
Appendices for SI�O: Smoothing Inference with Twisted Objectives

A Table of Notation

Name Symbol Notes

Sequence length T T 2 N
Timestep t t 2 {1, . . . , T}
Latent state xt xt 2 X
Observation yt yt 2 Y
Observation sequence y1:T y1:T 2 YT

Number of SMC particles K K 2 N
kth particle latent trajectory xk

1:t xk
1:t 2 X t

Model and proposal parameters ✓ ✓ 2 ⇥
Twist parameters 2
Joint distribution p✓(x1:T ,y1:T) Distribution on X T ⇥ YT

tth transition distribution p✓(xt | xt�1) Conditional distribution on X
tth observation distribution p✓(yt | xt) Conditional distribution on Y
Proposal distributions {q✓(xt | xt�1,y1:T)}T

t=1 T conditional distributions on X
Twist functions {r (yt+1:T ,xt)}T�1

t=1
T � 1 positive integrable functions in X ⇥
YT�t�1 ⇥ ! R�0

Filtering distributions {p✓(x1:t | y1:t)}T
t=1 T conditional distributions on X t

Smoothing distribution {p✓(x1:t | y1:T)}T
t=1 T conditional distributions on X t

Unnormalized target distributions {�t(x1:t)}T
t=1

T positive integrable functions in X t ! R�0

Normalized target distributions {⇡t(x1:t)}T
t=1

T distributions on X t

tth normalizing constant Zt Positive real, ⇡t(x1:t) = �t(x1:t)/Zt

Bootstrap particle filter BPF SMC using p(xt | xt�1) as the proposal and no
twist.

Filtering sequential Monte Carlo FSMC SMC with filtering distributions as targets.
SIXO-unified SIXO-u SIXO objective optimized w.r.t. ✓ and

through direct and unbiased gradient ascent of
the SIXO bound.

SIXO-quadrature SIXO-q SIXO objective with rt parameterized using the
quadrature twist, and optimized using ascent of
the unified SIXO bound.

SIXO-density ratio estimation SIXO-DRE SIXO with rt parameterized as the density ratio
estimate twist, and learned using the alternating
method.

SIXO with DRE and bootstrap pro-
posal

SIXO-bs Used in HH experiments.

SIXO with DRE and learned smooth-
ing proposal

SIXO-sm Used in HH experiments.

FIVO with bootstrap proposal FIVO-bs Used in HH experiments. Same forward sweep
as a BPF.

FIVO with learned filtering proposal FIVO-fi Used in HH experiments.

BPF bound LK
BPF Log marginal likelihood bound from a K-

particle BPF.
FIVO bound LK

FIVO FIVO bound (2) with K particles.
SIXO bound LK

SIXO SIXO bound (3) with K particles.
DRE loss LDRE Loss used to learn twist with DRE.

16

B Background

B.1 Sequential Monte Carlo

Sequential Monte Carlo (SMC) is a popular method for sampling from posterior distributions with
sequential structure. For a thorough introduction we refer the reader to Doucet and Johansen [1] and
Naesseth et al. [2]. We reproduce the general SMC algorithm in Algorithm 2.

Algorithm 2 Sequential Monte Carlo

1: procedure SMC({�t(x1:t)}T
t=1

, {qt(xt | x1:t�1)}T
t=1

, K)
2: w

1:K
0

= 1, bZ0 = 1

3: for t = 1, . . . , T do
4: for k = 1, . . . , K do
5: xk

t ⇠ qt(xt|xk
1:t�1

)

6: xk
1:t = (xk

1:t�1
,xk

t)

7: ↵
k
t =

�t(xk
1:t)

�t(xk
1:t�1

)qt(xk
t | xk

1:t�1
)

8: w
k
t = w

k
t�1

↵
k
t

9: \Zt/Zt�1 =

PK
k=1

w
k
tPK

k=1
wk

t�1

10: bZt = bZt�1(\Zt/Zt�1)

11: if should resample then
12: for k = 1, . . . , K do
13: a

k
t ⇠ Categorical(w1:K

t)

14: x̃k
1:t = x

ak
t

1:t

15: x1:K
1:t = x̃1:K

1:t

16: w
1:K
t = 1

17: return bZT , x1:K
1:T

B.2 Factoring the Smoothing Distributions

Here we show that the smoothing distributions can be factored into the filtering distributions and the
lookahead distributions.

Let p✓(x1:T ,y1:T) be a model as defined in (1). Then
p✓(x1:t,y1:T) =p✓(x1:t,y1:t)p✓(yt+1:T | y1:t,x1:t) (8)

=p✓(x1:t,y1:t)p✓(yt+1:T | xt), (9)
where yt+1:T is conditionally independent of (y1:t,x1:t�1) given xt because of the Markov structure
of p✓ .

C Methods

C.1 The Gradients of SMC

The original FIVO papers [8–10] used biased gradients to optimize LFSMC which ignore score-
function gradient terms arising from the discrete resampling operations. We use the same biased
gradient estimator in SIXO-DRE when optimizing LSIXO(✓, ,y1:T) in terms of ✓. We also examine
SIXO-u, where we use the full unbiased gradient estimator (see (17)). We derive both estimators
here.

Assume resampling occurs at each timestep, let At = a
1:K
t and Xt = x1:K

t be the ancestor indices
and latents for all particles at time t, and let A = (A1, . . . ,AT�1) and X = (X1, . . . ,XT) be the

17

full sequence of ancestor indices and latents. We can then write the probability distribution over
X,A that defines SMC as

pSMC(X,A) =

KY

k=1

q(xk
1
)

!
TY

t=2

KY

k=1

q(xk
t |xak

t�1

1:t�1
)↵

ak
t�1

t�1
(10)

where ↵
i
t = ↵

i
t/(
PK

k=1
↵

k
t) is the normalized incremental weight. When the proposals and targets of

SMC are parametric functions of ✓, both q and ↵ will depend on ✓.

To emphasize its dependence on ✓ when run with parametric twists and proposals we will write
pSMC(X,A) as p(X,A;✓). Then the gradient of LSIXO is defined as

r✓(LSIXO(✓)) =r✓EX,A⇠p(X,A;✓)[log bZ(X,A,✓)] (11)

where we have rewritten bZSIXO(✓, ,y1:T) as bZ(X,A,✓) to emphasize its dependence on the
random variables X and A and suppress its dependence on and y1:T .

