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Abstract

Sequential Monte Carlo (SMC) is an inference algorithm for state space models
that approximates the posterior by sampling from a sequence of target distributions.
The target distributions are often chosen to be the filtering distributions, but these
ignore information from future observations, leading to practical and theoretical
limitations in inference and model learning. We introduce SIXO, a method that
instead learns target distributions that approximate the smoothing distributions,
incorporating information from all observations. The key idea is to use density ratio
estimation to fit functions that warp the filtering distributions into the smoothing
distributions. We then use SMC with these learned targets to define a variational
objective for model and proposal learning. SIXO yields provably tighter log
marginal lower bounds and offers more accurate posterior inferences and parameter
estimates in a variety of domains.

1 Introduction

In this work we consider model learning and approximate posterior inference in probabilistic state
space models. Sequential Monte Carlo (SMC) is a general-purpose method for these problems [1–3]
that produces an unbiased estimate of the marginal likelihood as well as latent state trajectories (i.e.
particles) that can be used to approximate posterior expectations. SMC can facilitate model learning
via expectation-maximization or direct maximization of the marginal likelihood estimate [4, 5]. It can
also be cast in a variational framework [6, 7] as a rich family of approximate posterior distributions
that can be fit using stochastic gradient ascent and modern automatic differentiation methods [8–12].

The quality of SMC’s marginal likelihood and posterior estimates is driven by two design decisions:
the choice of proposal distributions and target distributions. The proposal distributions specify how
particles propagate from one time step to the next, while the target distributions specify how those
particles are weighted and which ones survive to future time steps. The most common SMC variant,
filtering SMC, sets the targets to the filtering distributions, the conditional distributions over latent
states x1:t = (x1, . . . ,xt) given observations y1:t = (y1, . . . ,yt). The central issue is that the
filtering distributions do not incorporate information from future observations yt+1:T .

Figure 1 illustrates why setting the target distributions to the filtering distributions can be problematic.
In this example, the latent states follow a simple Gaussian random walk, but only the last step is
observed. Thus, the filtering distributions reduce to the prior, a series of mean zero Gaussians, shown
in Figure 1a. If the observation is far from the prior, the filtering distribution suddenly jumps at time
T = 10. This is a recipe for disaster in SMC: the particles at time T � 1 will be distributed according
to a mean zero Gaussian and very few will survive to the next time step, causing the variance of the
SMC estimator to explode. Even if the proposals incorporate smoothing information, using filtering
targets can cause particle degeneracy by resampling away high-quality particles, as seen in Figure 1c.
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Figure 1: Theoretical and empirical target distributions for a Gaussian random walk with a single
observation yT = 10 and y1:T�1 = ?. (a) For t = 1, . . . , 9 the filtering distributions reduce to a
series of mean-zero Gaussians. At t = T = 10, the filtering distribution incorporates the observation
yT , resulting in a sudden shift and particle death. (b) In contrast, the smoothing distributions steadily
shift towards the observation, matching the posterior perfectly. (c) The proposal learned by a previous
method, FIVO [8–10], exploits smoothing information to propose particles upwards towards the
observed value. However, FIVO is based on filtering SMC which “resists” this by resampling particles
back towards the prior, resulting in particle degeneracy. (d) SIXO’s proposal also leverages smoothing
information, but proposed particles are preserved by the learned target distributions.

Suppose instead that the target distributions were the smoothing distributions—the conditional
distributions over latents x1:t given all observations y1:T . Figure 1b shows the smoothing distributions
for the simple Gaussian random walk. Unlike the filtering distributions, the smoothing distributions
shift steadily toward the observation over time. These slow, smooth changes are ideal for SMC:
Figure 1d shows many particles surviving from one step to the next, resulting in a low-variance SMC
estimator.

In practice we do not have access to the smoothing distributions—if we did, there would be no
need for SMC! Here, we introduce a new method called SIXO: Smoothing Inference with Twisted
Objectives. SIXO provides a unified approach for learning model and proposal parameters, as well as
a set of twisting functions that warp the filtering distributions into targets that better approximate the
smoothing distributions [13]. Like its predecessor FIVO [8–10], SIXO uses a variational approach,
deriving a lower bound to the marginal likelihood. Unlike its predecessor, we prove that the SIXO
bound can become tight, even with finitely many particles.

