
Learning-Augmented Algorithms for Online Linear
and Semidefinite Programming

Elena Grigorescu∗

Purdue University, USA
elena-g@purdue.edu

Young-San Lin∗†

University of Melbourne, Australia
nilnamuh@gmail.com

Sandeep Silwal‡‡
MIT, USA

silwal@mit.edu

Maoyuan Song∗§

Purdue University, USA
song683@purdue.edu

Samson Zhou¶

UC Berkeley and Rice University, USA
samsonzhou@gmail.com

Abstract

Semidefinite programming (SDP) is a unifying framework that generalizes both
linear programming and quadratically-constrained quadratic programming, while
also yielding efficient solvers, both in theory and in practice. However, there
exist known impossibility results for approximating the optimal solution when con-
straints for covering SDPs arrive in an online fashion. In this paper, we study online
covering linear and semidefinite programs, in which the algorithm is augmented
with advice from a possibly erroneous predictor. We show that if the predictor
is accurate, we can efficiently bypass these impossibility results and achieve a
constant-factor approximation to the optimal solution, i.e., consistency. On the
other hand, if the predictor is inaccurate, under some technical conditions, we
achieve results that match both the classical optimal upper bounds and the tight
lower bounds up to constant factors, i.e., robustness.
More broadly, we introduce a framework that extends both (1) the online set
cover problem augmented with machine-learning predictors, studied by Bamas,
Maggiori, and Svensson (NeurIPS 2020), and (2) the online covering SDP problem,
initiated by Elad, Kale, and Naor (ICALP 2016). Specifically, we obtain general
online learning-augmented algorithms for covering linear programs with fractional
advice and constraints, and initiate the study of learning-augmented algorithms for
covering SDP problems. Our techniques are based on the primal-dual framework of
Buchbinder and Naor (Mathematics of Operations Research, 34, 2009) and can be
further adjusted to handle constraints where the variables lie in a bounded region,
i.e., box constraints.

1 Introduction

In the classical online model, an input is iteratively given to an algorithm that must make irrevocable
decisions at each point in time, while satisfying a number of changing constraints and optimizing a

∗E.G, Y.L, and M.S were supported in part by NSF CCF-1910659, NSF CCF-1910411, NSF CCF-2228814,
and a Ross-Lynn Award.

†Work done while at Purdue University, USA.
‡Supported by an NSF Graduate Research Fellowship under Grant No. 1745302, NSF TRIPODS program

(award DMS-2022448), and Simons Investigator Award.
§Supported in part by NSF CCF-2127806
¶Work supported by a Simons Investigator Award and by the National Science Foundation under Grant No.

CCF-1815840, and done in part while at Carnegie Mellon University, USA.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

fixed predetermined objective. A common metric for evaluating the quality of an online algorithm
is the competitive ratio, which is the ratio between the “cost” of the algorithm and the best cost in
hindsight, i.e., that of an optimal offline algorithm given the entire input sequence in advance. In the
context of the minimization problems we study in this paper, an online algorithm is c-competitive
if its cost is at most a multiplicative c factor more than the cost of the optimal solution. Due to the
irrevocable decisions, the changing constraints, or the number of possible different worst-case inputs,
many online algorithms have undesirable competitive ratios that are impossible to improve upon
without additional assumptions, e.g., [AAA+09].

Due to advances in the predictive ability of machine learning models, a natural approach to overcome
these computational barriers is to incorporate models with predictions, e.g., models that predict
outcomes based on historical data. Unfortunately, due to the lack of provable worst-case guarantees,
these predictions can be embarrassingly inaccurate when attempting to generalize to unfamiliar
inputs, as shown in [SZS+14], or simply not even satisfy the given constraints [BMS20]. Thus, rather
than blindly following an erroneous machine learning predictor, recent focus has shifted to studying
algorithms that use the output of these models as advice, and guarantee good competitive ratios both
when the predictions are accurate, i.e., consistency, and when the predictions are poor, i.e., robustness.

Recently, [BMS20] studied the learning-augmented online set cover problem and related problems,
using their linear programming (LP) formulation to incorporate additional advice through a primal-
dual approach. One drawback of their seminal work, however, is that they assume both integral
constraints, as well as integral advice, which restricts the modeling capabilities of the framework;
it is natural to ask how an online algorithm can be improved when the advice is given in terms of
probability distribution or some other meaningful fractional values. For example, for the online
set cover problem, fractional advice can indicate how likely a set should be chosen instead of the
binary decision of whether a set should be chosen or not; for the ski rental problem, the advice can
be presented as a probability distribution over the total number of vacation days; in online network
connectivity problems, the advice can indicate how likely an edge should be chosen.

In addition, linear programs cannot handle quadratic constraints and thus often fail to capture
important aspects of fundamental optimization problems, which motivates the study of more general
programs, such as semidefinite programming (SDP). SDP is a unifying framework that generalizes
both linear programs and quadratically constrained quadratic programming (QCQP), while also
yielding very efficient solvers, both in theory and in practice [VB96].