The first step is to reparameterize the expectation in terms of continuous noise instead of X [49, 50,
34, 51, 52]. Assume X is from a reparameterizable distribution and let �X(✓, ✏) be a function that
deterministically combines continuous noise ✏ and the parameters ✓ to produce a sample X. Then we
have

r✓EX,A[log bZ(X,A,✓)] = r✓E✏,A[log bZ(�X(✓, ✏),A,✓)]. (12)

We will further abuse notation by writing bZ(�X(✓, ✏),A,✓) as bZ(✏,A,✓). Rewriting the expectation
(12) as an integral gives

r✓E✏,A[log Ẑ(✏,A,✓)] =r✓
Z

log Ẑ(✏,A,✓)p(✏,A;✓)d✏dA. (13)

Assuming that we can differentiate under the integral allows us to break the integrand apart using the
product rule as

Z
r✓(log bZ(✏,A,✓))p(✏,A;✓) + log bZ(✏,A,✓)r✓(p(✏,A;✓))d✏dA. (14)

The left hand term in the integrand of (14) equals E✏,A[r✓ log bZ(✏,A,✓)], the expectation of a
gradient that can be estimated using simple Monte Carlo. The right hand term is a “score-function
gradient” [53] which can be rewritten using the fact that r✓(log f(✓)) = r✓(f(✓))/f(✓) as

Z
log bZ(✏,A,✓)r✓(log p(✏,A;✓))p(✏,A;✓)d✏dA (15)

which in turn equals the expectation

E✏,A
h
log bZ(✏,A,✓)r✓ log p(✏,A;✓)

i
. (16)

Writing both terms together gives the full unbiased gradient that is amenable to estimation with
simple Monte Carlo,

E✏,A
h
r✓ log bZ(✏,A,✓) + log bZ(✏,A,✓)r✓ log p(✏,A;✓)

i
. (17)

Similar to prior work [8–11] we find that the term on the right hand side of (17) has prohibitively
high variance which inhibits learning. Dropping it gives the biased SMC gradient estimator used in
SIXO-DRE,

E✏,A[r✓ log bZ(✏,A,✓)], (18)

which can be estimated using open-source autodiff software [54].

The derivation above is adaptable for any resampling schedule that does not depend on the parameters
(and by extension, the weights), but many common resampling schemes such as effective sample size
resampling do not meet this requirement. If the resampling scheme depends on the parameters of the
model, it introduces additional gradient terms which are not described here. Thus for all methods in
experiments where compare to SIXO-u we use a fixed resampling schedule.

18

C.2 Density Ratio Estimation

Density ratio estimation (DRE) considers estimating ratios of densities, e.g. a(x)/b(x) with a(x) and
b(x) defined on the same probability space and b(x) > 0 for all x. Instead of estimating a(x) and
b(x) individually and then forming the ratio, an alternative approach is to directly estimate the odds
that a given sample of x was drawn from a.

Let p(x, z) = p(z)p(x | z) be an expanded generative model for x defined as

z ⇠ Bernoulli(↵), (19)
x ⇠ a(x) if z = 1, (20)
x ⇠ b(x) if z = 0 (21)

with ↵ 2 (0, 1). We can now write the density ratio in terms of conditionals in this generative model,

a(x)/b(x) = p(x | z = 1) / p(x | z = 0) (22)

=

✓
p(x)p(z = 1 | x)

p(z = 1)

◆
/

✓
p(x)p(z = 0 | x)

p(z = 0)

◆
, (23)

=

✓
p(z = 0)

p(z = 1)

◆
/

✓
p(z = 0 | x)

p(z = 1 | x)

◆
, (24)

=

✓
1 � ↵

↵

◆✓
p(z = 1 | x)

p(z = 0 | x)

◆
. (25)

Thus, the density ratio can be rewritten as proportional to the odds that x was drawn from a(x)
instead of b(x).

Density ratio estimation via classification suggests training a binary classifier with supervised
learning to predict z given x [24, 23]. Let �(x) = 1/(1+ e

�x) be the sigmoid function and let g (x)
be a classifier trained with Bernoulli loss to maximize the log probability of a dataset z1:N , x1:N

sampled IID from p(x, z). Specifically, is fit by minimizing LDRE(), defined as

LDRE() ,Ez1:N ,x1:N⇠p(x,z)

"
log

NY

i=1

Bernoulli(z; �(g (x))

#
, (26)

=Ez1:N ,x1:N⇠p(x,z)

"
NX

i=1

zi log(�(g (xi))) + (1 � zi) log(�(g (xi)))

#
. (27)

If trained in this way, the raw output of g (x) will approximate the log-odds that x came from a(x)
instead of b(x), i.e.

g (x) ⇡ log

✓
p(z = 1 | x)

1 � p(z = 1 | x)

◆
= log

✓
p(z = 1 | x)

p(z = 0 | x)

◆
. (28)

The log of the density ratio can then be expressed as

log a(x)/b(x) = log(1 � ↵) � log(↵) + log

✓
p(z = 1 | x)

p(z = 0 | x)

◆
, (29)

⇡ log(1 � ↵) � log(↵) + g (x). (30)

Assuming a fixed ↵ parameter, the log-ratio of densities is then proportional to the logit produced by
g up to an additive constant. Thus as long as we can sample training pairs (x, z) from the expanded
generative model above, we can estimate ratios of densities by training a binary classifier.

C.3 Backwards Density Ratio Twist Architecture

We now provide further implementation details for the the backwards DRE twist we propose. The
twist is defined through two neural networks, as illustrated in Figure 5. First, a recurrent neural
network (RNN) is passed backwards over the data to create a sequence of encodings, denoted e2:T .
These backward encodings are computed upfront, before the SMC sweep, with a cost complexity that

19

… …

"!"#

#!"#

"!

#!

"!$#

#!$#

"!"%

#!"%

"&

#&

$ %!#, #!"#… %!#

$ %!', #!"#… %!'