The key challenge with SIXO is learning the twisting functions. We find that a simple density ratio
estimation approach works best, and we propose an algorithm that interleaves twist updates with
updates to the model and proposal. Thus, SIXO offers a means of jointly learning model parameters,
SMC proposals, and targets for accurate posterior inference.

Finally, we give empirical evidence to support our theoretical claims. Across a range of experiments
with a Gaussian diffusion, a stochastic volatility model of currency exchange rates, and a Hodgkin-
Huxley model of membrane potential in a neuron, SIXO consistently outperforms FIVO and related
methods. We dissect these results to illustrate how learning better targets enables more effective
posterior inference and model learning.
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2 Background

Consider modeling sequential data y1:T 2 YT using latent variables x1:T 2 X T with Markovian
structure, and let the joint distribution factorize as

p✓(x1:T ,y1:T ) = p✓(x1)p✓(y1 | x1)
TY

t=2

p✓(xt | xt�1)p✓(yt | xt) (1)

with global parameters ✓ 2 ⇥. We further assume that the conditional distributions p✓(xt | xt�1)
and p✓(yt | xt) may depend nonlinearly on xt�1 and xt respectively.

The marginal likelihood and posterior for this model class are not readily available from the joint
distribution due to the intractable integral over the latents x1:T , i.e.

p✓(y1:T ) =

Z

XT

p✓(y1:T ,x1:T ) dx1:T ,

cannot easily be computed due to the form of the conditional distributions.

2.1 Sequential Monte Carlo

Sequential Monte Carlo is an algorithm for inference in state-space models that approximates the
posterior p✓(x1:T | y1:T ) with a set of K weighted particles x1:K

1:T . These particles are constructed by
approximately sampling from a sequence of target distributions {⇡t(x1:t)}T

t=1
, with the intuition that

sampling from a series of distributions that gradually approach the posterior is easier than attempting
to sample from it directly. The targets are often only available up to an unknown normalizing constant
Zt, so SMC uses the unnormalized targets {�t(x1:t)}T

t=1
, which correspond to the normalized targets

via ⇡t(x1:t) = �t(x1:t)/Zt.

SMC repeats three steps: First, a set of latents are sampled from a proposal distribution q✓(xk
t |

xk
t�1

,y1:T ) conditional on the current particles x1:K
1:t�1

. Then, each particle is weighted using the
unnormalized target �t(x1:t) to form an empirical approximation of the normalized target distribution.
Finally, new particle trajectories x1:K

1:t are drawn from this approximation to the normalized target.

Ideally the target distributions smoothly approach the posterior so that sampling from the target at
time t + 1 is easy given samples from the target at time t. As long as mild technical conditions are
met and �T (x1:T ) / p✓(x1:T ,y1:T ), SMC returns a consistent and unbiased estimate of the marginal
likelihood p✓(y1:T ) and a set of weighted particles approximating the posterior p✓(x1:T | y1:T ) [1–3].
For more details see Appendix B.1, and for a thorough treatment of SMC see [1–3].

2.2 Filtering SMC and Model Learning

The most commonly-used SMC algorithm is filtering SMC (FSMC), which sets the normalized
targets to the filtering distributions, i.e. ⇡t(x1:t) = p✓(x1:t | y1:t) and �t(x1:t) / p✓(x1:t,y1:t).
Let bZFSMC(✓,y1:T ) be the marginal likelihood estimator returned from running filtering SMC with
proposal distributions {q✓(xt | x1:t�1,y1:t)}T

t=1
which may share parameters with p✓ .

Previous work used filtering SMC to fit model parameters by ascending a lower bound on the log
marginal likelihood called a filtering variational objective (FIVO) [8–10]. The FIVO bound is derived
using Jensen’s inequality and the unbiasedness of bZFSMC,

LFIVO(✓,y1:T ) , E[log bZFSMC(✓,y1:T )]  logE[ bZFSMC(✓,y1:T )] = log p✓(y1:T ), (2)

and is optimized using stochastic gradient ascent in ✓ [8–10, 14].

