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Abstract

Given a symmetric matrix M and a vector ⁄, we present new bounds on
the Frobenius-distance utility of the Gaussian mechanism for approximat-
ing M by a matrix whose spectrum is ⁄, under (Á, ”)-di�erential privacy.
Our bounds depend on both ⁄ and the gaps in the eigenvalues of M , and
hold whenever the top k + 1 eigenvalues of M have su�ciently large gaps.
When applied to the problems of private rank-k covariance matrix approx-
imation and subspace recovery, our bounds yield improvements over pre-
vious bounds. Our bounds are obtained by viewing the addition of Gaus-
sian noise as a continuous-time matrix Brownian motion. This viewpoint
allows us to track the evolution of eigenvalues and eigenvectors of the ma-
trix, which are governed by stochastic di�erential equations discovered by
Dyson. These equations allow us to bound the utility as the square-root of
a sum-of-squares of perturbations to the eigenvectors, as opposed to a sum
of perturbation bounds obtained via Davis-Kahan-type theorems.

1 Introduction

Given a dataset A œ Rm◊d, which consists of m individuals with d-dimensional features,
methods for preprocessing or prediction from A often use the covariance matrix M := A€A
of A. In many such applications one computes a rank-k approximation to M , or finds a
matrix close to M with a specified set of eigenvalues ⁄ = (⁄1, . . . , ⁄d) [37, 28, 36]. Examples
include the rank-k covariance matrix approximation problem where one seeks to compute a
rank-k matrix which minimizes a given distance to M , and the subspace recovery problem
where the goal is to compute a rank k-projection matrix H = VkV €

k , where Vk is the
d ◊ k matrix whose columns are the top-k eigenvectors of M . These matrix approximation
problems are ubiquitous in ML and have a rich algorithmic history; see [29, 45, 10, 8].
In some cases, the rows of A correspond to sensitive features of individuals and the release
of solutions to aforementioned matrix approximation problems may reveal their private
information, e.g., as in the case of the Netflix prize problem [5]. Di�erential privacy (DP)
has become a popular notion to quantify the extent to which an algorithm preserves privacy
of individuals [15]. Algorithms for solving low-rank matrix approximation problems have
been widely studied under DP constraints [30, 7, 19, 17]. Notions of DP studied in the
literature include (Á, ”)-DP [17, 25, 26, 19] which is the notion we study in this paper,
as well as pure (Á, 0)-DP [17, 30, 2, 32]. To define a notion of DP in problems involving
covariance matrices, following [7, 17], two matrices M = A€A and M Õ = AÕ€AÕ are said to
be neighbors if they arise from A, AÕ which di�er by at most one row and as, is oftentimes
done, require that each row of the datasets A, AÕ has norm at most 1. For any Á, ” Ø 0, a
randomized mechanism A is (Á, ”)-di�erentially private if for all neighbors M, M Õ œ Rd◊d,
and any measurable subset S of outputs of A, we have P(A(M) œ S) Æ eÁP(A(M Õ) œ S)+”.
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The problem. We consider a class of problems where one wishes to compute an approxi-
mation to a symmetric d◊d matrix under (Á, ”)-di�erential privacy constraints. Specifically,
given M = A€A for A œ Rm◊d, together with a vector ⁄ of target eigenvalues ⁄1 Ø · · · Ø ⁄d,
the goal is to output a d◊d matrix Ĥ with eigenvalues ⁄ which minimizes the Frobenius-norm
distance ÎĤ ≠ HÎF under (Á, ”)-di�erential privacy constraints. Here H is the matrix with
eigenvalues ⁄ and the same eigenvectors as M . This class of problems includes as a special
case the subspace recovery problem if we set ⁄1 = · · · = ⁄k = 1 and ⁄k+1 = · · · = ⁄d = 0.
It also includes the rank-k covariance approximation problems if we set ⁄i = ‡i for i Æ k,
where ‡1 Ø · · · Ø ‡d are the eigenvalues of M . Since revealing ‡is may violate privacy
constraints, the eigenvalues of the output matrix Ĥ should not be the same as those of H.
Various distance functions have been used in the literature to evaluate the utility of (Á, ”)-
DP mechanisms for matrix approximation problems, including the Frobenius-norm distance
ÎĤ≠HÎF (e.g. [19, 2])and the Frobenius inner product utility ÈM, H≠ĤÍ (e.g. [11, 19, 24]).
Note that while a bound ÎH ≠ĤÎF Æ b implies an upper bound on the inner product utility
of ÈM, H ≠ ĤÍ Æ ÎMÎF · b (by the Cauchy-Schwarz inequality), an upper bound on the
inner product utility does not (in general) imply any upper bound on the Frobenius-norm
distance. Moreover, the Frobenius-norm distance can be a good utility metric to use if
the goal is to recover a low rank matrix H from a dataset of noisy observations (see e.g.
[12]). Hence, we use the Frobenius-norm distance to measure the utility of an (Á, ”)-DP
mechanism.
Related work. The problem of approximating a matrix under di�erential privacy con-
straints has been widely studied. In particular, prior works have provided algorithms for
problems where the goal is to approximate a covariance matrix under di�erential privacy
constraints, including rank-k PCA and subspace recovery [7, 30, 19, 33] as well as rank-k
covariance matrix approximation [7, 19, 2]. Another set of works have studied the problem
of approximating a rectangular data matrix A under DP [7, 1, 25, 26]. We note that upper
bounds on the utility of di�erentially-private mechanisms for rectangular matrix approx-
imation problems can grow with the number of datapoints m, while those for covariance
matrix approximation problems oftentimes depend only on the dimension d of the covariance
matrix and do not grow with m. Prior works which deal with covariance matrix approx-
imation problems such as rank-k covariance matrix approximation and subspace recovery
are the most relevant to our paper. The notion of DP varies among the di�erent works
on di�erentially-private matrix approximation, with many of these works considering the
notion (Á, ”)-DP [25, 26, 19], while other works focus on (pure) (Á, 0)-DP [30, 2, 33].
Analysis of the Gaussian mechanism in [19]. [19] analyze a version of the Gaussian mech-
anism of [16], where one perturbs the entries of M by adding a symmetric matrix E with
i.i.d. Gaussian entries N(0,