…

Figure 5: The backwards DRE twist architecture. Shown in blue is the recurrent backwards encoding,
denoted here as et, computed before the sweep. This computation will be shared across all particles.
At time t, the twist value for each particle is computed by taking the backwards encoding at the next
timestep, et+1, concatenating it with the particle, and passing it through an MLP, shown in purple.
As such, the twist complexity is linear in both time and the number of particles.

is linear in the length of the sequence. To evaluate the twist value of the n
th particle at time t, denoted

r
n
t , a second “head” MLP is used. The head MLP accepts as inputs the backwards encoding at the

next timestep, et+1, and the particle value, xn
t , and produces a single real-valued scalar, representing

the logarithm of the twist value, log r
n
t . The total cost of application of the head MLP is linear in time

and the number of particles. As the head MLP reuses the backwards encoding, the cost of applying
the backwards RNN is amortized across the number of particles used in the forward sweep. Note that
no twist is computed at t = T , i.e. r

k
T , 1.

C.4 Alternating Density Ratio Twist Training

To train the density ratio twist functions we define a supervised maximum likelihood update that
is applied offline from any update to the model and proposal parameters. This update is shown in
Algorithm 1, labeled as DRE.

To define this update, we use the approach in Section C.2 and set a(x) = p✓(xt | yt+1:T) and
b(x) = p✓(xt). To generate positive and negative examples for DRE, we first sample a set of M

latent state and observation trajectories from the generative model, x1:M
1:T ,y1:M

1:T ⇠ p✓(x1:T ,y1:T).
Because these are samples from joint distribution they are also samples from the conditionals
{p✓(xt | yt+1:T)}T�1

t=1
. We will refer to these samples as positive samples. We can then draw a

second set of samples, but discard the observed data, x̃1:M
1:T ⇠ p✓(x1:T). We will refer to these as

negative samples. The sets of positive and negative examples form the data on which we will train the
twist classifier. Generating examples sequentially in this manner is cheap and parallelizable, allowing
us to use relatively large values of M .

To train the DRE twist, we first pass the RNN backwards over sampled synthetic observed data
ym

2:T to generate the sequence of encodings em
2:T (noting that we flip the resulting encodings so they

are “forward” in time). To evaluate the probability of a positive classification we concatenate the
encoding em

t+1
with xm

t at each timestep, feed the concatenation into the head MLP, and take the
output as a positive example Bernoulli logit. To evaluate the probability of a negative classification
we take the same sequence of encodings, em

2:T , concatenate them at each time step with x̃m
1:T�1

, feed
the result at each timestep into the head MLP, and take the result as a negative example Bernoulli
logit. These outputs are used to compute the cross-entropy loss as written in Algorithm 1 at each
timestep, which we average across time and across positive and negative examples to create the final
loss. This approach allows us to estimate an entire sequence of ratios, {p✓(xt | yt+1:T)/p✓(xt)}T�1

t=1
,

for positive and negative examples using a single RNN backwards pass.

C.5 The SIXO Bound Can Become Tight

Proposition 1. (Reproduced from Section 3.3) Sharpness of the SIXO bound. Let p(x1:T ,y1:T)
be a latent variable model with Markovian structure as defined in Section 2, let Q be the set of

20

possible sequences of proposal distributions indexed by parameters ✓ 2 ⇥, and let R be the set of
possible sequences of positive, integrable twist functions indexed by parameters 2 . Assume that
{p(xt | xt�1,y1:T)}T

t=1
2 Q and {p(yt+1:T | xt)}T�1

t=1
2 R. Finally, assume LSIXO(✓, ,y1:T)

has the unique optimizer ✓⇤, ⇤ = arg max✓2⇥, 2 LSIXO(✓, ,y1:T).

Then the following holds:

1. q✓⇤(xt | x1:t�1,y1:T) = p(xt | x1:t�1,y1:T) for t = 1, . . . , T ,

2. r ⇤(yt+1:T ,xt) / p(yt+1:T | xt) up to a constant independent of xt for t = 1, . . . , T �1,

3. LK
SIXO

(✓⇤, ⇤
,y1:T) = log p(y1:T) for any number of particles K � 1.

Proof. First we reproduce the proof in the main text that LSIXO(✓, ,y1:T) p(y1:T) for any
setting of ✓, . As previously, fix r (xT) = 1 and let bZSIXO(✓, ,y1:T) be the normalizing
constant estimator returned by SMC run with targets {p(x1:t,y1:t)r (yt+1:T ,xt)}T

t=1
and proposals

{q✓(xt | x1:t�1,y1:T))}T
t=1

. Then,

LSIXO(✓, ,y1:T) , E
h
log bZSIXO(✓, ,y1:T)

i
(31)

 logE
h
bZSIXO(✓, ,y1:T)

i
(32)

= log p(y1:T), (33)
where (32) holds by Jensen’s inequality and the concavity of log, and (33) holds by the unbiasedness
of SMC’s marginal likelihood estimator.

Because LSIXO(✓, ,y1:T) p(y1:T) and we assume LSIXO(✓, ,y1:T) has a unique opti-
mizer, any setting of ✓ and that causes the bound to hold with equality must be ✓⇤, ⇤ =
arg max✓, LSIXO(✓, ,y1:T). Thus, we conclude the proof by showing that the twists {p(yt+1:T |
xt)}T�1

t=1
and proposals {p(xt | x1:t�1,y1:T)}T

t=1
cause the bound to hold with equality.

We proceed by induction on t, the timestep in the SMC sweep. We will show that for t = 1, . . . , T ,
bZt = p(y1:T). In proving this we will also show that for each t, w

k
t either equals 1 or p(y1:T) for

k = 1, . . . , K, depending on whether resampling occurred.

For t = 1 note that

1. �1(xk
1
) = p(xk

1
,y1)p(y2:T | xk

1
),

2. �0 , 1,

3. and q1(xk
1
) = p(xk

1
| y1:T).