2.3 Smoothing SMC via Twisting Functions

The main disadvantage of filtering SMC is that the filtering distributions only condition on obser-
vations up to the current timestep t, ignoring future observations yt+1:T . This creates situations
where future observations are highly unlikely given the current latent trajectories, which in turn
causes particle death, high variance normalizing constant estimates, and poor inference and model
learning [8, 13, 15]. Performing smoothing SMC would resolve this issue by choosing the smoothing
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distributions as targets, i.e. ⇡t(x1:t) = p✓(x1:t | y1:T ) and �t(x1:t) / p✓(x1:t,y1:T ). Unfortunately,
p✓(x1:t,y1:T ) is not readily available from the model and computing it is roughly as hard as the
original inference problem.

However, p✓(x1:t,y1:T ) factors into the product of the filtering distributions, p✓(x1:t,y1:t), and
the lookahead distributions, p✓(yt+1:T | xt) (Appendix B.2). If the lookahead distributions can
be well-approximated by a series of “twisting” functions [13], {r(yt+1:T ,xt)}T

t=1
, then running

SMC with targets �t(x1:t) = p✓(x1:t,y1:t)r(yt+1:T ,xt) would approximate smoothing SMC. In
this sense, the lookahead distributions are optimal twisting functions [13, 16].

Different twisting functions yield different SMC methods such as auxiliary particle filters and twisted
particle filters [13, 17]. However, as long as the final unnormalized target �T (x1:T ) is proportional
to p✓(x1:T ,y1:T ) and regularity conditions are met, SMC will produce an unbiased estimate of the
marginal likelihood, regardless of the choice of twisting functions [1, 3, 18]. Instead, the quality of
the twisting functions affects the variance of SMC’s marginal likelihood estimate.

3 SIXO: Smoothing Inference with Twisted Objectives

Our goal is to fit models by optimizing a lower bound on their log marginal likelihood constructed us-
ing smoothing SMC. To construct the lower bound, fix r (xT ) = 1 and let bZSIXO(✓, ,y1:T )
be the marginal likelihood estimator returned from running SMC with unnormalized targets
{p✓(x1:t,y1:t)r (yt+1:T ,xt)}T

t=1
and proposal distributions {q✓(xt | x1:t�1,y1:T )}T

t=1
. Because

the T
th unnormalized target is p✓(x1:T ,y1:T ), bZSIXO will be an unbiased estimator of the marginal

likelihood p✓(y1:T ) [1, 3]. This implies via Jensen’s inequality that

LSIXO(✓, ,y1:T ) , E
h
log bZSIXO(✓, ,y1:T )

i

 logE
h
bZSIXO(✓, ,y1:T )

i
= log p✓(y1:T )

(3)

i.e. LSIXO(✓, ,y1:T ) is a lower bound on the log marginal likelihood log p✓(y1:T ) [14].

3.1 The Functional Form of the Twists

The structure of the lookahead distributions p✓(yt+1:T | xt) suggests a functional form for r that
accepts a single latent xt and produces distributions over all future observations yt+1:T . Because the
twists will be evaluated once per particle and timestep in an SMC sweep, this functional form would
lead to an algorithm with O(T 2) complexity. To reduce the complexity, we consider two methods:
fixed-lag twisting and backwards twisting.

Fixed-lag twisting approximates the full lookahead distribution p✓(yt+1:T | xt) using a
fixed window of L observations, i.e. it models p✓(yt+1:t+L | xt) [17, 19, 20]. We define the
fixed-lag twisting functions {r (yt+1:t+L,xt)}T�1

t=1
as a sequence of functions which accept xt 2 X

and produce a distribution over yt+1:t+L 2 YL. This reduces the computational complexity to
O(TL), at the expense of only looking at L observations.

In our experiments we use an L = 1 twist that scores the next observation by approximating the
one-step lookahead

p✓(yt+1 | xt) =

Z
p✓(yt+1 | xt+1) p✓(xt+1 | xt) dxt+1 (4)

with Gauss-Hermite quadrature [21]. We refer to this as the “quadrature twist”. This approach is
similar to the APF [17, 22], but uses numerical quadrature in place of sample-based integration.