Ô
log( 1

” )/Á), to obtain an (Á, ”)-di�erentially private mechanism
which outputs a perturbed matrix M̂ = M + E. One can then post-process this matrix M̂
to obtain a rank-k projection matrix which projects onto the subspace spanned by the top-k
eigenvectors of M̂ (for the rank-k PCA or subspace recovery problem), or a rank-k matrix
Ĥ with the same top-k eigenvectors and eigenvalues as M̂ (for the rank-k covariance matrix
approximation problem). [19] consider di�erent notions of utility in their results, including
the inner product utility (for PCA), and the Frobenius-norm and spectral-norm distance
distances (for low-rank approximation and subspace recovery).

In one set of results, [19] give lower utility bounds of �̃(k
Ô

d) w.h.p. for the rank-k PCA
problem with respect to the inner product utility ÈM, HÍ, together with matching upper
bounds provided by a post-processing of the Gaussian mechanism, where �̃ hides polynomial
factors of 1

Á and log( 1
” ) (their Theorems 3 and 18). As noted by the authors, their lower

bounds are tight for matrices M with the “worst-case” spectral profile ‡, but they can obtain
improved upper bounds for matrices M where ‡k ≠ ‡k+1 > �̃(

Ô
d) (Theorem 3 of [19]).

For the subspace recovery problem, [19] obtain a Frobenius-distance bound of ÎĤ ≠ HÎF Æ
Õ

!Ô
kd/(‡k≠‡k+1)

"
w.h.p. for a post-processing of the Gaussian mechanism whenever

‡k ≠ ‡k+1 > �̃(
Ô

d) (implied by their Theorem 6, which is stated for the spectral norm).
And for the rank-k covariance matrix approximation problem, [19] show a utility bound of
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ÎĤ ≠MÎF ≠ÎH ≠MÎF Æ Õ(k
Ô

d) w.h.p. for a post-processing of the Gaussian mechanism
(Theorem 7 in [19]), and also give related bounds for the spectral norm. While their Frobe-
nius bound for the covariance matrix approximation problem is independent of the number
of datapoints m, it may not be tight. For instance, when k = d, one can easily obtain a
better bound since, by the triangle inequality, ÎĤ ≠ MÎF ≠ ÎH ≠ MÎF Æ ÎĤ ≠ HÎF =
ÎM̂ ≠ MÎF = ÎEÎF Æ O(d) w.h.p., since ÎEÎF is just the norm of a vector of d2 Gaus-
sians with variance Õ(1). Moreover, the bound for the the rank-k covariance approximation
problem, ÎĤ ≠ HÎF Æ Õ(k

Ô
d), is also a worst-case upper bound for any spectral profile ‡

as the right hand side of the bound not depend on the eigenvalues ‡.
Thus, a question arises of whether the Frobenius-norm utility bounds for the rank-k covari-
ance matrix approximation and subspace recovery problems are tight for all spectral profiles
‡, and whether the analysis of the Gaussian mechanism can be improved to achieve bet-
ter utility bounds. A more general question is to obtain utility bounds for the Gaussian
mechanism for the matrix approximation problems for arbitrary ⁄.
Our contribution. Our main result is a new upper bound on the Frobenius-distance utility
of the Gaussian mechanism for the general matrix approximation problem for a given M
and ⁄ (Theorem 2.2). Our bound depends on the eigenvalues of M and the entries of ⁄.
The novel insight is to view the perturbed matrix M + E as a continuous-time symmetric
matrix di�usion, where each entry of the matrix M + E is the value reached by a (one-
dimensional) Brownian motion after some time T =