Before stating our contributions, we introduce some notation. For a learning-augmented problem, we
are given a confidence parameter λ ∈ [0, 1], where lower values of λ denote higher confidence in the
advice, and higher values denote lower confidence. An advice is a suggested solution for the online
problem that is given. In the context of optimization problems including linear and semidefinite
programming, a solution is a vector consisting of real numbers. We denote APX as the objective value
of the online solution obtained by an online algorithm and compare it with (1) the objective value
of the advice, denoted as ADV, and (2) the objective value of the offline optimal solution, denoted
as OPT. The consistency and robustness of an online algorithm or solution for a minimization
optimization problem are defined as follows.
Definition 1.1. An online solution with objective value APX is C(λ)-consistent if APX ≤ C(λ)ADV.
An online algorithm is C(λ)-consistent if it outputs a C(λ)-consistent solution for C : [0, 1]→ R≥1.
Definition 1.2. An online solution with objective value APX is R(λ)-robust if APX ≤ R(λ)OPT.
An online algorithm is R(λ)-robust if it generates an R(λ)-robust solution. Here, R : [0, 1]→ R≥1.

If an advice is accurate and we trust it, then we would like the solution to be close to the optimal, so
ideally C(λ) → 1 as λ → 0. On the other hand, having λ being close to 1 denotes no trust in the
advice, so R(1) should be close to the optimal competitive ratio of the best pure online algorithm.

1.1 Background and Contributions

We give a general paradigm for designing learning-augmented algorithms for online covering linear
programming [BN09b], which generalizes the set cover problem [BMS20], as well as online covering
semidefinite programming [EKN16], with possibly non-integral constraints and advice. Specifi-
cally, we present primal-dual learning-augmented (PDLA) algorithms for these problems, whose
performance is close to the optimal offline solution when the advice is accurate, and also whose
performance is asymptotically close to the optimal oblivious algorithm, if the advice is inaccurate.

2

Because of space constraints, we defer further discussions, additional related work, full algorithms,
formal statements of theorems, and all the proofs to the full version of the paper.

Our PDLA algorithms consider the advice while approximately minimizing the objective value when
the input arrives online. Our unifying paradigm applies to both online covering linear programs (LP)
and online covering semidefinite programs (SDP) described below.

Online covering linear programs. A covering LP is defined as follows:

minimize cTx over x ∈ Rn
≥0 subject to Ax ≥ 1. (1)

Here, A ∈ Rm×n
≥0 consists of m covering constraints, 1 is a vector of all ones, and c ∈ Rn

>0 denotes
the positive coefficients of the linear cost function. In the online covering problem, the cost vector c
is given offline, and each of these covering constraints (rows) is presented one by one in an online
fashion, that is, m can be unknown. The goal is to update x in a non-decreasing manner such that all
the covering constraints are satisfied and the objective value cTx is approximately minimized.

The O(log n)-competitive algorithm for online covering LPs presented in [BN09b] simultaneously
solves both the primal covering LP (1) and the dual packing LP (2), defined as follows:

maximize 1T y over y ∈ Rm
≥0 subject to AT y ≤ c. (2)

The analysis in [BN09b] crucially uses LP-duality and strong connections between the two solutions
to argue that they are both nearly optimal. The covering solution x is an exponential function of the
packing solution y and both x and y are monotonically increasing. The problem naturally extends to
the setting that relies on a separation oracle to retrieve an unsatisfied covering constraint where the
number of constraints can be unbounded. However, as the framework in [BN09b] fixes all violating
constraints, each arriving constraint might be slightly violated so that each individual fix may require
a diminishingly small adjustment. Consequently, the algorithm may have to address exponentially
many constraints. The framework was later modified in [GLQ21] which guarantees that addressing
polynomially many constraints suffices.

In the learning-augmented problem, we are given a confidence parameter λ ∈ [0, 1] and x′ ∈ Rn
≥0

served as a fractional advice for LP (1). However, we do not have guarantees about the advice x′.
More specifically, the objective value of the advice cTx′ could be a horrendous approximation to the
optimal objective value of LP (1) or x′ might not even satisfy the constraints.

We first show an efficient, consistent, and robust PDLA algorithm for the online covering LP (1). We
use the condition number κ to denote the upper bound for the ratio between the maximum positive
entry and the minimum positive entry for each fixed column of A. For ease of presentation, we
assume that x′ is feasible, i.e., there are no violating constraints caused by the advice x′.
Theorem 1.3 (Informal). Given a feasible advice x′ ∈ Rn

≥0 for LP (1) with confidence parameter

λ ∈ [0, 1], there exists an O
(

1
1−λ

)
-consistent and O

(
log κn

λ

)
-robust online algorithm for the online

covering LP problem that encounters polynomially many violating constraints.

The formal version of Theorem 1.3 (see full version [GLS+22a]) also addresses the case when x′ is
infeasible for LP (1). We note that Theorem 1.3 implies that when κ = poly(n), the algorithm is
log(n/λ)-robust.

Online covering semidefinite programs. We generalize our approach for learning-augmented
covering LPs to handle a more expressive family of optimization problems, namely, covering
semidefinite programs. First, we introduce some standard notation. A matrix A ∈ Rd×d is said to
be positive semidefinite (PSD), i.e., A ⪰ 0, if vTAv ≥ 0 for every vector v ∈ Rd, or equivalently,
all the eigenvalues of A are non-negative. If A is PSD and symmetric, then it is symmetric positive
semidefinite (SPSD). A partial order over SPSD matrices in Rd×d can be induced such that A ⪰ B if
and only if A−B ⪰ 0. The setting of a covering SDP problem is as follows.

minimize cTx over x ∈ Rn
≥0 subject to

n∑
j=1

Ajxj ⪰ B (3)

where A1, . . . , An ∈ Rd×d and B ∈ Rd×d are SPSD matrices and c ∈ Rn
>0.