Backwards twisting is motivated by rewriting the lookahead distributions using Bayes’
rule,

p✓(yt+1:T | xt) =
p✓(xt | yt+1:T ) p✓(yt+1:T )

p✓(xt)
/ p✓(xt | yt+1:T )

p✓(xt)
, (5)

where we drop terms independent of xt because the twisting functions will be used to score particles
in SMC. Thus, we need only approximate p✓(xt | yt+1:T )/p✓(xt). The numerator p✓(xt | yt+1:T )
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Algorithm 1 SIXO-DRE
1: procedure SIXO-DRE(y1:T , ✓0,  0, S, N , K)
2: for s = 1, . . . , S do
3:  s =TWIST-UPDATE(✓s�1, s�1, N )
4: ✓s =MODEL-UPDATE(y1:T ,✓s�1,  s, N , K)
5: return ✓S , S

6: procedure TWIST-UPDATE(✓, 0, N )
7: for i = 1, . . . , N do
8: x̃1:T ⇠ p✓(x1:T )
9: x1:T ,y1:T ⇠ p✓(x1:T ,y1:T )

10: LDRE( ) = 1

T�1

PT�1

t=1
log �(log r (yt+1:T ,xt)) + log(1 � �(log r (yt+1:T , x̃t)))

11: Compute  i using the gradients of LDRE evaluated at  i�1

12: return  N

13: procedure MODEL-UPDATE(y1:T ,✓0, , N, K)
14: for i = 1, . . . , N do
15: bZSIXO(✓) = SMC({p✓(x1:t,y1:t)r (yt+1:T ,xt)}T

t=1
, {q✓(xt | xt�1,y1:T )}T

t=1
, K)

16: Compute ✓i using the biased gradients of bZSIXO evaluated at ✓i�1

17: return ✓N

18: procedure SMC({�t(x1:t)}T
t=1

, {q✓(xt | xt�1,y1:T )}T
t=1

, K)
19: See Algorithm 2 in Appendix B.1.

is the reverse of the lookahead distributions—it is a distribution over a single latent conditioned on
future observations. This makes it possible to parameterize the twists using a recurrent function
approximator (e.g. a recurrent neural network or RNN) run backwards across the observations y1:T

to produce twist values for each timestep as a function of xk
t .

We define the backwards twists {r (yt+1:T ,xt)}T�1

t=1
as a sequence of positive, integrable, real-

valued functions YT�t ⇥ X ! R+ with parameters  2  . Parameterizing backward twists with a
recurrent function approximator results in O(T ) complexity (see Appendix C.3) and allows the twist
to condition on all future observations, making backwards twisting preferable to fixed-lag twisting.

3.2 Learning Twists

Ascending the Unified Objective One way to fit the twists, proposal, and model is to ascend LSIXO

in the parameters of p✓, q✓ , and r , similar to FIVO [8–10]. The gradients of this objective include
score-function terms that arise from the discrete resampling steps in SMC. We refer to ascending
LSIXO with these unbiased gradients as SIXO-u. Because the resampling gradient terms have high
variance, SIXO-u is impractical for complex settings [8, 11]. Lower-variance methods for estimating
these gradients were explored by Lawson et al. [11] but found to be ineffective. We therefore seek an
alternative method for training the twists. For a detailed discussion and derivation of the gradient, see
Appendix C.1.

Density Ratio Estimation Note that the optimal backwards twist is proportional to the ratio of a
“backwards message” p✓(xt | yt+1:T ) and the latent marginal p✓(xt) (Equation 5). Thus, we can
learn the backwards twist using density ratio estimation (DRE) [23, 24].

DRE via classification estimates the ratio of two densities a(x)/b(x) by training a classifier to
distinguish between samples from a and b. If such a classifier is trained using the logit link function,
then its raw output will approximate log a(x) � log b(x) up to a constant [24]. Using this approach,
we interpret log r (yt+1:T ,xt) as the logit of a Bernoulli classifier, which is trained to distinguish
between samples from p✓(xt,yt+1:T ) and p✓(xt)p✓(yt+1:T ), which are available from the model.
When trained in this way, log r (yt+1:T ,xt) will approximate log p✓(xt | yt+1:T ) � log p✓(xt) up
to a constant, which can be ignored. For details see Appendix C.2 and Sugiyama et al. [24].
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We use the DRE-learned twisting functions in an alternating scheme that first holds p✓, q✓ fixed
and updates r using density ratio estimation, and then holds r fixed and updates p✓ and q✓ by
ascending a biased gradient estimator (no resampling terms) of LSIXO(✓, ) in ✓. We call the full
alternating procedure for learning ✓ and  SIXO-DRE, see Algorithm 1.