Ô
log( 1

” )/Á. This matrix-valued Brownian
motion, which we denote by �(t), induces a stochastic process on the eigenvalues “1(t) Ø
· · · Ø “d(t) and corresponding eigenvectors u1(t), . . . , ud(t) of �(t) originally discovered by
Dyson and now referred to as Dyson Brownian motion, with initial values “i(0) = ‡i and
ui(0) which are the eigenvalues and eigenvectors of the initial matrix M [20].
We then use the stochastic di�erential equations (3) and (4), which govern the evolution of
the eigenvalues and eigenvectors of the Dyson Brownian motion, to track the perturbations
to each eigenvector. Roughly speaking, these equations say that, as the Dyson Brownian
motion evolves over time, every pair of eigenvalues “i(t) and “j(t), and corresponding eigen-
vectors ui(t) and uj(t), interacts with the other eigenvalue/eigenvector with the magnitude
of the interaction term proportional to 1

“i(t)≠“j(t) at any given time t. This allows us to
bound the perturbation of the eigenvectors at every time t, provided that the initial gaps in
the top k+1 eigenvalues of the input matrix are Ø �(

Ô
d) (Assumption 2.1). Empirically, we

observe that Assumption 2.1 is satisfied for covariance matrices of many real-world datasets
(see Appendix J), as well as on Wishart random matrices W = A€A, where A is an m ◊ d
matrix of i.i.d. Gaussian entries, for su�ciently large m (see Appendix I). We then derive a
stochastic di�erential equation which tracks how the utility changes as the Dyson Brownian
motion evolves over time (Lemma 4.1), and integrate this di�erential equation over time to
obtain a bound on the (expectation of) the utility E[ÎĤ ≠ HÎF ] (Lemma 4.5) as a function
of the gaps “i(t) ≠ “j(t).
Plugging in basic estimates (Lemma 4.4) for the eigenvalue gaps “i(t) ≠ “j(t) to Lemma
4.5, we obtain a bound on the expected utility E[ÎĤ ≠ HÎF ] (Theorem 2.2) for the di�erent
matrix approximation problems as a function of the eigenvalue gaps ‡i ≠ ‡j of the input
matrix M . Roughly speaking, our bound is the square-root of a sum-of-squares of the ratios,

⁄i≠⁄j

‡i≠max(‡j ,‡k+1) , of eigenvalue gaps of the input and output matrices.

When applied to the rank-k covariance matrix approximation problem (Corollary 2.3), The-
orem 2.2 implies a bound of E[ÎĤ ≠ HÎF ] Æ Õ(

Ô
kd) whenever the eigenvalues ‡ of the

input matrix M satisfy ‡k ≠ ‡k+1 Ø �(‡k) and the gaps in top k + 1 eigenvalues sat-
isfy ‡i ≠ ‡i+1 Ø �̃(

Ô
d). Thus, when M satisfies the above condition on ‡, our bound

improves by a factor of
Ô

k on the (expectation of) the previous bound of [19], which
says that ÎĤ ≠ MÎF ≠ ÎH ≠ MÎF Æ Õ(k

Ô
d) w.h.p., since by the triangle inequality

ÎĤ ≠ MÎF ≠ ÎH ≠ MÎF Æ ÎĤ ≠ HÎF . This condition on ‡ is satisfied, e.g., for ma-
trices M whose eigenvalue gaps are at least as large as those of the Wishart random co-
variance matrices with su�ciently many datapoints m (see Section 2 for details). And,
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if ‡ is such that ‡i ≠ ‡i+1 Ø �(‡k ≠ ‡k+1) for i Æ k, Theorem 2.2 implies a bound of
E[ÎĤ ≠HÎF ] Æ Õ(

Ô
d/(‡k≠‡k+1)) for the subspace recovery problem (Corollary 2.4), improv-

ing by a factor of
Ô

k (in expectation) on the previous bound of [19], which implies that
ÎĤ ≠ MÎF ≠ ÎH ≠ MÎF Æ Õ

!Ô
kd/(‡k≠‡k+1)

"
w.h.p.

