogeneity of multi-modal spaces, one can notice that there
exists a gap (caused by factors such as distribution discrepancy and dimensional difference) between
different multi-modal embeddings. To address such an issue, as shown in Figure 2, we propose to
realize the multi-modal alignment by optimal transport, and then perform multi-modal fusion to
obtain a unified representation.

Multi-modal Alignment. Considering that multi-modal knowledge is the auxiliary information, we
let multi-modal embeddings align with the structural embeddings. Here we take the modal alignment
between linguistic space I and structural embeddings S as an example, and the process between
visual space V and structural space S can be achieved similarly.

With the OT alignment strategy, we can model the process of modal alignment as a process of
transferring different each dimension of modal embeddings into an alignment space (structural
embedding space). Specifically, it can be divided into the following steps: 1) Estimate the distribution
µ for linguistic embeddingEI and the distribution ν for structural embeddingES ; 2) Find a transport
coupling T from µ to ν, where Tij gives the probability to transport from the i-th feature dimension
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of EI to the j-th dimension of ES ; 3) Use T to calculate the barycenter, and then map EI to the
unified space S and form a new embedding ÊI .

Following the aforementioned steps, we denote by u = {ui}ni=1 ∈ ∆n and v = {vj}mj=1 ∈ ∆m

for the probabilistic simplexes of linguistic and structural embeddings, respectively. Let µ =∑n
i=1 uiδEi

I
, ν =

∑m
j=1 vjδEj

S
represent discrete distributions of linguistic and structural embed-

dings, respectively, where δ is the Dirac function. For the sake of convenience, we set ui = 1/m, vi =
1/n, where m,n are the dimensionality of the embeddings in EI and ES , respectively. Then we
denote the joint distribution

∏
(µ, ν) :

∏
(µ, ν) = {T ∈ Rn×m+ |T1m = u,T T1n = v}, where 1

denotes an all-one vector. Afterward, we compute the OT coupling T between the measures µ and ν,
which can be formulated as follows:

Wp
p (µ, ν) = min

T∈
∏

(µ,ν)

n∑
i=1

m∑
j=1

TijCij (1)

where Cij is the cost function that evaluates the distance between Ei
I and Ej

S . Moreover,W(µ, ν)
can measure the distribution discrepancy between EI and ES .

Multi-modal Fusion. After obtaining the transport matrix T , the linguistic embedding EI can be
transformed into target-aligned embedding ÊI with the barycenter-based strategies [34, 35, 36]:

ÊI = diag(1/v)(T T + ∆T )EI (2)

Once this has been done, the transported linguistic embedding ÊI is in the same space as structural
embeddingES , where ∆T is an adjustable transport parameter [37]. Subsequently, we can obtain the
aligned visual embedding ÊV in a similar way. Then the next step is to fuse the aligned multi-modal
embeddings (ÊI and ÊV ) with the structural embedding ES utilizing the strategy inspired by [38]:

EF = min
E

1

3

∑
i∈{I,V,S}

λiW(Êi,E) (3)

where EF is the unified representation;W(Ei, E) is theWp
p distance between the distribution of Ei

and that of E; λi represents the weight. The whole procedure is summarized in Algorithm 1.

Algorithm 1: Multi-modal representations fusion.
Input: Distributions µk supported by multi-modal representations Ek, and structural distribution

ν supported by the structural embeddings ES .
Output: Unified representation EF
Initialize The size of input representation nk, the size of fused representation m, the adjustable

transport parameter ∆T .
ν = 1m/m
foreach k ∈ {I, V, S} do

µk = 1nk
/nk

CS [i, j] = ‖Ek[i]−ES [j]‖22, ∀i ∈ [nk], j ∈ [m] # [m] means 1, · · · ,m
Tk = OT (µk, ν,CS)

Êk = diag(1/v)(T Tk + ∆T )Ek

EF = minE
1
3

∑
i∈{I,V,S} λiW(Êi,E)