3.3 The SIXO Bound Can Become Tight

Maddison et al. [8] show that the FIVO bound can only become tight in models with uncommon
dependency structures. We show that the SIXO bound can become tight for any model in the class
defined in Section 2.

Proposition 1. Sharpness of the SIXO bound. Let p(x1:T ,y1:T ) be a latent variable model with
Markovian structure as defined in Section 2, let Q be the set of possible sequences of proposal
distributions indexed by parameters ✓ 2 ⇥, and let R be the set of possible sequences of positive,
integrable twist functions indexed by parameters  2  . Assume that {p(xt | xt�1,y1:T )}T

t=1
2 Q

and {p(yt+1:T | xt)}T�1

t=1
2 R. Finally, assume LSIXO(✓, ,y1:T ) has the unique optimizer

✓⇤, ⇤ = arg max✓2⇥, 2 LSIXO(✓, ,y1:T ).

Then the following holds:

1. q✓⇤(xt | x1:t�1,y1:T ) = p(xt | x1:t�1,y1:T ) for t = 1, . . . , T ,

2. r ⇤(yt+1:T ,xt) / p(yt+1:T | xt) up to a constant independent of xt for t = 1, . . . , T �1,

3. LK
SIXO

(✓⇤, ⇤
,y1:T ) = log p(y1:T ) for any number of particles K � 1.

Proof. See Appendix C.5.

This is an important advantage of our work—the SIXO objective is the first to recover the true
marginal likelihood with a finite number of particles while also being tailored to sequential tasks.

4 Related Work

Standard references for SMC include Doucet and Johansen [1], Naesseth et al. [2], and Del Moral [3]
which provides a theoretical treatment of a generalization of SMC called Feynman-Kac formulae.
Pitt and Shephard [17] introduced the auxiliary particle filter, an early smoothing SMC method which
constructs an estimate of the one-step backwards message p✓(yt+1 | xt) using simulations from
the model. Smoothing SMC in general is discussed thoroughly in Briers et al. [15] and Del Moral
et al. [25]. Later, Whiteley and Lee [13] introduced twisted particle filters, which perform SMC on
a twisted model that approximates the smoothing distributions by multiplying the model’s filtering
distributions with “twisting” functions. Our work extends the theoretical framework in Whiteley and
Lee [13] by proposing practical and effective methods for learning parametric twisting functions.

To make smoothing SMC computationally tractable, fixed-lag techniques use information from only
a fixed window of future observations, as introduced in Clapp and Godsill [19] and surveyed in Lin
et al. [20]. For example, Park and Ionides [26] use simulations from the model to estimate fixed-lag
twisting functions and Doucet et al. [27] sample blocks of latents conditional on their observations
via various Monte Carlo methods. These methods suffer from computational complexity that grows
with the window size, and fail to take advantage of all future observations.

Other methods use twisting functions which depend on all observations. Most similar to our approach
are Guarniero et al. [16], Heng et al. [28], and Zimmermann et al. [29] which learn parametric twists
using a Bellman-like decomposition of the lookahead distributions p(yt+1:T | xt) in terms of the
same distributions one step into the future. Our method instead uses independent DRE objectives for
the twist at each timestep. Del Moral and Murray [30] use Gaussian processes to approximate the
twists, Lindsten et al. [18] use traditional graphical model techniques such as loopy belief propagation
and expectation propagation, and Ruiz and Kappen [31] use optimal control techniques. None of
these approaches consider model learning and their twist parameterizations and learning techniques
are highly specialized to specific problem settings.
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Figure 2: Results for the Gaussian drift diffusion experiment presented in Section 5.1. The median
across ten random seeds are shown. Further figures and discussion are included in Appendix D.1.