2 Results

Our main result (Theorem 2.2) gives a new and unified upper bound on the Frobenius-norm
utility of a post-processing of the Gaussian mechanism, for the general matrix approximation
problem where one is given a symmetric matrix M œ Rd◊d and a vector ⁄ with ⁄1 Ø · · · Ø ⁄d,
and the goal is to compute a matrix Ĥ with eigenvalues ⁄ which minimizes the distance
ÎĤ ≠ HÎF . Here H is the matrix with eigenvalues ⁄ and the same eigenvectors as M .
Plugging in di�erent choices of ⁄ to Theorem 2.2, we obtain as corollaries new Frobenius-
distance utility bounds for the rank-k covariance matrix approximation problem (Corollary
2.3) and the subspace recovery problem (Corollary 2.4). Our results rely on the following
assumption about the eigenvalues of the input matrix M :
Assumption 2.1 ((M, k, ⁄1, Á, ”) Eigenvalue gaps). The gaps in the top k + 1 eigenvalues
eigenvalues ‡1 Ø · · · Ø ‡d of the matrix M œ Rd◊d satisfy ‡i ≠ ‡i+1 Ø 8

Ô
log( 1.25

” )
Á

Ô
d +

3 log
1
2 (⁄1k) for every i œ [k].

We observe empirically that Assumption 2.1 is satisfied on a number of real-world datasets
which were previously used as benchmarks in the di�erentially private matrix approximation
literature [11, 2] (see Appendix J). Assumption 2.1 is also satisfied, for instance, by random
Wishart matrices W = A€A, where A is an m ◊ d matrix of i.i.d. Gaussian entries, which
are a popular model for sample covariance matrices [47]. This is because the minimum gap
‡i ≠ ‡i+1 of a Wishart matrix grows proportional to

Ô
m with high probability; thus for

large enough m, Assumption 2.1 holds (see Appendix I for details). Hence, the assumption
requires that the gaps in the top k + 1 eigenvalues of M are at least as large as the gaps in
a random Wishart matrix.
Theorem 2.2 (Main result). Let Á, ” > 0, and given a symmetric matrix M œ Rd◊d

with eigenvalues ‡1 Ø · · · Ø ‡d and corresponding orthonormal eigenvectors v1, . . . , vd.
Let G be a matrix with i.i.d. N(0, 1) entries, and consider the mechanism that outputs
M̂ = M +

Ô
2 log( 1.25

” )
Á (G + G€). Then such a mechanism is (Á, ”)-di�erentially private.

Moreover, let ⁄1 Ø · · · Ø ⁄d and k œ [d] be any numbers such that ⁄i = 0 for i > k, and define
� := diag(⁄1, . . . , ⁄d) and V = [v1, . . . , vd], and define ‡̂1 Ø · · · Ø ‡̂d to be the eigenvalues
of M̂ with corresponding orthonormal eigenvectors v̂1, . . . , v̂d and V̂ = [v̂1, . . . , v̂d]. Then if
M satisfies Assumption 2.1 for (M, k, ⁄1, Á, ”), we have

E
Ë
ÎV̂ �V̂ € ≠ V �V €Î2

F

È
Æ O

Q

a
kÿ

i=1

dÿ

j=i+1

(⁄i ≠ ⁄j)2

(‡i ≠ max(‡j , ‡k+1))2

R

b log( 1
” )

Á2

The fact that the mechanism in this theorem is (Á, ”)-di�erentially private follows from stan-
dard results about the Gaussian mechanism [19]. Given any list of eigenvalues ⁄, and letting
� = diag(⁄), one can post-process the matrix M̂ by computing its spectral decomposition
M̂ = V̂ �̂V̂ € and replacing its eigenvalues to obtain a matrix V̂ �V̂ € with eigenvalues ⁄ and
eigenvectors V̂ . Since V̂ �V̂ € is a post-processing of the Gaussian mechanism, the mecha-
nism which outputs V̂ �V̂ € is di�erentially private as well. Theorem 2.2 bounds the excess
utility E[ÎV̂ �V̂ € ≠ V �V €Î2

F ] (whenever the gaps in the eigenvalues ‡1 Ø · · · Ø ‡d of the
input matrix satisfy Assumption 2.1) as a sum-of-squares of the ratio of the gaps ⁄i ≠ ⁄j

in the given eigenvalues to the corresponding gaps ‡i ≠ max(‡j , ‡k+1) in the eigenvalues of
the input matrix (note that ⁄i ≠ ⁄j = ⁄i ≠ max(⁄j , ⁄k+1) since ⁄j = 0 for j Ø k + 1).
While we do not know if Theorem 2.2 is tight for all choices of ⁄ and k, it does give a
tight bound for some problems. Namely, when applied to the covariance matrix estimation
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problem, in the special case where k = d Theorem 2.2 implies a bound of E[ÎM̂ ≠ MÎF ] Æ
Õ(