In the online covering SDP problem introduced in [EKN16], we have the matrices A1, . . . , An and
the cost vector c given offline. In each round i ∈ [m] where m can be unknown, we are given a new

3

SPSD matrix B(i) satisfying B(i) ⪰ B(i−1). The goal is to cover B(i) using a linear combination
x1, . . . , xn of the matrices A1, . . . , An, so that

∑n
j=1 xjAj ⪰ B(i), while minimizing the cost cTx.

Moreover, we must update x in a non-decreasing manner, so that once some amount of the matrix Aj

is used in the covering at round i, then it must be used in all subsequent coverings in later rounds.
The online covering SDP problem and its dual in round i are as follows:

minimize cTx over x ∈ Rn
≥0 subject to

n∑
j=1

Ajxj ⪰ B(i) (4)

maximize B(i) ⊗ Y over Y ⪰ 0 subject to Aj ⊗ Y ≤ cj ∀j ∈ [n] (5)

where A⊗B :=
∑

i,j Ai,jBi,j = trace(ATB) is the Frobenius product.

We remark that the formulation of online covering SDP (4) generalizes online covering LP (1) when
the constraint matrix is known offline but there is no guarantee which covering constraint (row) will
arrive. In particular, the SDP formulation for online set cover with n sets and d elements all given
offline (but without the knowledge of which elements arrive and their order) is the following: we
define matrices A1, . . . , An ∈ {0, 1}d×d where Aj is a diagonal matrix whose diagonal is simply the
indicator vector for the j-th set across the d elements, i.e., entry (k, k) of Aj is 1 if and only if set j
contains element k. The matrices B(i) encode the variables that must be covered in round i, so that
B(0) is the all zeros matrix and B(i)−B(i−1) is the all-zeros matrix except with a single one in entry
(k, k) for the variable k that must be newly covered in round i. Thus no online SDP algorithm can
achieve competitive ratio o(log n) because even if fractional sets are allowed, no online algorithm
can achieve competitive ratio better than O(log n) for the online set cover problem [BN09a].

An optimal O(log n)-competitive online algorithm for covering SDPs was presented in [EKN16].
Similar to online covering LPs, an important idea in this line of work is to use weak duality and the
strong connections between the primal and the dual solutions. Observe that if x and Y are feasible
solutions for the primal and the dual, then cTx ≥

∑n
j=1(Aj ⊗ Y)xj =

(∑n
j=1(Ajxj)

)
⊗ Y ≥

B(i) ⊗ Y , and hence the primal and the dual satisfy weak duality.

In the learning-augmented problem, we are given a confidence parameter λ ∈ [0, 1] and a vector
x′ ∈ Rn

≥0 that serves as advice. We have no guarantees about the advice, the objective value of the
advice cTx′ could be a terrible approximation or x′ might not even be feasible.

We use κ to denote the ratio of the largest positive eigenvalue to the smallest positive eigenvalue of
the matrices A1, . . . , An, B

(1), . . . , B(m) and achieve the following.
Theorem 1.4 (Informal). Given a feasible advice x′ ∈ Rn

≥0 for SDP (4) with confidence parameter

λ ∈ [0, 1], there exists a polynomial time, O
(

1
1−λ

)
-consistent, and O

(
log κn

λ

)
-robust online

algorithm for the online covering SDP problem.

The formal version of Theorem 1.4 also addresses the case when x′ is infeasible for SDP (4). It
implies that we can achieve a constant factor approximation to the optimal solution when the advice
is accurate (O(1)-competitive), which breaks the known Ω(log n) competitive ratio obtained by the
oblivious online algorithm for covering SDP in [EKN16]. Moreover, for κ = poly(n), we match the
optimal approximation ratio of O(log n) up to constants when the advice is arbitrarily bad.

Adding box constraints. In both the LP and SDP case, it is natural to have the requirement that
the variables must lie in a bounded region. We extend our results for both online covering LPs and
online covering SDPs to this case where each coordinate xj of the variable vector x is required to
lie in the interval [0, uj]. We achieve qualitatively similar consistency and robustness trade-offs as
before which are summarized in Table 1. Instead of κ, a sparsity term s now appears in the robustness
portion of the competitive ratio. In the LP case for set cover, s exactly captures the row sparsity (i.e.,
the maximum number of non-zero entries of any row).

Theoretical applications. We emphasize that our framework uses a continuous approach that is
amenable to other learning-augmented optimization problems and supports fractional advice, which
may be interpreted as probabilities. For example, as in [EKN16, AW02, WX06], our framework for
covering SDPs may be applied to the quantum hypergraph covering problem. In the full version
paper [GLS+22a], we apply our PDLA algorithm for covering LPs with box constraints in order to