Fitting model parameters via stochastic gradient ascent on an evidence lower bound (ELBO) was
introduced in Ranganath et al. [32], Hoffman et al. [33], Kingma and Welling [34], and later gen-
eralized to the Monte Carlo objectives (MCO) framework by Mnih and Rezende [14]. Since then,
works have considered optimizing lower bounds defined by the normalizing constant estimators from
multiple importance sampling [35], nested importance sampling, [36, 29], rejection sampling and
Hamiltonian Monte Carlo [12], filtering SMC [8–10], and smoothing SMC [11, 37, 38]. The prior
work on smoothing SMC used an objective defined by forward filtering backwards smoothing [15]
which suffers from the same particle degeneracy issues as filtering SMC and cannot become tight.
Kim et al. [39] optimize the importance weighted autoencoder (IWAE) bound [35] using a baseline
derived from future likelihood estimates, but do not use SMC or resampling in their bound.

5 Experiments

We experimentally explore our claims that:

1. The SIXO bound can become tight while FIVO cannot.
2. DRE-learned twists enable better posterior inference than filtering SMC.
3. Model learning with SIXO provides better parameter estimates than FIVO.

5.1 Gaussian Drift Diffusion

We first consider a one-dimensional Gaussian drift diffusion process with joint distribution

p✓ (x1:T , yT ) = N
�
yT | xT + ↵, �

2

y

�
N

�
x1; ↵, �

2

x

� TY

t=2

N
�
xt | xt�1 + ↵, �

2

x

�
. (6)

The single free model parameter is the drift ↵ 2 R, the state is xt 2 R, and the observation is yT 2 R.
Figures 1a and 1b show that for ↵ = 0 the filtering and smoothing distributions in this model quickly
diverge, which can lead to poor inference for filtering methods.

We compare joint model, proposal and twist learning using two variants of SIXO to variational
inference with the IWAE bound [35] and FIVO with unbiased gradients [8–10]. All methods use an in-
dependent proposal at each time step parameterized as qt(xt | xt�1, yT ) = N (xt; ft(xt�1, yT ), �2

qt)
where ft is an affine function, a family which contains the optimal proposal. SIXO-u uses twists
parameterized as rt(yT , xt) = N (yT ; gt(xt), �2

rt) where gt is an affine function, a family which
contains the true lookahead distributions. The SIXO-DRE twist functions, log rt(yT , xt), are param-
eterized as quadratic functions of xt, where the parameters of the quadratic function are generated
by a neural network with inputs (yT , t). The true log density ratio will be quadratic in xt, so if the
neural network is sufficiently flexible, the true log density ratio function can be obtained.

Figure 2a shows the convergence of the variational bound for each method. As expected IWAE
recovers a tight variational bound, whereas FIVO does not. While SIXO-u does recover a tight
variational bound, the high variance of the unbiased gradient estimator makes it slower to converge,
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Table 1: Performance of FIVO and SIXO on the SVM.

Method Train L4

Method
(as in [9]) Train L2048

BPF
Test L2048

BPF

IWAE 6940.18 ± 1.17 7019.38 ± 2.99 3351.21 ± 2.35
FIVO 6921.29 ± 1.33 7020.14 ± 2.86 3352.51 ± 1.30
SIXO-q 6928.90 ± 1.24 7019.65 ± 2.97 3353.10 ± 1.58
SIXO-DRE 6931.51 ± 2.08 7019.42 ± 3.01 3354.08 ± 1.60

and impractical for non-toy problems. Conversely, SIXO-DRE achieves a tight bound while using the
lower variance biased gradients. This motivates its use in more complex, non-linear settings where
the unbiased FIVO gradients are not practical. Figure 2b shows that SIXO-u recovers the correct
twist parameters. More figures illustrating the convergence of ✓ and  are included in Appendix D.1.

In Figures 1c and 1d we compare particle trajectories under FIVO and SIXO-u. We see that FIVO
consistently proposes particles with high likelihood under the posterior distributions (identical to the
smoothing distributions in this case) which are discarded by the resampling steps in filtering SMC. In
contrast, SIXO both proposes particles with high posterior likelihood and retains them through the
resampling steps by properly scoring particles under the twisted target distributions. These results
empirically verify the theoretical claims made in Section 3.3.