Ô
kd) = O(d) (see Corollary 2.3). Since M̂ ≠ M =

Ô
2 log( 1.25

” )
Á (G + G€), the matrix

M̂ ≠ M has independent Gaussian entries with mean zero and variance Õ(1), and we have
from concentration results for Gaussian random matrices (see e.g. Theorem 2.3.6 of [39])
that E[ÎM̂ ≠ MÎF ] = �̃(d), implying that the bound in Theorem 2.2 is tight in this case.
The proof of Theorem 2.2 di�ers from prior works, including that of [19] which use Davis-
Kahan-type theorems [13] and trace inequalities, and instead relies on an interpretation of
the Gaussian mechanism as a di�usion process which may be of independent interest (See
Appendix K for additional comparison to previous approaches). This connection allows us
to use sophisticated tools from stochastic di�erential equations and random matrix theory.
We present an outline of the proof in Section 4.

Application to covariance matrix approximation: Plugging ⁄i = ‡i for i Æ k and
⁄i = 0 for i > k into Theorem 2.2, and plugging in concentration bounds for the perturbation
to the eigenvalues ‡i, we obtain utility bounds for covariance matrix approximation:
Corollary 2.3 (Rank-k covariance matrix approximation). Let Á, ” > 0, and given a
symmetric matrix M œ Rd◊d with eigenvalues ‡1 Ø · · · Ø ‡d and corresponding orthonormal
eigenvectors v1, . . . , vd. Let G be a matrix with i.i.d. N(0, 1) entries, and consider the
mechanism that outputs M̂ = M +

Ô
2 log( 1.25

” )
Á (G + G€). Then such a mechanism is (Á, ”)-

di�erentially private. Moreover, for any k œ [d], define �k := diag(‡1, . . . , ‡k, 0 . . . , 0) and
V = [v1, . . . , vd], and define ‡̂1 Ø · · · Ø ‡̂d to be the eigenvalues of M̂ with corresponding
orthonormal eigenvectors v̂1, . . . , v̂d, and define �̂k := diag(‡̂1, . . . , ‡̂k, 0 . . . , 0) and V̂ :=
[v̂1, . . . , v̂d]. Then if M satisfies Assumption 2.1 for (M, k, ‡1, Á, ”), and defining ‡d+1 := 0,
we have

E
Ë
ÎV̂ �̂kV̂ € ≠ V �kV €ÎF

È
Æ O

3Ô
kd ◊ ‡k

‡k ≠ ‡k+1

4 log
1
2 ( 1

” )
Á

.

The proof appears in Appendix G. If ‡k ≠ ‡k+1 = �(‡k), then Corollary 2.3 implies that

E
Ë
ÎV̂ �̂kV̂ € ≠ V �kV €ÎF

È
Æ O

3Ô
kd

log
1
2 ( 1

” )
Á

4
. Thus, for matrices M with eigenvalues sat-

isfying Assumption 2.1 and where ‡k ≠ ‡k+1 = �(‡k), Corollary 2.3 improves by a factor ofÔ
k on the bound in Theorem 7 of [19] which says ÎV̂ �̂kV̂ € ≠ MÎF ≠ ÎV �kV € ≠ MÎF =

Õ(k
Ô

d) w.h.p.. This is because an upper bound on ÎV̂ �̂kV̂ € ≠V �kV €ÎF implies an upper
bound on ÎV̂ �̂kV̂ € ≠ MÎF ≠ ÎV �kV € ≠ MÎF by the triangle inequality. On the other
hand, while their result does not require a bound on the gaps in the eigenvalue of M and
bounds their utility w.h.p., our Corollary 2.4 requires a bound on the gaps of the top k + 1
eigenvalues of M and bounds the expected utility E[ÎV̂ �̂kV̂ € ≠ V �kV €ÎF ].

Application to subspace recovery: Plugging in ⁄1 = · · · = ⁄k = 1 and ⁄k+1 = · · · =
⁄d = 0, the post-processing step in Theorem 2.2 outputs a projection matrix, and we obtain
utility bounds for the subspace recovery problem.
Corollary 2.4 (Subspace recovery). Let Á, ” > 0, and given a symmetric matrix
M œ Rd◊d with eigenvalues ‡1 Ø · · · Ø ‡d and corresponding orthonormal eigenvectors
v1, . . . , vd. Let G be a matrix with i.i.d. N(0, 1) entries, and consider the mechanism that
outputs M̂ = M +