4

Paper Problem Approximation Guarantee Approach

[BN09a] online covering LP
with and without
box constraints:
O(logn)-competitive

continuous
guess-and-double

[EKN16] online covering SDP

without box constraints:
O(logn)-competitive
with box constraints:
O(log s)-competitive

continuous
guess-and-double
efficient updating

[BMS20]
learning-augmented
online set cover

without box constraints:
O(1/(1− λ))-consistent
O(log(d/λ))-robust

discretized

[GLQ21] online covering LP
without box constraints:
O(logn)-competitive

continuous
guess-and-double
efficient updating

This Work
learning-augmented
online covering LP and SDP
with fractional advice

without box constraints:
O(1/(1− λ))-consistent
O(log(κn/λ))-robust
with box constraints:
O(1/(1− λ))-consistent
O(log(s/λ))-robust

continuous
guess-and-double
efficient updating

Table 1: Summary of the competitive, consistency, and robustness ratios. We assume that the advice
is feasible for the learning-augmented problems. Here, n refers to the number of sets or variables,
λ ∈ [0, 1] refers to the confidence parameter, κ refers to the condition number, d refers to row sparsity,
and s refers to sparsity. We note that online covering LP with box constraints generalizes online set
cover with s = d. In [EKN16], the guess-and-double scheme is not used for online SDP covering
with box constraints.

obtain online algorithms for: (1) the fractional online set cover problem with fractional advice, and for
(2) the online group Steiner tree problem on trees, where a min-cut algorithm is used as a separation
oracle to retrieve violating constraints. Our learning-augmented solver for the group Steiner problem
on trees can be employed as a black-box for other related problems, including group Steiner tree on
general graphs, multicast problem on trees, and the non-metric facility location problem [AAA+06].

1.2 Subsequent developments

Subsequent to our work, a significantly simpler algorithm with tighter qualitative guarantees was
brought to our attention by Roie Levin. We describe the algorithm in the full version of the paper
[GLS+22b], with his permission. Nevertheless, we expect that the techniques and analysis that we
introduce in this paper may be of independent interest for other related problems or settings, such as
the advice being adaptive, or in settings of multiple experts. We believe that understanding the full
power of the techniques developed in this paper is an intriguing direction for further research in the
still emerging area of learning-augmented algorithms.

1.3 Overview of our Techniques

We now give a technical overview of our algorithms and describe how both our algorithms for
covering LPs and SDPs are guided by several common underlying principles.

Previous approaches. A natural starting point would be the PDLA algorithm for online set cover
by [BMS20], who adapted the primal-dual approach in [BN09a] to incorporate external advice. We
recall that in the covering LP formulation of the online set cover problem, each row denotes an
element and each column denotes a set. The constraint matrix has entries that are either 0 or 1. An
entry is 1 if and only if the element (row) belongs to the set (column). Additionally, for the online
set cover problem considered in [BMS20], each set is either included in the advice or not, i.e., each
coordinate of the suggested indicator vector for the set selection is either 1 or 0. While it seems
plausible that one could extend the discretized approach of [BMS20] to handle general coefficients
in the constraint matrix, i.e., the online covering LP problem, it is unclear how the growth rates of

5

For each update, while there exists a violating constraint:
1. Determine a violating constraint.
2. Acquire a “growth rate” for each variable depending on its coefficient in the violating

constraint, the corresponding cost, and the advice.
3. Use a guess-and-double approach to determine how fast each of the variables are

increased by their growth rates.
4. Increase the variables continuously until the constraint is satisfied.

Figure 1: Summary of our framework

the variables can be adjusted to guarantee dual feasibility. This is because the positive coefficients
in every covering constraint (all with value 1) are balanced in the online set cover problem, which
turns out to be a crucial ingredient to argue dual feasibility by the discretized approach, but we do not
have this guarantee for general covering LPs with arbitrary positive coefficients. Instead, we use a
different framework inspired by the classical online algorithm literature, e.g., [BN09b, EKN16]. We
present a summary of our framework in Figure 1 and describe it in more details below.

Continuous updates. Each time a new constraint arrives, we continuously increase the variables until
the constraint is satisfied. We adjust this growth rate of each variable based on its cost in the objective
linear function, its coefficient in the arriving constraint, and the advice: a variable is increased at
a slower rate if its cost is more expensive, its coefficient in the constraint has a smaller value, or
it is less recommended by the predictor. The introduction of fractional values in the advice is the
main technical obstacle in our setting. In particular, our algorithm must behave differently in the case
where a variable has not reached the fractional value recommended by the advice compared to the
case where it has reached the recommended value, but the solution does not satisfy all constraints.
By contrast, in the integral advice setting of [BMS20], the recommendation value always coincides
with the limit at 1. To this end, once the variable reaches the recommended value, our algorithms
judiciously decelerate the growth of the variable.

Guess-and-double. However, by allowing the coefficients of the constraint matrix to be arbitrary, the
optimal objective value OPT can be arbitrary and we need a nice estimate for this. Thus, we adopt
the guess-and-double technique, e.g., [BN09b, EKN16, GLQ21], where the algorithm is executed in
phases, so that in each phase we propose a lower-bound estimate of OPT, and the algorithm enters
the next phase when the value exceeds our estimate. Note that such techniques are not necessary
for [BMS20], as their assumption of coefficients in {0, 1} implicitly provided bounds on OPT.

Efficient updating. In more general applications, each arriving update may induce a large or
even infinite number of constraints, such as an infinite number of directions induced by an SDP
constraint. But now if we sequentially choose a violating constraint and satisfy the constraint exactly
as in [BMS20], then there is no guarantee that we will satisfy all the constraints in a small number of
iterations. Thus, another technique we adopt to ensure efficiency in conjunction with the guess-and-
double technique is to satisfy each arriving constraint by a factor of 2. That is, we instead continue
to increment the primal variables until the violating constraint is satisfied by a factor of 2, which
ensures that at least one primal variable is doubled, which also implies a polynomial upper bound on
the number of violating constraints that must be considered.