Taken together this implies that the incremental weight ↵
k
1

is

↵
k
1

=
p(xk

1
,y1)p(y2:T | xk

1
)

p(xk
1

| y1:T)
=

p(xk
1
,y1:T)

p(xk
1

| y1:T)
= p(y1:T) (34)

which does not depend on k. Because w
k
0
, 1, we have that w

k
1

= w
k
0
↵

k
1

= p(y1:T) for all k. This
in turn implies

\Z1/Z0 =

PK
k=1

w
k
1PK

k=1
wk

0

=
Kp(y1:T)

K
= p(y1:T), (35)

which when combined with the fact that bZ0 , 1 yields
bZ1 = bZ0(\Z1/Z0) = p(y1:T). (36)

If resampling occurs at the end of step 1, all weights w
1:K
1

will be set to 1. Thus we have shown that
bZ1 = p(y1:T) and w

1:K
1

= p(y1:T) or 1.

Now assume that bZt�1 = p(y1:T) and w
1:K
t�1

equals 1 or p(y1:T). Again, we derive the incremental
weights ↵

k
t by noting that

21

1. �t(xk
1:t) = p(xk

1:t,y1:t)p(yt+1:T | xk
t),

2. �t�1(xk
1:t�1

) = p(xk
1:t�1

,y1:t�1)p(yt:T | xk
t�1

),

3. and qt(xk
t) = p(xk

t | xk
1:t�1

,y1:T)

which yields ↵
k
t as

↵
k
t =

p(xk
1:t,y1:t)p(yt+1:T | xk

t)

p(xk
1:t�1

,y1:t�1)p(yt:T | xk
t�1

)p(xk
t | xk

1:t�1
,y1:T)

(37)

=
p(xk

1:t,y1:T)

p(xk
1:t�1

,y1:T)p(xk
t | xk

1:t�1
,y1:T)

(38)

=
p(xk

1:t�1
,y1:T)p(xk

t | x1:t�1,y1:T)

p(xk
1:t�1

,y1:T)p(xk
t | xk

1:t�1
,y1:T)

(39)

= 1 (40)

for k = 1, . . . , K.

Now there are two cases depending on the value of the weights at the previous timestep. If w
1:K
t�1

= 1,
then w

k
t = w

k
t�1

↵
k
t = 1 for all k, implying that \Zt/Zt�1 = 1. Alternatively, if w

1:K
t�1

= p(y1:T) then
w

k
t = p(y1:T) for all k which also implies that \Zt/Zt�1 = 1. Given that \Zt/Zt�1 = 1 in both cases,

and that bZt�1 = p(y1:T), we have that

bZt = bZt�1(\Zt/Zt�1) = p(y1:T). (41)

Finally, if resampling occurs then the weights w
1:K
t will be set to 1. Thus we have shown that

bZt = p(y1:T) and w
1:K
t = p(y1:T) or 1 for each t = 1, . . . , T .

We note that we have used r ⇤(yt+1:T ,xt) = p(yt+1:T | xt). In the case where r ⇤(yt+1:T ,xt) /
p(yt+1:T | xt), we have that bZt / p(y1:T) for t < T . All the proportionality constants for each
r ⇤(yt+1:T ,xt) cancel out in (41), and hence we still obtain bZT = p(y1:T) as required.

Note that we have incidentally shown that all weights are equal at each step of SMC for the optimal
proposals and twisting functions. This implies that the variance of the importance weights is
minimized (i.e. is 0), and if effective sample size is used to trigger resampling, resampling will never
occur.

D Experiments

Code for reproduction of all experiments is released here: https://github.com/lindermanlab/
sixo.

D.1 Gaussian Drift Diffusion

D.1.1 Model Details

The one-dimensional Gaussian drift-diffusion process has joint distribution:

p✓(x1:T ,y1:T) = p✓ (x1:T , yT) = p✓(x1)

TY

t=2

p✓(xt | xt�1)

!
p✓(yT | xT),

= N (x1 ; ↵, 1)

TY

t=2

N (xt ; xt�1 + ↵, 1)

!
N (yT ; xT + ↵, 1) ,

where the free parameters of the model are ✓ = {↵} 2 ⇥ = R, the state is xt 2 X = R, and the
observed data are y1:T = yT 2 R. Training data are sampled from this joint distribution with ↵ = 1.
Note that the distributions we show in Figure 1 were generated with ↵ = 0 for clarity.

22

https://github.com/lindermanlab/sixo
https://github.com/lindermanlab/sixo

D.1.2 Analytic Forms

The t
th marginal of the filtering distribution for t < T is

p✓(xt) = N (xt ; t↵, t). (42)

The t
th marginal of the smoothing distributions can be derived as follows:

p(xt | yT) / p(xt)p(yT | xt), (43)
= N (xt; t↵, t) N (yT ; xt + ↵(T � t + 1), T � t + 1) ,

= N (xt; t↵, t) N (xt; yT � ↵(T � t + 1), T � t + 1) . (44)

Noting that the product of two Gaussian densities is also Gaussian:

N
�
x; µ1, �

2

1

�
N
�
x; µ2, �

2

2

�
/ N

✓
x;

�
2
2
µ1 + �

2
1
µ2

�2
1

+ �2
2

,
�

2
1
�

2
2

�2
1

+ �2
2

◆
,

allows us to combine the two Gaussian distributions in (44):

p(xt | yT) / N
✓

xt;
(T � t + 1)t↵ + t(yT � ↵(T � t + 1))

t + (T � t + 1)
t,

t(T � t + 1)

t + (T � t + 1)

◆

= N
✓

xt;
t

T + 1
yT ,

t(T � t + 1)

T + 1

◆
.

Hence the smoothing distribution is a Gaussian distribution with analytically computable mean and
variance terms.

The filtering and smoothing distributions are equal at t = T . It is interesting to note that for ↵ = yT

T+1
,

which is the maximum likelihood drift parameter for a single datapoint yT , the sequence of filtering
and smoothing distributions have the same means. However, the variances are different for all t < T ;
in particular, the smoothing distribution variance peaks in the middle of the timeseries, whereas the
variance of the filtering distribution is monotonically increasing for t < T , and then drops at t = T .