Relational Transformations. On top of the aforementioned process, we have obtained unified
representations of entities. Subsequently, we transform the head entity h in the triple (h, r, t) with
the assistance of r:

hrelation = r ⊗ h (4)
where h is the embedding of the head entity h, r is the embedding of the relation r, hrelation is the
embedding of the transformed head entity. Here ⊗ is the transformations imposed to h by r, which
can refer to some uni-modal KGE mothods, i.e., TransE and RotatE.
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Score Function and Loss. Having obtained the transformed head entity, the score function formu-
lates as follows:

f(h, r, t) = d(hrelation, t) (5)

where t is the embedding of the tail entity t, and d(·, ·) represents a distance metric (e.g., inner product
or Euclidean distance). Afterward, to optimize the parameters, we train the model by minimizing the
following loss:

L =
∑

(h,r,t)∈Ω∪Ω−

log(1 + exp(−Ylabelf(h, r, t))) (6)

where Ylabel ∈ {−1, 1} denotes the label of the triple (h, r, t). Here suppose Ω denotes the set of
observed triples, then let Ω− = E ×R× E − Ω be the set of unobserved triples. In the procedure of
training, we adopt the negative sampling strategies (e.g., uniform sampling or Bernoulli sampling
[10]). Noticing that the multi-modal information is already pre-trained in advance, here we update
the structural embedding in the training. This is also consistent with our original intention of using
multi-modal information to assist KGE.

5 Theoretical Analysis

In this section, we will show that the OT-fusion strategy preserves consistency and comprehensiveness
from a theoretical perspective.

First, we introduce the target error [39, 40] as an indicator to measure the distribution relationship
between the target unified space and the source space. Here we first give some necessary definitions.
Suppose X , Z and Y are sets of entities, learned representations, and labels of triples, respectively.
Notice that both structural embeddings and multi-modal embeddings of the entity are always assumed
to obey the same true score function f∗ : Z → Y in multi-modal KGE problems [18, 16, 19, 15, 20].
Considering the true scoring function f∗ is unknown, one usually chooses a predictor function f
from a hypothesis class F for substitution, ∀f ∈ F , f : Z → Y . To simplify the notations, here we
take the head entity embedding z ∈ Z as the example to analyze while fixing the relation and the tail
entity. The conclusion for the tail entity can be analyzed similarly.

Afterward, noticing that there exists a approximation error between the hypothesis f and the true
score function f∗ under the distribution µ, we measure it here with εµ(f, f∗) = Ez∈µ[|f(z)−f∗(z)|],
which is termed target error. For simplicity of notation, we use the shorthand εµ(f) = εµ(f, f∗).
Moreover, we utilize the 1-Wasserstein distanceW1(·, ·) to relate the source multi-modal distribution
and target distribution. Above all, the target error in the OT fusion can be derived from the following
theorem:

Theorem 1 (Consistency and Comprehensiveness of the OT Fusion ) We denote by µS , µI , µV
and µF for the distributions of structural, linguistic, visual, and fused unified embeddings. Assume
the hypotheses f, f∗ ∈ F are all K-Lipschitz continuous for some K. Then the following statements
hold for every hypothesis f, f∗ ∈ F:

max
i∈{I,V,S}

{εi(f)} ≤ εF (f) + 2K max
i∈{I,V,S}

{W1(µi, µF )} (Consistency)

εF (f) ≤ min
i∈{I,V,S}

{εi(f) +W1(µi, µF )} (Comprehensiveness)

whereW1(·, ·) is the 1-Wasserstein distance, ε∗(f) is the target error at the corresponding embedding
space ∗.

The proof can refer to Appendix B.

Remark 1 (For Consistency) In the RHS of the inequality, εF (f) is the target error of the unified
embedding, which can be optimized implicitly by our training process; maxi∈{I,V,S}{W1(µi, µF )}
is the maximum of the 1-Wasserstein distance between the individual modality and the unified space,
which can be reduced by minimizing the alignment error in Eq.3. Meanwhile, the LHS represents
the worst uni-modal performance. In this sense, the theorem above suggests that improving the
performance on the unified space can also improve the performance on individual modals. Hence,
the learned embeddings are ensured to be consistent with modal-specific information.
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Remark 2 (For Comprehensiveness) Similar to the analysis of consistency, the second inequality
in the theorem above shows that by minimizing the alignment error as in Eq.3, it is possible to obtain
a reasonably unified embedding such that the post-fusion error can be smaller than any involved
uni-modal error. This suggests that the OT-fusion strategy can integrate complementary information
across different modalities efficiently.