Showing robustness and consistency. With the introduction of general coefficients within many
components of our LP formulation, the robustness analysis in [BMS20] is no longer applicable, so
instead we adapt the primal-dual analysis in [BN09b] for general covering LP problems. In particular,
we deal with the general coefficients via a delicate telescoping argument for dual feasibility, since we
tune and change the growth rates multiple times even within the same phase. Towards obtaining the
consistency bound, we partition the growth rate based on whether the variable has exceeded the value
in the advice, and argue that the growth rate not credited to the advice is at most a certain factor of
the growth rate credited to the advice, similar to the line of the argument presented in [BMS20].

Extending to online covering SDPs with advice. We now have arriving matrices rather than arriving
elements, so that at each time we need to cover a new PSD matrix B(i) that can be larger than the
previous PSD matrix B(i−1) in an infinite number of directions. We repeatedly look at the direction
with the largest mass that needs to be covered, i.e., the largest eigenvector v of B(i) −

∑n
j=1 Ajxj .

6

Then to cover the direction v, we set the growth rate of the coefficient of each matrix Aj proportional
to the amount that the matrix aligns with v, i.e., proportional to vTAjv = Aj ⊗ V , where V = vvT

and ⊗ is the Frobenius product. Unfortunately, it does not suffice to cover v alone – there may
be many other directions for which B(i) −

∑n
j=1 Ajxj is not covered. However, as we satisfy the

violating constraint by a factor of 2, the amount of vectors we have to cover is similarly upper-bounded
as in the aforementioned approach for the online covering LP problem. Lastly, we remark that our
unifying framework can be naturally applied to any online problem that has a covering LP or SDP
formulation, equipped with a fractional advice and a confidence parameter.

2 PDLA Algorithms for Online Covering LPs and SDPs

We describe our PDLA algorithms for online covering LPs and SDPs and sketch the proof for their
guarantees. For covering LPs (1), we have A ∈ Rm×n

≥0 with m covering constraints, 1 is a vector of
all ones, and c ∈ Rn

>0 denotes the positive coefficients of the cost function. We use Ai to denote
row i of A and aij to denote the entries of A, and cj to denote the j-th entry of c. For the covering
SDP (4), we have SPSD matrices Aj’s and B(i)’s. For both covering LPs and SDPs, the covering
constraints arrive online and c is given offline. The goal is to update x in a non-decreasing manner
such that x is feasible and the objective cTx is minimized. We are given an advice x′ ∈ Rn

≥0.

We use a guess-and-double approach. The algorithms work in phases. Let OPT be the optimal
objective value of LP (1) or SDP (4). We estimate a lower bound α(r) for OPT in phase r. In
phase 1, let α(1) ← minj∈[n]{cj/a1j} be a proper lower bound for OPT in LP (1) (α(1) ←
minj∈[n]{cj trace(B(1))/ trace(Aj)} in SDP (4)). For each subsequent phase, α(r + 1)← 2α(r).

In the beginning of phase r, x(r)
j ← min{x′

j , α(r)/(2ncj)}. If x′
j ≤ α(r)/(2ncj), then it is possible

that α(r)/(2ncj) is large, so we have to set x(r)
j = x′

j to ensure consistency. On the other hand,
if x′

j ≥ α(r)/(2ncj), then it is possible that x′
j is large and the advice is bad, so we have to set

x
(r)
j = α(r)/(2ncj) to ensure robustness.

Whenever we have a new constraint i in LP (1), we introduce a new dual variable yi ← 0. For SDP
(4), the dual variable Y is reset to zero matrix in a new phase. Once the online objective in phase r
exceeds α(r), we proceed to the next phase r + 1 from the current constraint (let us call it constraint
ir+1, in particular, i1 = 1). The purpose of α(r) is to accelerate the growth rate of each variable x(r)

j
so that a violating constraint can be quickly covered without incurring a high cost for the objective.
For a violating constraint i, the growth rate of each variable x

(r)
j is then scaled proportional to aij

for covering LPs (Aj ⊗ V for covering SDPs) and inversely proportional to cj , so that the variables
that are more aligned with the violating constraint in the LP (implicit violating linear constraint
induced by V in the SDP) are valued more and the variables that are more expensive are valued less.
If the advice does not adequately cover constraint i, then we increase each variable according to its
growth rate until the (implicit) constraint is satisfied by a factor of 2. Otherwise if the advice covers
constraint i, then before we increase each variable, we further adjust the growth rate of each variable
based on a combination of the suggested weight by the advice and our confidence in the advice. Here
we use an indicator function where 1

x
(r)
j <x′

j
= 1 if x(r)

j < x′
j otherwise 1

x
(r)
j <x′

j
= 0. It should be

noted that since x must be updated in a non-decreasing manner, the algorithm maintains {x(ℓ)
j }ℓ∈[r],

which denotes the value of each variable xj from phase 1 to phase r, and the value of each variable
xj is set to maxℓ∈[r]{x

(ℓ)
j }. We defer the phase scheme to the full version paper [GLS+22a]. We

describe the continuous primal-dual approach in phase r and round i in Algorithms 1 and 2. We
note that the dual variables are used as the proxy to increase the primal variables. The increment
functions are exponential so that the primal variables are increased in terms of their growth rates. The
coefficients Bj and Dj are used to match the boundary conditions.