According to Proposition 1, we expect the proposal recovered by SIXO, q✓t , to match the conditional
of the smoothing distribution:

q✓1(x1 | yT) = p✓(x1 | yT) = N
✓

x1 ;
yT

T + 1
,

T

T + 1

◆
for t = 1,

q✓t(xt | xt�1, yT) = p✓(xt | xt�1, yT) = N
✓

xt ;
(T � t + 1)xt�1 + yT

T � t + 2
,
T � t + 1

T � t + 2

◆
otherwise .

Note that the mean is an affine function with bias equal to zero.

Furthermore, we also expect the optimal twist distribution to be equal to the true lookahead distribu-
tion:

r t(yT | xt) = p✓(yT | xt) = N (yT ; xt + ↵(T � t + 1), T � t + 1) 8t 2 1, . . . , T � 1.

(45)

D.1.3 SIXO Variants for the Gaussian Drift Diffusion

For all experiments we use a Gaussian proposal at each timestep, parameterized as q✓t(xt |
xt�1, yT) = N (xt; ft(xt�1, yT), �2

qt) where ft is a general affine function of xt�1 and yT . There
are therefore 4T �1 proposal parameters to learn (T biases, T yT coefficients, T �1 xt�1 coefficients,
and T variances �

2
qt).

We test four variants of SIXO:

1. SIXO-u learns ✓ and by gradient ascent on the unified bound given in (3) using the
unbiased gradients (reparameterization and resampling gradients). We parameterize the
twists as rt(yT , xt) = N (yT ; gt(xt), �2

rt) for t < T , where gt is a learnable affine function
and �

2
rt is also learned.

23

0 50 100 150 200 250 300 350 400

Optimization step (1000s)

10
�4

10
�3

10
�2

10
�1

10
0

10
1

10
2

10
3

B
ou

n
d

ga
p

lo
g

p
(y

1
:T

)
�

L
1
2
8

FIVO FIVO-b SIXO-b SIXO-u SIXO-a SIXO-DRE IWAE

Figure 6: Convergence of the bound for all methods discussed in Section D.1. Of these lines, FIVO-b,
SIXO-b and SIXO-a were omitted from Figure 2 the main text. Median and quartiles across ten
random seeds are shown.

2. SIXO-DRE as defined in Algorithm 1 learns ✓ by ascending the bound (3) using the biased
reparameterization gradients as in (18). The twist parameters are then fit using a density
ratio update. The twist is parameterized as an MLP that produces the coefficients of a
quadratic function over xt as a function of yT and t. This quadratic function is evaluated at
xt to compute the log r value.

3. SIXO-a (not included in Figure 2) uses the analytic form for the twist as a function of ✓ and
yT (specified in (45)). There are no free parameters to learn for this twist, and ✓ is learned
by ascending the bound (3) using the biased reparameterization gradients in (18).

4. SIXO-b (not included in Figure 2) learns ✓ and by gradient ascent on the unified bound
given in (3) using biased reparameterization gradients (18). We parameterize the twists as
rt(yT , xt) = N (yT ; gt(xt), �2

rt) for t < T , where gt is a learnable affine function and �
2
rt

is also learned.

Note that the true distributions lie within the variational families (assuming a sufficiently expressive
MLP for SIXO-DRE, which is not unreasonable). In all of these models we initialize the parameter
↵ = 0.

D.1.4 Results

We compare the four different variants of SIXO to IWAE, FIVO with biased gradients, and FIVO
with unbiased gradients. For clarity, we omitted some of these comparisons from Figure 2 in the
main text, but include them here in Figure 6. Individual seeds for each experiment were run using
two CPU cores, 8Gb of memory, and had a runtime of no longer than five hours. We sample 1,000
synthetic trajectories of length T = 10 from the model and perform minibatch stochastic gradient
descent using the ADAM optimizer [55] with a learning rate of 1 ⇥ 10�3, a minibatch size of 32, and
10 particles. In the case of SIXO-DRE we alternate between 1,000 updates to the model and proposal
and 1,000 twist updates, where the tilt minibatch size is 64. We report and plot the means across ten
random seeds. The variances for FIVO, FIVO-b, SIXO-b are too small to be seen.

The model drift ↵ is initialized to zero, affine function weights are initialized to zero, affine function
biases are initialized to zero, and �

2
qt and �

2
rt are initialized to one.

In Figure 6 we show the convergence of the bound across all seven methods we considered. FIVO
with unbiased gradients (FIVO) performs comparably to FIVO with biased gradients (FIVO-b),
however, converges slightly more slowly. We find that SIXO-b performed worse than all the other
methods, similar to the results in Lawson et al. [11]. We therefore omitted it from the main paper for
brevity. However, this result motivated us to find alternative methods.

24

0 100 200 300 400

Optimization step (1000s)

�0.2

0.0

0.2

0.4

0.6

P
ro

p
y

w
ei

gh
t

1 4 7 10 True

0 100 200 300 400

Optimization step (1000s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
x

t�
1

w
ei

gh
t

0 100 200 300 400

Optimization step (1000s)

�0.50

�0.25

0.00

0.25

0.50

P
ro

p
b
ia

s

0 100 200 300 400

Optimization step (1000s)

0.4

0.6

0.8

1.0

P
ro

p
va

ri
an

ce

0 100 200 300 400

Optimization step (1000s)

5

10

15

T
w

is
t

a�
n
e

b
ia

s

0 100 200 300 400

Optimization step (1000s)

5

10

15

T
w

is
t

va
ri

an
ce

0 100 200 300 400

Optimization step (1000s)

0.00

0.25

0.50

0.75

1.00

D
ri

ft
,
�

Figure 7: Convergence for all free parameters in the GDD experiment using SIXO-u. The drift
parameter (↵) is constant across time. Coloring of lines indicates the time t 2 1, . . . , 10. Median and
quartiles across ten random seeds are shown.

All of SIXO-u, SIXO-DRE and SIXO-a converge to the correct solution and achieve a tight variational
bound (parameter convergence is shown in Figure 7 for SIXO-u). SIXO-u converges to a tight bound
most slowly, but SIXO-DRE and SIXO-a converge quickly at a rate similar to IWAE. This result
shows that SIXO is able to recover the optimal model, true posterior, and true twists, and that it can
recover a tight variational bound. It also shows that SIXO-DRE converges in a rate commensurate
with the best-case convergence of SIXO-a. Future work will investigate whether the use of a twist
makes the reparameterization gradient less biased.