6 Experiments

6.1 Experimental Setup and Results

Table 1: Statistics of the datasets used in this paper. (Nume represents the number of entities and
Numr represents the number of relations.)

Dataset Nume Numr Training Validation Test Modality Scale

WN9-IMG 7k 9 12k 1k 1k Multi-modal Small
FB-IMG 11k 1231 285k 29k 34k Multi-modal Large

Dataset. In terms of the link prediction task, we conduct the experiments and evaluate OTKGE
with two standard competition benchmarks as shown in Table 1. There includes multi-modal datasets:
WN9-IMG [41] and FB-IMG [19]. M9-IMG dataset is derived from the subset of WN18 [9], which
embraces structural knowledge as triples, and multi-modal knowledge including textual messages and
visual images. FB-IMG dataset is derived from the subset of FB15K [9], which includes structural
knowledge consisting of triples extracted from Freebase [42], and multi-modal knowledge embracing
textual messages and visual images.

Evaluation metrics. To evaluate our model, we take entities in the knowledge replacing masked
entities in the triples, then we rank all candidate triples through the score function. The evaluation
metrics include the hit rate and the mean reciprocal rank. Specifically, we use H@n to represent the
hit radio with cut-off values n = 1, 3, 10 while we use MRR to represent the mean reciprocal rank in
the experiments.

Baselines. We compare our method to some representative models, e.g., multi-modal KGE methods
including IKRL [16], TBKGE [19], TransAE [15] and MMKRL [20]; uni-modal KGE methods
including TransE [9], DistMult [25] ComplEx [11], and RotatE [12].

Implementation Details. In the course of the experiment, we implement OTKGE2 with PyTorch
and conduct experiments with a single GPU. To be fair, notice that the true triples will get top-
rank positions when we conduct the evaluation. In this way, we adopt the filtered setting [9] to
make sure that all true triples will be filtered out. Moreover, we utilize the grid search to find the
hyper-parameters and we choose the best models from the validation set by using early stopping.
Specifically, the embedding size k is searched in {100, 200, 400, 500} and the learning rate is searched
in {0.001, 0.005, 0.01, 0.05, 0.1}.

• The structured embeddings are produced from triples in knowledge graphs, without any
external multi-modal sources. To be specific, uni-modal KGE methods such as TransE [9]
and ComplEx [11] can be used to learn structured embeddings.

• The linguistic embeddings of entities are learned by adopting the word2vec [43] technique.
For instance, we learn the linguistic embeddings of FB-IMG dataset by pre-trained word2vec
while we use GloVe [44] for the WN9-IMG dataset.

• The visual embeddings of entities are learned by pre-trained VGG [45] models. To be
specific, visual embeddings are learned by adopting the VGG-m-128CNN [46] model in
FB-IMG datasets. As for the WN9-IMG dataset, we take the VGG19 [45] model to learn
visual embeddings.

2https://github.com/Lion-ZS/OTKGE
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Table 2: Link prediction results on the multi-modal datasets (WN9-IMG and FB-IMG). If the indicator
Is_M of a model is

√
, it means the model is a multi-modal KGE method; otherwise, it is a uni-modal

KGE method. OTKGE1 represents the version with 1-Wasserstein distance while OTKGE2 represents
the version with 2-Wasserstein distance. The best results are in bold, and the second-best results are
underlined.