We remark that although we would like to increase the variables in a continuous fashion, we can
nevertheless implement our algorithm in a discrete manner for any desired precision by using binary
search. For covering LPs, the approach of satisfying each arriving violating constraint by a factor
of 2 guarantees that the number of iterations is polynomially upper-bounded. This implies efficient

7

applications on problems that generate covering LPs with exponentially many or unbounded number
of constraints, where violating constraints are retrieved by a separation oracle.

Proof Sketch for Theorem 1.3. We analyze Algorithm 1. Let P (r) = cTx and D(r) = 1T y be
the primal covering and the dual packing objective in phase r, respectively. To show robustness, we
show that the following claims are satisfied: (1) x is feasible for LP (1), (2) for each finished phase
r, α(r) ≤ 6D(r), (3) y/Θ

(
log κn

λ

)
is feasible for LP (2), and (4) the covering objective satisfies

cTx ≤ 2α(r′), where r′ is the last phase.

Claim (1) follows by the termination condition at line 9 and the phase scheme. Claim (2) follows
by taking the partial derivatives of the increment function and analyzing the accumulative primal
objective value. Claim (3) follows by a careful telescoping argument. Claim (4) follows by observing
that the sum of the objective value of all phases does not exceed 2α(r′) where r′ is the last phase.

We can then deduce that cTx ≤ Θ(1)α(r′) ≤ Θ(1)D(r′) ≤ O
(
log κn

λ

)
OPT where the first

inequality follows by claim (4), the second inequality follows by claim (2), and the last inequality
follows by claim (3) and weak duality, i.e., the objective value of any feasible packing solution for
LP (2) is upper-bounded by OPT.

To show consistency, upon the arrival of constraint i in phase r, we increment x(r) in terms of yi and
decompose P (r) into two parts: Pc, the contribution from the advice, and Pu, the contribution from
the online algorithm. The increase of P (r) is also decomposed, i.e., ∂P (r)

∂yi
= ∂Pc

∂yi
+ ∂Pu

∂yi
. We initialize

Pc to a non-negative value and Pu = 0 in the beginning of phase r, show that ∂Pu

∂yi
≤ 2+λ

1−λ
∂Pc

∂yi
, and

ultimately conclude that P (r) = Pc + Pu ≤ O(1
1−λ)Pc. Since the algorithm increments x(r) until

the violating constraint is satisfied by a factor of 2, the growth of x(r) is sufficient so that we only
have polynomially many constraints to address.

Proof Sketch for Theorem 1.4. We analyze Algorithm 2. The proof is analogous to the proof
of Theorem 1.3. The difference is that now we have D(r) = B(i) ⊗ Y . In the third claim of the
proof of robustness, we instead show that Y/Θ

(
log κn

λ

)
is feasible for SDP (5). For consistency, we

increment x(r) in terms of Y , where the increase of Y is δV for δ = 0 in the beginning. Here we
increment δ and consider the derivatives of P (r), namely Pc, and Pu w.r.t. δ instead of yi.

Algorithm 1 PDLA Online Covering LP

1: for each j ∈ [n] do
2: if Aix

′ ≥ 1 then

3: Dj ← λ
Ai1

+
(1−λ)x′

j1
x
(r)
j

<x′
j∑n

k=1
aikx

′
j1x

(r)
j

<x′
j

4: else
5: Dj ← 1

Ai1
.

6: Y
(i−1)
j ←

∑i−1
k=ir

akjyk.

7: Bj ←
x
(r)
j +Dj

exp
((

Y
(i−1)
j +aijyi

)
/cj

) .
8: if Aix

(r) < 1 then
9: while Aix

(r) < 2 do
10: for each j ∈ [n] do
11: Increase yi continuously.
12: Increase x(r)

j simultaneously by

x
(r)
j ← Bj exp

(
Y

(i−1)
j + aijyi

cj

)
−Dj .

13: if any x
(r)
j reaches x′

j then
14: Break and go to line 1.

Algorithm 2 PDLA Online Covering SDP

1: while
∑n

j=1 Ajx
(r)
j ̸⪰ B(i) do

2: Find SPSD matrix V :
∑n

j=1(Ajx
(r)
j)⊗V < B(i)⊗V .

3: for each j ∈ [n] do
4: if

∑n
k=1 Akx

′
k ⪰ B(i) then

5: Dj ← λB(i)⊗V∑n
k=1

Ak⊗V
+

(1−λ)x′
j1

x
(r)
j

<x′
j

B(i)⊗V∑n
k=1

1
x
(r)
k

<x′
k

Akx
′
k
⊗V

,

6: else
7: Dj ← B(i)⊗V∑n

k=1
Ak⊗V

.

8: Bj ←
x
(r)
j +Dj

exp

(
Aj⊗Y

cj

) .

9: while
∑n

j=1 Ajx
(r)
j ⊗ V < 2B(i) ⊗ V do

10: for each j ∈ [n] do
11: Set δ = 0 and increase it continuously.
12: Increase Y by continuously adding V δ to Y .
13: Increase x

(r)
j simultaneously by

x
(r)
j ← Bj exp

(
Aj ⊗ Y

cj

)
−Dj .

14: if any x
(r)
j reaches x′

j then
15: Break and go to line 3.