Figures 1c and 1d show the lineages for two SMC sweeps: one using a model and proposal learned
using FIVO, and one using a model, proposal and twist learned using SIXO-u. We resample at
every timestep using systematic resampling. In each color we show the unweighted filtering particles
prior to resampling (i.e. the propagated particles) at time t, and then the smoothing particles after

25

performing a backwards pass from that timestep. As such, we are showing the family of smoothing
and predictive distributions. We see that FIVO proposes particles towards the observation, but that
these particles are often preferentially resampled back towards the prior distribution. This results in
gross particle degeneracy. In contrast, the lineages for SIXO are nearly perfect, with every particle
being resampled exactly once.

D.2 Stochastic Volatility Model (SVM)

D.2.1 Model Details

The SVM models an N -dimensional state-space is defined as follows:

p✓ (x1:T ,y1:T) = p✓ (x1) p✓ (y1 | x1)
TY

t=2

p✓(xt | xt�1) p✓(yt | xt), (46)

x1 ⇠ N (0,Q), xt = µ + � (xt�1 � µ) + ⌫t, yt = � exp
⇣xt

2

⌘
"t, (47)

where the states and observations are defined as:

x1:T = x1:T 2 X T = RT⇥N
, y1:T = y1:T 2 YT = RT⇥N

, (48)

the transition and observation noise terms are defined as:

⌫t ⇠ N (0,Q) , "t ⇠ N
�
0, IN⇥N

�
. (49)

and all multiplications are performed element-wise. The model has free parameters defined as:

✓ = {µ,�,�,Q} , where µ 2 RN
, � 2 [0, 1]N , � 2 RN

+
, Q 2 diag(RN

+
), (50)

such that there are 4N model parameters. The model learning objective is to recover the free
parameters, ✓, given observed data y. The data we consider are the monthly returns from N = 22
currencies over the period from 9/2007 to 8/2017, transformed into the log domain. As a result,
X = Y = R119⇥22.

D.2.2 Results

We use a fixed proposal per timestep parameterized as a Gaussian perturbation to p✓ as in [9],

q✓(xt | xt�1,y1:T) / p✓(xt | xt�1)N (xt;µt,⌃t). (51)

Thus the parameters specific to q are the means µt 2 RN and covariance matrices ⌃t 2 diag(RN
+

)
for t = 1, . . . , T .

SIXO-q uses a parameterless quadrature twist, so we skip twist optimization and use biased reparam-
eterization gradients of the SIXO bound to fit the model and proposal. For the quadrature twist we
use Gauss-Hermite quadrature with degree five.

For SIXO-DRE, we model the twist using the backwards RNN method introduced in Section 3.2.
The twist is parameterized with a one-layer LSTM with 128 hidden units and a one-layer MLP with
128 hidden units. The twist is learned using the alternating DRE method described in Section 3.2.
We generate a batch of 32,000 synthetic trajectories from the current model, and perform minibatch
stochastic gradient descent using the ADAM optimizer [55] with a learning rate of 3 ⇥ 10�3 and a
minibatch size of 64. We apply 1,000 twist updates (corresponding to two epochs) and then apply
1,000 updates to the model and proposal. The model and proposal parameters are updated using the
ADAM optimizer [55] with a learning rate of 1 ⇥ 10�4. We use four particles per SMC sweep, and
average across four datasets per model and proposal update.

Individual FIVO and SIXO-q seeds for each experiment were run using four CPU cores, 24Gb of
memory, and had a wallclock time of no longer than twenty four hours. SIXO-DRE had a longer
runtime of five days, however, competitive results were achieved within two days.

Train Bound Performance We compare four methods: IWAE (learning ✓), FIVO (learning ✓),
SIXO-q (learning ✓ with a quadrature twist) and SIXO-DRE (learning ✓ and using a DRE twist).
All methods (other than IWAE) use the biased resampling gradients of (18). We show the median and

26

quartiles across five random seeds. Each µn is initialized from N (0, 0.3) (with n 2 1, . . . , 22). �n

is learned in the unconstrained space R, and is transformed to [0, 1] by passing the raw � through a
hyperbolic tangent function. The unconstrained �n’s are initialized from N (arctanh(0.1), 0.3), and
log �n is initialized from N (log 1.0, 0.3). Finally, log Qn is initialized from N (log 1.0, 0.3). The
train bound value we report is taken as the average train bound after 75% of training. We also report
L2048

BPF
as the bound evaluated using a BPF with 2,048 particles. This tests the performance of the

learned model opposed to inference performance.

A one-way ANOVA [42] rejected the null hypothesis that the mean train bounds are equal (p <

0.0001), and a post-hoc Dunnett T3 test [56] found that all methods are statistically significantly
different (p < 0.01 for all pairs). For the L2048

BPF
values, a one-way ANOVA failed to reject the null

hypothesis that the train bounds are equal (p = 0.26), so all entries are bolded. This methodology
was recommended in Sauder and DeMars [57].

Test Set Performance We also report the performance on a held-out dataset constructed from the
new data since Naesseth et al. [9] was published. The test L2048

BPF
we report is the bound evaluated

using a BPF with 2,048 particles, averaged across all checkpoints after 75% of training. A one-way
ANOVA rejected the null hypothesis that the mean test bounds are equal (p < 0.0001), and a post-hoc
Dunnett T3 test found the mean SIXO-DRE bound to be the highest (p < 0.01 for all pairs).

D.3 Hodgkin-Huxley Model

We provide a brief overview of the model here for completeness, but refer the reader to Chapter 5.6
of Dayan and Abbott [44] for more detailed information.