Ô
2 log( 1.25

” )
Á (G + G€). Then such a mechanism is (Á, ”)-di�erentially

private. Moreover, for any k œ [d], define the d ◊ k matrices Vk = [v1, . . . , vk] and
V̂k = [v̂1, . . . , v̂k], where ‡̂1 Ø · · · Ø ‡̂d denote the eigenvalues of M̂ with corresponding
orthonormal eigenvectors v̂1, . . . , v̂d. Then if M satisfies Assumption 2.1 for (M, k, 2, Á, ”),

we have E
Ë
ÎV̂kV̂ €

k ≠ VkV €
k ÎF

È
Æ O

3 Ô
kd

‡k≠‡k+1
◊ log

1
2 ( 1

” )
Á

4
. Moreover, if we also have that

‡i ≠ ‡i+1 Ø �(‡k ≠ ‡k+1) for all i Æ k, then

E
Ë
ÎV̂kV̂ €

k ≠ VkV €
k ÎF

È
Æ O

A Ô
d

‡k ≠ ‡k+1
◊

log
1
2 ( 1

” )
Á

B
.
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The proof appears in Appendix H. For matrices M satisfying Assumption 2.1, the first
inequality of Corollary 2.4 recovers (in expectation) the Frobenius-norm utility bound im-

plied by Theorem 6 of [19], which states that ÎV̂kV̂ €
k ≠ VkV €

k ÎF Æ O

3 Ô
kd

‡k≠‡k+1
◊ log

1
2 ( 1

” )
Á

4

w.h.p. Moreover, for many input matrices M with spectral profiles ‡1 Ø · · · Ø ‡d satisfying
Assumption 2.1, Theorem 2.2 implies stronger bounds than those in [19] for the subspace
recovery problem. For instance, if we also have that ‡i ≠ ‡i+1 Ø �(‡k ≠ ‡k+1) for all i Æ k,
the bound given in the second inequality of Corollary 2.4 improves on the bound of [19] by
a factor of

Ô
k. On the other hand, while their result only requires that ‡k ≠ ‡k+1 Ø

Ô
d

and bounds the Frobenius distance ÎV̂kV̂ €
k ≠ VkV €

k ÎF w.h.p., our Corollary 2.4 requires a
bound on the gaps of the top k + 1 eigenvalues of M and bounds the expected Frobenius
distance E[ÎV̂kV̂ €

k ≠ VkV €
k ÎF ].

3 Preliminaries

Brownian motion and stochastic calculus. A Brownian motion W (t) in R is a con-
tinuous process that has stationary independent increments (see e.g., [34]). In a multi-
dimensional Brownian motion, each coordinate is an independent and identical Brownian
motion. The filtration Ft generated by W (t) is defined as ‡ (fisÆt‡(W (s))), where ‡(�) is
the ‡-algebra generated by �. W (t) is a martingale with respect to Ft.
Definition 3.1 (Itô Integral). Let W (t) be a Brownian motion for t Ø 0, let Ft be the
filtration generated by W (t), and let z(t) : Ft æ R be a stochastic process adapted to Ft.
The Itô integral is defined as

s T
0 z(t)dW (t) := limÊæ0

q T
Ê
i=1 z(iÊ) ◊ [W ((i + 1)Ê) ≠ W (iÊ)].

Lemma 3.1 (Itô’s Lemma, integral form with no drift; Theorem 3.7.1 of [31]). Let
f : Rn æ R be any twice-di�erentiable function. Let W (t) œ Rn be a Brownian motion, and
let X(t) œ Rn be an Itô di�usion process with mean zero defined by the following stochastic
di�erential equation:

dXj(t) =
dÿ

i=1
Rij(t)dWi(t), (1)

for some Itô di�usion R(t) œ Rn◊n adapted to the filtration generated by the Brownian
motion W (t). Then for any T Ø 0,

f(X(T )) ≠ f(X(0)) =
⁄ T

0

nÿ

i=1

nÿ

¸=1

3
ˆ

ˆX¸
f(X(t))

4
Ri¸(t)dWi(t)

+ 1
2

⁄ T

0

nÿ

i=1

nÿ

j=1

nÿ

¸=1

3
ˆ2

ˆXjˆX¸
f(X(t))

4
Rij(t)Ri¸(t)dt.

Dyson Brownian motion. Let W (t) œ Rd◊d be a matrix where each entry is an
independent standard Brownian motion with distribution N(0, tId) at time t, and let
B(t) = W (t) + W €(t). Define the symmetric-matrix valued stochastic process �(t) as
follows:

�(t) := M + B(t) ’t Ø 0. (2)
The process �(t) is referred to as (matrix) Dyson Brownian motion. At every time t > 0
the eigenvalues “1(t), . . . , “d(t) of �(t) are distinct with probability 1, and (2) induces a
stochastic process on the eigenvalues and eigenvectors. The process on the eigenvalues and
eigenvectors can be expressed via the following di�usion equations. The eigenvalue di�usion
process, which is also referred to as (eigenvalue) “Dyson Brownian motion”, is defined by
the stochastic di�erential equation (3). The (eigenvalue) Dyson Brownian motion is an
Itô di�usion and can be expressed can be expressed by the following stochastic di�erential
equation [20]:

d“i(t) = dBii(t) +
ÿ

j ”=i

1
“i(t) ≠ “j(t)dt ’i œ [d], t > 0. (3)
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The corresponding eigenvector process v1(t), . . . , vd(t), referred to as the Dyson vector flow,
is also an Itô di�usion and, conditional on the eigenvalue process (3), can be expressed by
the following stochastic di�erential equation (see e.g., [3]):

dui(t) =
ÿ

j ”=i

dBij(t)
“i(t) ≠ “j(t)uj(t) ≠ 1

2
ÿ

j ”=i

dt

(“i(t) ≠ “j(t))2 ui(t) ’i œ [d], t > 0. (4)

Eigenvalue bounds. The following two Lemmas will help us bound the gaps in the
eigenvalues of the Dyson Brownian motion:
Lemma 3.2 (Theorem 4.4.5 of [43], special case 1). Let W œ Rd◊d with i.i.d. N(0, 1)
entries. Then P(ÎWÎ2 > 2(

Ô
d + s) < 2e≠s2 for any s > 0.

Lemma 3.3 (Weyl’s Inequality; [6]). If A, B œ Rd◊d are two symmetric matrices,
and denoting the i’th-largest eigenvalue of any symmetric matrix M by ‡i(M), we have
‡i(A) + ‡d(B) Æ ‡i(A + B) Æ ‡i(A) + ‡1(B).

4 Proof of Theorem 2.2

We give an overview of the proof of Theorem 2.2, along with the main technical lemmas used
to prove this result. Section 4.1 outlines the di�erent steps in our proof. In Steps 1 and 2 we
construct the matrix-valued di�usion used in our proof. Steps 3,4, and 5 present the main
technical lemmas, and in step 6 we explain how to complete the proof. The statements of
the lemmas and the highlights of their proofs, are given in Sections 4.2, 4.3, 4.4. In section
4.5 we explain how to complete the proof. The full proofs are deferred to the appendix.

4.1 Outline of proof

1. Step 1: Expressing the Gaussian Mechanism as a Dyson Brownian Motion. To
obtain our utility bound, we view the Gaussian mechanism as a matrix-valued Brownian
motion (2) initialized at the input matrix M : �(t) := M + B(t) ’t Ø 0. If we run this
Brownian motion for time T =

Ô
2 log( 1.25

” )/Á we have that �(T ) = (
Ô

2 log( 1.25
” )/Á)(G+G€),

recovering the output of the Gaussian mechanism. In other words, the input to the
Gaussian mechanism is M = �(0), and the output is M̂ = �(T ).

2. Step 2: Expressing the post-processed mechanism as a matrix di�usion �(t).
Our goal is to bound ÎV̂ �V̂ € ≠ V �V €ÎF , where M = V �V € and M̂ = V̂ �̂V̂ € are
spectral decompositions of M and M̂ . To bound the error ÎV̂ �V̂ € ≠ V �V €ÎF we will
define a stochastic process �(t) such that �(0) = V �V € and �(t) = V̂ �V̂ €, and then
bound the Frobenius distance Î�(T ) ≠ �(0)ÎF by integrating the (stochastic) derivative
of �(t) over the time interval [0, T ].
Towards this end, at every time t, let �(t) = U(t)�(t)U(t)€ be a spectral decomposition
of the symmetric matrix �(t), where �(t) is a diagonal matrix with diagonal entries
“1(t) Ø · · · Ø “d(t) that are the eigenvalues of �(t), and U(t) = [u1(t), · · · , ud(t)] is a d◊d
orthogonal matrix whose columns u1(t), · · · , ud(t) are an orthonormal basis of eigenvectors
of �(t). At every time t, define �(t) to be the symmetric matrix with eigenvalues � and
eigenvectors given by the columns of U(t): �(t) := U(t)�U(t)€ ’t œ [0, T ].

3. Step 3: Computing the stochastic derivative d�(t). To bound the expected squared
Frobenius distance E[Î�(T ) ≠ �(0)Î2

F ], we first compute the stochastic derivative d�(t)
of the matrix di�usion �(T ) (Lemma 4.2).

4. Step 4: Bounding the eigenvalue gaps. The equation for the derivative d�(t) in-
cludes terms with magnitude proportional to the inverse of the eigenvalue gaps �ij(t) :=
“i(t) ≠ “j(t) for each i, j œ [d], which evolve over time. In order to bound these terms,
we use Weyl’s inequality (Lemma 3.3) to show that w.h.p. the gaps in the top k + 1
eigenvalues �ij(t) satisfy �ij(t) Ø �(‡i ≠ ‡j) for every time t œ [0, T ] (Lemma 4.4),
1The theorem is stated for sub-Gaussian entries in terms of a constant C; this constant is C = 2

in the special case where the entries are N(0, 1) Gaussian.
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provided that the initial gaps are su�ciently large (Assumption 2.1) (See Appendix L for
a discussion on why we need this assumption for our proof to work).