8

3 Empirical Evaluations

We demonstrate the applicability of our algorithmic framework on a synthetic and real datasets. Our
focus will be on online covering algorithms with fractional hints and entries. We focus on this setting
since it is the simplest of our algorithms and already captures key points of the overall framework.
Note that prior work [BMS20] has already demonstrated the empirical benefit of learning-based
methods for online covering with integral hints/constraints, albeit on synthetic datasets.

Datasets. For our synthetic dataset, the constraint matrix A represents a n× n matrix where each
entry is uniformly in {0, 1} and whose rows arrive online. We set n = 500. The objective function
c is a scaled vector with entries uniform in [0, 1]. Our graph dataset is constructed as follows. We
have a sequence of nine (unweighted) graphs which represents an internet router network sampled
across time [LK14, LKF05]6. The graphs have approximately n ∼ 104 nodes and m ∼ 2.2 · 104
edges. We note that the nodes of the graphs are labeled and the labeling is consistent throughout
the different time stamps. Each graph defines an instance of the set cover problem derived from the
standard vertex cover to set cover reduction [Kar72]. The objective function c will be the same as the
synthetic case so our problem represents an instance of weighted vertex cover. All experiments are
done in a 2021 M1 Macbook Pro with 32 gigabytes of RAM and implemented in Python 3.9.

Predictions. First we describe predictions for the synthetic dataset. We consider 2 types of predictions:
(1) first find the optimal offline solution x by solving the full linear program and then noisily corrupt
the entries of x by setting the entries to be 0 independently with probab. p. This is the same
prediction used in [BMS20] which is referred as ‘replacement rate’ strategy. (2): the motivation
of these predictions is the following: we are solving many related problem instances. To mimic
this, we have matrices A0, A1, . . . where each index represents a new problem instance. A0 is our
synthetic matrix and Ai+1 updates Ai by flipping n entries at random. We fix c to be the same.
The predictions for all instances i ≥ 1 are given by the optimal offline solution generated from
the first instance A0. This “batch" experimental design naturally models the scenario where the
current problem instance is similar to past instances and so one can hope to utilize past learned
information. A similar style of predictions, although not in an online context, has been employed
in [CEI+22, EFS+22, DIL+21, CSVZ22]. For our graph dataset, we first solve the set cover instance
on the 1st graph in the family using an offline algorithm. We then use the solution from the 1st graph
as the hint for all subsequent graphs. We also noisy alter this hint for one of our experiments using
the replacement rate strategy. Note that the set of vertices might vary across graphs. In this case, we
set the corresponding entry in the hint vector to be 0.

Results. Figure 2 shows the results on the synthetic dataset while Figure 3 refers to our graph dataset.
First, Figure 2a considers a single online instance of the synthetic dataset. Our prediction is the offline
optimal solution. It shows a smooth trade-off in the competitive ratio as the parameter λ ranges
from 0 (full trust in the predictions) to 1 (no hints), as predicted by our theoretical bounds. Since
the instance is random, we plot the average of 20 trials for each setting of λ and show 1 standard
deviation. The plot validates the consistency of our algorithms as the competitive ratio is a factor of
2 lower with accurate predictions. In contrast, Figure 2b validates the robustness of our algorithm.
There we consider the “replacement rate" strategy and randomly zero out the entries of the prediction
(which is again the offline optimum) independently. The expected fraction of entries in the hint vector
being set to zero is denoted as the corruption rate and is shown in the x-axis. We see that for a fixed
setting of λ, such as λ = 0.1, our algorithm performs much better with hints than without when the
corruption factor is low. However, as we increase the corruption, the performance of the algorithm
degrades. Crucially, the performance does not degrade arbitrarily worse compared to λ = 1 (no hints)
performance and our algorithm with hints is able to outperform the baseline up to a high corruption
factor. In Figure 2c, we consider a “batch" experimental design for our synthetic dataset with 20 time
steps. The green curve shows the competitive ratio without using any hints, i.e., λ = 1 (the baseline).
The orange curve shows the competitive ratio across the varying instances when we use a batch
prediction. The blue curve showcases more powerful predictions where the offline optimal of time
step t− 1 is used as the hint for time step t. We display the average values across 20 instances. As
the time step increases, the orange curve drifts upwards, which is intuitive as the problem instances
are increasingly different. Nevertheless, the batch hint stays valid for many time steps. As expected,
the blue curve consistently has the lowest competitive ratio as the hints are also updated.

6Graphs can be accessed in https://snap.stanford.edu/data/Oregon-1.html

9

https://snap.stanford.edu/data/Oregon-1.html

0.0 0.2 0.4 0.6 0.8 1.0
4

5

6

7

8

9

10

Co
m

pe
tit

iv
e

Ra
tio

(a)

0.0 0.1 0.2 0.3 0.4 0.5
Corruption Fraction

5

6

7

8

9

10

Co
m

pe
tit

iv
e

Ra
tio

= 0.1
= 1

(b)

0 3 6 9 12 15 18
Time Step

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Co
m

pe
tit

iv
e

Ra
tio

Online Predictions
Batch Predictions

= 1

(c)

Figure 2: Figures for our synthetic dataset.

2 3 4 5 6 7 8 9
Graph #

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Co
m

pe
tit

iv
e

Ra
tio

Online Predictions
Batch Predictions

= 1

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Corruption Fraction

2.20

2.25

2.30

2.35

2.40

2.45

2.50

Co
m

pe
tit

iv
e

Ra
tio

(b)

Figure 3: Figures for our time-varying graph dataset.