D.3.1 Model Details

The HH model is a physiologically grounded model of neural action potentials [43] defined through
a set of four nonlinear differential equations. Each neuron is defined by four state variables: the
instantaneous membrane potential v(t) 2 R, the potassium channel activation n(t) 2 [0, 1], sodium
channel activation m(t) 2 [0, 1], and sodium channel inactivation h(t) 2 [0, 1]. The channel states
represent the aggregated probability that the given channel is active. The state evolves according to:

Cm
dv(t)

dt
= iext(t) � gL(v(t) � EL) � gKn

4(v(t) � EK) � gNam
3
h(v(t) � ENa). (52)

The membrane capacitance Cm is often defined to be 1.0. The first term, iext(t) is the externally
injected current. The second term represents the net current through cell membrane due to the
potential difference between the intracellular and extracellular mediums, often referred to as the
leakage current. This current is a function of the membrane capacitance, gL, and the potential of the
extracellular medium, EL, where the potential difference across the membrane is then v(t)�EL. The
third term represents the net current through the membrane as a result of the potassium channels as a
function of the channel state n(t), the channel capacitance gK , and the potassium reversal potential
EK . The final term represents the current through the membrane as a result of the sodium channel
states, both m(t) and h(t), the sodium channel conductance gNa, and the sodium reversal potential
ENa. The channel states evolve according to:

dn(t)

dt
= ↵n(v(t))(1 � n) � �n(v(t))n, (53)

dm(t)

dt
= ↵m(v(t))(1 � n) � �m(v(t))m, (54)

dh(t)

dt
= ↵h(v(t))(1 � n) � �h(v(t))h, (55)

where ↵n, ↵m, ↵h, �n, �m, �h are all fixed scalar functions of the membrane potential. We discretize
this continuous-time differential equation into a discrete-time latent variable model by integrating
using Euler integration with an integration timestep of 0.02ms (similarly to Huys and Paninski [47]).
This defines the deterministic time-evolution of the neural state.

We follow a similar approach as Huys and Paninski [47] and add Gaussian random noise to each
of the four states at each timestep. The membrane potential is unconstrained, and so we can add

27

noise directly. The gate states, however, are constrained to the range [0, 1]. Huys and Paninski [47]
use truncated Gaussian noise to avoid pushing the state outside the constrained range. We use a
different approach and transform the constrained states into an unconstrained state by applying the
inverse sigmoid function to the raw gate value. This has the effect of modifying the variance of
the perturbation in constrained space as a function of the state (heteroscedastic noise in constrained
space). However, this hetereoscedasticity carries with it a favorable intuition. The magnitude of
the noise term is reduced (after being pushed through a sigmoid) close the limits. This means that
the same noise kernel provides smaller perturbations close to the extremes, while still retaining
a larger permissible perturbations in the mid-range. The model is integrated with a timestep of
0.02ms. We add zero-mean Gaussian noise to the potential with variance scaled by the integration
timestep, �

2
v = 9mVs�1 ⇥ 0.02ms = 0.18µV. The unconstrained gate variables are perturbed

by zero-mean Gaussian noise with variance also scaled by the integration timestep, �
2

{n,m,h} =

0.1s�1 ⇥ 0.02ms = 0.000002. Observations are sampled from a Gaussian emission distribution
centered on the current membrane potential with variance 25mV. Observations are generated every
50 timesteps, corresponding to an acquisition rate of 1kHz.

We initialize the potential according to a Gaussian distribution with mean equal to -65mV and a stan-
dard deviation of 25mV. The unconstrained gate variables are initialized from a Gaussian distribution
with mean defined by an estimate of the steady-state value x = sigmoid (↵x(�65)/↵x(�65)��x(�65)),
where x represents the n, m or h states.

To iterate the model, we first constrain the state by passing the gate variables through a sigmoid. The
potential is already unconstrained and so requires no transform. We then iterate the model given the
constrained state. The iterated state is then unconstrained by passing the gate states through the logit
function (inverse of the sigmoid function). The noise term is then added to the iterated, unconstrained
state. Observations are then generated by sampling from the emission distribution every 50 steps. We
generate traces with 2,048 timesteps, corresponding to approximately 40ms.

D.3.2 Results

For the experiments presented in Section 5.3 we use either a bootstrap, filtering or smoothing proposal.
The bootstrap proposal is defined as q✓(xt | xt�1,y1:T) = p✓(xt | xt�1). The filtering proposal
runs an RNN forward over the observed data to create an encoding of all previous observations. This
encoding is then concatenated with a Transformer-style embedding of the elapsed time since the
last observation [58], and is input into an MLP to produce the residual density with is multiplied
with the prior density from which particles are then proposed (a type of resq proposal [59]). The
smoothing proposal runs two separate RNNs forwards and backwards over the data to encode all
previous and future observations. Both RNN encodings and the time encoding are concatenated and
used as input to an MLP. For SIXO, the twists are parameterized by an RNN running backwards over
the observations. The hidden state of the RNN is concatenated with a time encoding and fed into an
MLP to produce the twist value. All RNNs in these experiments have a hidden state of size 32, and
all MLPs have two hidden layers of size 32. Individual seeds for each experiment were run using
three CPU cores, 9Gb of memory, and had a runtime time of no longer than five days.

Inference In Figure 3 we compare the inference performance of a BPF (equivalent to FIVO-bs), to
SIXO-bs. The true generative model was used in both cases. This highlights the advantage of using a
learned twist under a fixed proposal.

In Table 4 we compare different inference methodologies in the true model across different observation
intervals and number of particles. FIVO-fi performs poorly, and drops off dramatically with the
number of particles and sampling interval. The performance of SIXO (both bootstrap and smoothing)
outperforms FIVO-bs, and is more consistent across the number of particles.

Model Learning For the experiments presented in Figure 4 and Table 3 in Section 5.3 we learn the
constant external current input, iext in (52). We generate 10,000 training sequences, and evaluate
on 64 validation and test sequences, all generated with ✓

True = iext = 13mV. We use five
seeds, deterministically initialized iext to a value uniformly spaced between 1.3µA and 37.7µA,
corresponding to a relative error of between �0.9 and 1.9. We use K = 4 particles per SMC
sweep during learning, when evaluating the model and proposal gradients (cf. Line 11 of Algorithm
1), and average across four sequences per parameter update. We use the same proposal and twist

28

Table 4: Comparison of inference performance for different observation intervals and numbers of
particles. We normalize LK

Method
by the number of observations in the sequence for comparison. We

compare SIXO-DRE with a smoothing proposal (SIXO-sm), SIXO-DRE with a bootstrap proposal
(SIXO-bs), FIVO with a filtering proposal (FIVO-fi), and filtering with a bootstrap proposal (FIVO-bs,
equivalent here to a BPF).