FB-IMG WN9-IMG
Model Is_M MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE × .712 .618 .781 .859 .865 .765 .816 .871
DistMult × .706 .606 .742 .808 .901 .895 .905 .925
ComplEx × .808 .757 .845 .892 .908 .903 .907 .928

RotatE × .794 .744 .827 .883 .910 .901 .914 .926

IKRL
√

.742 .691 .785 .844 .898 .894 .908 .922
TransAE

√
.755 .698 .794 .857 .901 .900 .912 .928

TBKGE
√

.812 .764 .850 .902 .912 .904 .914 .931
MMKRL

√
.827 .783 .857 .906 .913 .905 .917 .932

OTKGE1
√

.843 .799 .873 .914 .920 .909 .925 .940
OTKGE2

√
.842 .798 .876 .916 .923 .911 .930 .947

Results on multi-modal datasets. To demonstrate the superiority of OTKGE, we compare it with
other popular models on WN9-IMG and FB-IMG datasets as shown in Table 2. One can see that
OTKGE achieves the best performance on both datasets. On one hand, the uni-modal KGE methods
such as TransE can only learn the structural knowledge while the rich multi-modal information cannot
be used effectively. Therefore, TransE does not perform as well as OTKGE, which demonstrates
the advantage of multi-modal KGE. On the other hand, the multi-modal KGE methods such as
IKRL use concat or mean to fuse information from multiple modalities, which will be constrained
by spatial heterogeneity. Therefore, their experimental performance is weaker than OTKGE, which
demonstrates the effectiveness of OT fusion.

6.2 Experiment Analysis

(a) Embeddings in TransE. (b) Embeddings in IKRL. (c) Embeddings in OTKGE.

Figure 3: The embedding comparison. Figure 3(a) represents structural embeddings learned by
TransE, Figure 3(b) represents multi-modal unified embeddings learned by IKRL utilizing concat
fusion and Figure 3(c) presents the multi-modal unified embeddings learned by OTKGE.

The embedding comparison for OTKGE and other methods. To show that OTKGE (here we
adopt the version of 2-Wasserstein distance as an example) can learn a better-unified representation,
we choose three kinds of semantic (people, place, and event) entities in the FB-IMG dataset and
visualize the entity embeddings as shown in Figure 3. In these sub-figures, circles in blue (people),
green (place), and red (event) represent three kinds of semantic embeddings, respectively. On one
hand, one can see that using only structural knowledge in TransE can not separate these three kinds
of embedding well, which demonstrates the necessity of leveraging multi-modal knowledge. On the
other hand, there are still many entities that are not clearly separated in IKRL due to the heterogeneity
of modal space. Different from this, OTKGE can effectively reduce the Wasserstein distance between

8



different distributions, facilitate the in-depth fusion of different modal knowledge, and thereby learn
a better-unified representation.

The ablation study of components in OTKGE. As shown in Table 3, we conduct the experiments
to study the role that different components play in OTKGE (here we adopt the version of 2-Wasserstein
distance as an example). Specifically, we replace the fusion procedure via optimal transport by the
mean and concat operations, which we denote as OTKGE w/ mean and OTKGE w/ concat; We
only use the visual knowledge, which we denote as OTKGE w/o ling; we only use the linguistic
knowledge, which we denote as OTKGE w/o visual. We can see that the performance of these
ablation versions is reduced compared to the original version of OTKGE, which shows that the OT
fusion plays an important role in OTKGE.

Table 3: Link prediction results on WN9-IMG and FB-IMG datasets.
FB-IMG WN9-IMG

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

OTKGE w/ mean .828 .789 .857 .899 .913 .909 .915 .921
OTKGE w/ concat .838 .796 .863 .910 .916 .906 .918 .932
OTKGE w/o ling .835 .791 .867 .908 .914 .907 .914 .929

OTKGE w/o visual .836 .794 .868 .912 .916 .906 .917 .938

7 Conclusion

In this paper, we design a new KGE model named OTKGE for multi-modal knowledge graphs, where
we formulate the fusion procedure by optimal transport theory. Previous work usually neglects the
heterogeneity of distributions in the multi-modal fusion, which will do harm to the interaction of
multi-modal knowledge. To tackle this problem, we propose to transfer the multi-modal information
to a unified space by optimal transport, and fuse the multi-modal information with the Wasserstein
barycenter. Theoretically, we prove that OTKGE is advantageous with its capability in learning multi-
modal representation and the target error of the multi-modal embeddings and the unified embeddings
can be bounded. Moreover, empirical experimental evaluations on multi-modal well-established
datasets show that OTKGE can achieve overall state-of-the-art performance.
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