We now describe results on our graph dataset, given in Figure 3. In Figure 3a, the green curve
represents not using any hints (baseline) while the orange curve shows the competitive ratio as we
vary the graph instance while using the hint derived from graph #1 (λ is set to 0.1). It is shown that
the hints help outperform the baseline and in addition, the hints stay accurate even if the structure
of graph #9 has drifted away from that of graph #1. The online predictions, shown in blue, does
marginally better than the batch version. Figure 3b shows a similar plot as Figure 2b. We consider a
replacement rate strategy where we zero out coordinates of the hint vector independently with varying
probabilities. The curve shows the average of 5 trials and λ = 0.1 again. The same qualitative
message as Figure 2b holds: while the corruption rate is small, we achieve a similar competitive ratio
as in Figure 3a and as the corruption rate increases, there is a smooth increase in the competitive ratio.

In addition to extending and complementing the experimental results of [BMS20], we summarize our
experimental results in the following points: (a) Our theory is predictive of experimental performance
and qualitatively validates our robustness and consistency trade-offs. (b) Our algorithm framework
which underlies all of our algorithm contributions is efficient to carry out and execute in practice. (c)
Learning-augmented online algorithms can be applied to real world datasets varying over time such
as in the analysis of graphs derived from a dynamic network.

Open Problems. As stated in [BMS20], a natural future direction is to design PDLA algorithms
for packing LPs. For general online packing LPs, an O(1/ log κ)-competitive online solution
can be obtained only if a condition number κ is known offline [BN09b], implying impossibility
results without assumptions. The hope here is to study structured packing problems, e.g., load
balancing [BN09a] and ad-auction revenue maximization [BJN07].

Acknowledgment

We thank Roie Levin for bringing to our attention the significantly simpler algorithm described in the
full version of the paper [GLS+22b].

10

References

[AAA+06] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. A general
approach to online network optimization problems. ACM Transactions on Algorithms
(TALG), 2(4):640–660, 2006.

[AAA+09] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The
online set cover problem. SIAM Journal on Computing, 39(2):361–370, 2009.

[AW02] Rudolf Ahlswede and Andreas Winter. Strong converse for identification via quantum
channels. IEEE Transactions on Information Theory, 48(3):569–579, 2002.

[BJN07] Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. Online primal-dual algorithms
for maximizing ad-auctions revenue. In European Symposium on Algorithms, pages
253–264. Springer, 2007.

[BMS20] Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for
learning augmented algorithms. In Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems, NeurIPS, 2020.

[BN09a] Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via a
primal-dual approach. Found. Trends Theor. Comput. Sci., 3(2-3):93–263, 2009.

[BN09b] Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and
packing. Mathematics of Operations Research, 34(2):270–286, 2009.

[CEI+22] Justin Y. Chen, Talya Eden, Piotr Indyk, Honghao Lin, Shyam Narayanan, Ronitt Ru-
binfeld, Sandeep Silwal, Tal Wagner, David P. Woodruff, and Michael Zhang. Triangle
and four cycle counting with predictions in graph streams. In The Tenth International
Conference on Learning Representations, ICLR, 2022.

[CSVZ22] Justin Y. Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster fundamental graph
algorithms via learned predictions. In International Conference on Machine Learning,
ICML, pages 3583–3602, 2022.

[DIL+21] Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvit-
skii. Faster matchings via learned duals. In Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems, NeurIPS,
pages 10393–10406, 2021.

[EFS+22] Jon C. Ergun, Zhili Feng, Sandeep Silwal, David P. Woodruff, and Samson Zhou.
Learning-augmented k-means clustering. In The Tenth International Conference on
Learning Representations, ICLR, 2022.

[EKN16] Noa Elad, Satyen Kale, and Joseph (Seffi) Naor. Online semidefinite programming. In
43rd International Colloquium on Automata, Languages, and Programming, ICALP,
pages 40:1–40:13, 2016.

[GLQ21] Elena Grigorescu, Young-San Lin, and Kent Quanrud. Online directed spanners and
steiner forests. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2021), 2021.

[GLS+22a] Elena Grigorescu, Young-San Lin, Sandeep Silwal, Maoyuan Song, and Samson Zhou.
Learning-augmented algorithms for online linear and semidefinite programming. arXiv
preprint arXiv:2209.10614, 2022.

[GLS+22b] Elena Grigorescu, Young-San Lin, Sandeep Silwal, Maoyuan Song, and Samson Zhou.
Learning-augmented algorithms for online linear and semidefinite programming, 2022.

[Kar72] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[LKF05] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time: densifica-
tion laws, shrinking diameters and possible explanations. In Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 177–187, 2005.

11

http://snap.stanford.edu/data

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In
2nd International Conference on Learning Representations, ICLR, Conference Track
Proceedings, 2014.

[VB96] Lieven Vandenberghe and Stephen P. Boyd. Semidefinite programming. SIAM Rev.,
38(1):49–95, 1996.

[WX06] Avi Wigderson and David Xiao. Derandomizing the aw matrix-valued chernoff bound
using pessimistic estimators and applications. ECCC TR06-105, 2006.

12

	Introduction
	Background and Contributions
	Subsequent developments
	Overview of our Techniques

	PDLA Algorithms for Online Covering LPs and SDPs
	Empirical Evaluations