5.2 Stochastic Volatility Model

We now apply SIXO to a stochastic volatility model (SVM) of monthly foreign exchange rates for
N = 22 currencies, over the period 9/2007 to 8/2017 [40]. The SVM generative model is defined as

x1 ⇠ N (0,Q), xt = µ + �� (xt�1 � µ) + ⌫t, yt = � � exp
⇣xt

2

⌘
� "t, (7)

with transition noise ⌫t ⇠ N (0,Q), observation noise "t ⇠ N (0, IN⇥N ), states x1:T 2 RT⇥N ,
and observations y1:T 2 RT⇥N . All multiplications are performed element-wise, denoted by �. The
proposal, q✓, is structured as q✓(x1:T ) /

QT
t=1

N (xt;µt,⌃t)p✓(xt | xt�1) with means µt 2 RN

and diagonal covariance matrices ⌃t 2 diag(RN
+

). We compare four approaches: IWAE, FIVO,
SIXO with quadrature twist (SIXO-q), and SIXO with density ratio twist (SIXO-DRE). Note that
the observations for this model are dense in time, so we would expect filtering-based approaches to
perform well. See Appendix D.2 for more details.

Train Performance We first compare our methods in terms of their 4-particle log marginal like-
lihood lower bounds as in Naesseth et al. [9], e.g. for IWAE we report the IWAE bound and for
FIVO we report the FIVO bound. Even though SIXO-q only scores a single future observation,
it still obtains a 7-nat improvement over FIVO. SIXO-DRE, meanwhile, conditions on all future
observations and obtains a 10-nat improvement over FIVO. All SMC-based methods, however,
significantly underperform IWAE which seems to indicate that IWAE’s unbiased gradients and use of
smoothing information allow it to learn a proposal which is efficient at low numbers of particles. This
performance does not carry over to model learning or other high-dimensional problems, however,
and is at odds with previous work on this model and dataset [8–10].

We also estimate the learned model’s training set marginal likelihood by computing a bootstrap particle
filter’s (BPF) log marginal lower bound with 2,048 particles, denoted L2048

BPF
[41]. Interestingly, a

one-way ANOVA [42] does not reject the null hypothesis that the training set L2048

BPF
means are all

equal (p = 0.26), suggesting that the log marginal likelihoods on training data are indistinguishable
and training performance has saturated. It is clear, however, that among the SMC methods SIXO
performs the best inference and makes the most efficient use of particles as the L4

SIXO
bounds are

significantly higher than L4

FIVO
for similar models.

Test Performance We also compare methods on a held-out test set to evaluate model learning. We
construct this test set using the same data source as the training set, but use the period of time since
Naesseth et al. [9] was published, an extra 55 months. Again, we report BPF log marginal lower
bounds with 2,048 particles and find that SIXO-DRE outperforms IWAE, SIXO-q and FIVO. All
differences are statistically significant.
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Figure 3: Comparison of trajectories generated by a BPF (top) and a SIXO-bs sweep (bottom) on
synthetic data from the Hodgkin-Huxley model. Both sweeps use the true model parameters and a
bootstrap proposal while SIXO-bs uses a learned twist. SIXO-bs resamples more frequently because
the twist changes the SMC weights at each model step, while the BPF only changes weights at each
observation. This allows SIXO-bs to resample away erroneous spikes right as they begin.

Table 2: Hodgkin-Huxley inference performance for different observation intervals.

Observation Interval L32

Method
/ number of observations

SIXO-sm SIXO-bs FIVO-fi FIVO-bs

2ms �1.66 ± 0.054 �1.75 ± 0.100 �22.80 ± 0.457 �2.57 ± 0.297
1ms �1.18 ± 0.004 �1.36 ± 0.206 �11.86 ± 0.304 �2.36 ± 0.356

0.5ms �1.06 ± 0.013 �1.17 ± 0.254 �6.09 ± 0.302 �2.17 ± 0.305
0.2ms �0.92 ± 0.003 �1.00 ± 0.209 �2.49 ± 0.106 �1.93 ± 0.243

5.3 Hodgkin-Huxley Model

We conclude by comparing FIVO and SIXO on the Hodgkin-Huxley (HH) model of neural action
potentials [43, 44]. A single neuron is represented with a four-dimensional state-space: the instanta-
neous membrane potential and the relative conductivity of three ion gates. A noise-corrupted and
subsampled membrane potential can be obtained using electrodes [45] or voltage imaging [46]. The
state of the gates, however, is not observable, and must be inferred from the noisy potential recordings.
The physiological parameters governing the time-evolution of the system are also of interest, such as
the base conductance of each of the ion channels.