Number of Particles (K) LK
Method

/ number of observations

SIXO-sm SIXO-bs FIVO-fi FIVO-bs

Observation interval: 2ms

4 �5.25 ± 1.706 �6.77 ± 1.678 �19.98 ± 0.206 �15.2 ± 2.446
8 �2.90 ± 0.118 �3.56 ± 0.539 �20.92 ± 0.449 �7.91 ± 0.528

16 �2.07 ± 0.097 �2.21 ± 0.238 �21.57 ± 0.558 �3.95 ± 0.520
32 �1.66 ± 0.054 �1.75 ± 0.100 �22.80 ± 0.457 �2.57 ± 0.297
64 �1.50 ± 0.028 �1.54 ± 0.050 �22.02 ± 0.248 �1.69 ± 0.072

128 �1.43 ± 0.013 �1.45 ± 0.010 �21.31 ± 0.364 �1.51 ± 0.049
256 �1.41 ± 0.008 �1.41 ± 0.005 �20.58 ± 0.341 �1.44 ± 0.014

Observation interval: 1ms

4 �2.50 ± 1.948 �4.56 ± 1.941 �16.14 ± 0.843 �16.1 ± 1.688
8 �1.30 ± 0.011 �2.24 ± 0.561 �14.93 ± 0.498 �8.28 ± 0.618

16 �1.21 ± 0.017 �1.41 ± 0.176 �13.29 ± 0.301 �4.00 ± 0.612
32 �1.18 ± 0.004 �1.36 ± 0.206 �11.86 ± 0.304 �2.36 ± 0.356
64 �1.17 ± 0.004 �1.21 ± 0.045 �10.11 ± 0.219 �1.43 ± 0.081

128 �1.17 ± 0.002 �1.18 ± 0.008 �8.58 ± 0.129 �1.27 ± 0.048
256 �1.16 ± 0.002 �1.17 ± 0.001 �7.00 ± 0.192 �1.20 ± 0.015

Observation interval: 0.5ms

4 �2.12 ± 1.182 �4.05 ± 1.522 �5.73 ± 0.149 �15.4 ± 1.997
8 �1.20 ± 0.024 �1.83 ± 0.393 �5.48 ± 0.107 �7.76 ± 0.837

16 �1.11 ± 0.035 �1.18 ± 0.096 �5.62 ± 0.168 �3.88 ± 0.620
32 �1.06 ± 0.013 �1.17 ± 0.254 �6.09 ± 0.302 �2.17 ± 0.305
64 �1.04 ± 0.014 �1.05 ± 0.017 �5.93 ± 0.236 �1.31 ± 0.066

128 �1.03 ± 0.006 �1.03 ± 0.005 �5.72 ± 0.298 �1.10 ± 0.043
256 �1.02 ± 0.002 �1.02 ± 0.001 �5.19 ± 0.233 �1.04 ± 0.015

Observation interval: 0.2ms

4 �1.28 ± 0.185 �3.57 ± 1.369 �2.36 ± 0.081 �13.71 ± 1.753
8 �1.00 ± 0.009 �1.57 ± 0.362 �2.43 ± 0.205 �6.69 ± 0.800

16 �0.95 ± 0.018 �1.02 ± 0.081 �2.43 ± 0.075 �3.37 ± 0.416
32 �0.92 ± 0.003 �1.00 ± 0.209 �2.49 ± 0.106 �1.93 ± 0.243
64 �0.91 ± 0.010 �0.91 ± 0.009 �2.31 ± 0.097 �1.17 ± 0.082

128 �0.90 ± 0.002 �0.90 ± 0.007 �2.02 ± 0.059 �0.97 ± 0.030
256 �0.90 ± 0.001 �0.89 ± 0.001 �1.79 ± 0.089 �0.92 ± 0.011

architectures described above. We take 400 steps in the model per 100 steps in the twist. We perform
a hyperparameter search over the learning rate for the model, proposal, and twist, and a learning rate
decay schedule that halves the learning rate at specific steps. The optimal parameters are shown in
Table 5. We selected the best hyperparamters based on validation-set accuracy, and then evaluated the

29

0 200 400 600 800 1000

Optimization step (1000s)

�10
3

�10
2

L
2
5
6

M
e
t
h
o
d

FIVO-bs
FIVO-fi

SIXO-bs
SIXO-sm

Figure 8: Full version of Figure 4a showing the poor performance of FIVO-fi.

final three checkpoints of each selected run on the test set 10 times to produce L256

BPF
and L256

Method

values shown.

Table 5: Learning rate hyperparameters for the model learning experiment presented in Section 5.3.

Method Model LR Proposal LR Twist LR Learning rate decay schedule (1000s)

FIVO-bs 0.01 N/A N/A [150, 300, 600]
FIVO-fi 0.0003 0.0002 N/A [100, 200, 400]
SIXO-bs 0.01 N/A 0.0005 [800, 1600, 3200]
SIXO-sm 0.0003 0.0002 0.003 [80, 160, 320]

30

	Introduction
	Background
	Sequential Monte Carlo
	Filtering SMC and Model Learning
	Smoothing SMC via Twisting Functions

	SIXO: Smoothing Inference with Twisted Objectives
	The Functional Form of the Twists
	Learning Twists
	The SIXO Bound Can Become Tight

	Related Work
	Experiments
	Gaussian Drift Diffusion
	Stochastic Volatility Model
	Hodgkin-Huxley Model

	Conclusions, Limitations, and Future Work
	Table of Notation
	Background
	Sequential Monte Carlo
	Factoring the Smoothing Distributions

	Methods
	The Gradients of SMC
	Density Ratio Estimation
	Backwards Density Ratio Twist Architecture
	Alternating Density Ratio Twist Training
	The SIXO Bound Can Become Tight

	Experiments
	Gaussian Drift Diffusion
	Model Details
	Analytic Forms
	SIXO Variants for the Gaussian Drift Diffusion
	Results

	Stochastic Volatility Model (SVM)
	Model Details
	Results

	Hodgkin-Huxley Model
	Model Details
	Results