We implement the HH model as a four-dimensional nonlinear state space model with Gaussian
transition noise [47]. The observation is a single Gaussian-distributed value with mean equal to the
instantaneous potential. Unless otherwise stated, we subsample observations by a factor of 50 to
simulate an acquisition frequency of 1kHz (interval of 1ms). For more details, see Appendix D.3.

In this model action potentials, or spikes, are rare events that happen quickly and invoke a rapid
change in the state. Therefore, filtering-based inference is particularly disadvantageous as noisy
observations may trigger erroneous spikes or “miss” true spikes.

We compare four methods: SIXO with a DRE twist and a learned smoothing proposal (SIXO-sm),
SIXO with a bootstrap proposal (SIXO-bs), FIVO with a learned filtering proposal (SIXO-fi), and
FIVO with a bootstrap proposal (FIVO-bs).

Inference In Figure 3 we compare HH trajectories generated by a BPF and SIXO-bs. The BPF
yields spurious spikes and misses the initiation of other spikes, illustrating the issue with filtering
SMC for HH inference. SIXO-bs allows fewer spurious spikes to develop and fewer particles miss the
onset of spikes. SIXO-bs also achieves a log marginal lower bound of �47.81 nats, higher than the
�49.24 nats achieved by the BPF, showing that it performs more effective inference. In Table 2 we
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Figure 4: Hodgkin-Huxley model learning performance over training. Both SIXO-bs and SIXO-sm
obtain a better parameter estimate and more stable bound than FIVO. FIVO-fi is not stable and
achieves a low bound, not visible on Figure 4a.

Table 3: Hodgkin-Huxley model learning performance.
Bound Proposal Test L256

Method
Test L256

BPF
✓ Relative Error

(True model) (Bootstrap) (N/A) (�49.12) (0.0)

FIVO Bootstrap �51.32 ± 0.73 �51.32 ± 0.73 0.45 ± 0.03
FIVO Filtering �660.62 ± 283.50 �115.74 ± 80.12 0.78 ± 0.20
SIXO Bootstrap �48.98 ± 0.20 �49.40 ± 0.79 0.10 ± 0.06
SIXO Smoothing �48.73 ± 0.14 �49.30 ± 0.71 0.05 ± 0.02

study this effect more extensively, comparing performance across different observation frequencies.
We see, as predicted, that the performance of SIXO is more consistent across observation frequencies
than FIVO, supporting the claim that twists assist in inference when observations are sparse. For
more results, see Table 4 in Appendix D.3.

Model Learning We conclude by comparing FIVO and SIXO for parameter recovery in Figure
4 and Table 3. We see that FIVO-bs converges to a poor parameter estimate, and recovers a poor
variational bound. FIVO-fi does not converge (details and full figure in Appendix D.3). The SIXO
methods recover much better parameter estimates, and achieve the highest bound values, with
SIXO-sm outperforming all other methods in terms of final performance and training stability.

6 Conclusions, Limitations, and Future Work

In this work we proposed a method of learning twisting functions for smoothing SMC via density ratio
estimation. Our approach ascends a lower bound on the log marginal likelihood that can theoretically
become tight, a first for SMC objectives. We verified our theoretical claims by experimentally
demonstrating improvements over existing techniques in inference and model learning.

There are, however, important limitations to our approach. Training and evaluating the twist requires
additional computational effort compared to FIVO, and requires further hyperparameter tuning.
Although we consider SIXO to be mainly used for offline settings, extending SIXO to online settings
could yield practical benefit. Finally, there is a known pathology in DRE methods where the ratio
may be poorly estimated if the difference between the densities in the ratio is very large [48]. Thus,
new methods for learning the twist are important topics for future work.
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