5. Step 5: Integrating the stochastic di�erential equation. Next, we express the
expected squared Frobenius distance E[Î�(T )≠�(0)Î2

F ] as an integral Î�(T )≠�(0)Î2
F ] =

E
5...

s T
0 d�(t)

...
2

F

6
. We then apply Itô’s Lemma (Lemma 3.1) to obtain a formula for this

integral. Roughly speaking, the formula we obtain (Lemma 4.5) is

E
Ë
Î�(T ) ≠ �(0)Î2

F

È
¥

⁄ T

0
E

S

U
dÿ

i=1

ÿ

j ”=i

(⁄i ≠ ⁄j)2

�2
ij(t)

T

V dt+T

⁄ T

0
E

S

WU
dÿ

i=1

Q

a
ÿ

j ”=i

⁄i ≠ ⁄j

�2
ij(t)

R

b
2T

XV dt

(5)
6. Step 6: Completing the proof. Plugging the bound �ij(t) Ø �(‡i ≠ ‡j) into (5), and

noting that the first term on the r.h.s. of (5) is at least as large as the second term since
‡i ≠ ‡j Ø

Ô
d, we obtain the bound in Theorem 2.2.

4.2 Step 3: Computing the stochastic derivative d�(t)

�(t) is itself a matrix-valued di�usion. We use the eigenvalue and eigenvector dynamics
3 and 4 together with Itô’s Lemma (Lemma 3.1) to compute the Itô derivative of this
di�usion. Towards this end, we first decompose the matrix �(t) as a sum of its eigenvectors:
�(t) =

qd
i=1 ⁄iui(t)u€

i (t). Thus, we have

d�(t) =
dÿ

i=1
⁄id(ui(t)u€

i (t)). (6)

We begin by computing the stochastic derivative d(ui(t)u€
i (t)) for each i œ [d], by applying

the formula for the derivative of ui(t) in (4), together with Itô’s Lemma (Lemma 3.1):
Lemma 4.1 (Stochastic derivative of ui(t)u€

j (t)). For all t œ [0, T ], d(ui(t)u€
i (t)) =

q
j ”=i

dBij(t)
“i(t)≠“j(t) (ui(t)u€

j (t) + uj(t)u€
i (t)) +

q
j ”=i

dt
(“i(t)≠“j(t))2 (ui(t)u€

i (t) ≠ uj(t)u€
j (t)).

The proof is in Appendix A. Plugging Lemma 4.1 into (6), we get an expression for d�(t):
Lemma 4.2 (Stochastic derivative of �(t); see Appendix B for proof). For all
t œ [0, T ] we have that d�(t) = 1

2
qd

i=1
q

j ”=i(⁄i ≠ ⁄j) dBij(t)
“i(t)≠“j(t) (ui(t)u€

j (t) + uj(t)u€
i (t)) +

qd
i=1

q
j ”=i(⁄i ≠ ⁄j) dt

(“i(t)≠“j(t))2 ui(t)u€
i (t).

4.3 Step 4: Bounding the eigenvalue gaps

The derivative in Lemma 4.2 contains terms with magnitude proportional to the inverse of
the eigenvalue gaps �ij(t) := “i(t) ≠ “j(t). To bound these terms, we would like to show
that inftœ[0,T ] �ij(t) Ø �(‡i ≠‡j) for each i < j Æ k +1 with high probability. Towards this
end, we first apply the spectral norm concentration bound for Gaussian random matrices
(Lemma 3.2), which provides a high-probability bound for ÎB(t)Î2 at any time t, together
with Doob’s submartingale inequality, to show that the spectral norm of the matrix-valued
Brownian motion B(t) does not exceed T

Ô
d at any time t œ [0, T ] w.h.p.:

Lemma 4.3 (Spectral norm bound). For every T > 0, we have,
P

1
suptœ[0,T ] ÎB(t)Î2 > 2T

Ô
d + –)

2
Æ 2

Ô
fie≠ 1

8
–2
T 2 .

The proof appears in Appendix C. Next, we use Lemma 4.3 to bound the eigenvalue gaps:
Lemma 4.4 (Eigenvalue gap bound). Whenever “i(0) ≠ “i+1(0) Ø 4T

Ô
d

for every i œ S and T > 0 and some subset S µ [d ≠ 1], we have
P

!t
iœS

)
inftœ[0,T ] “i(t) ≠ “i+1(t) < 1

2 (“i(0) ≠ “i+1(0)) ≠ –)
*"

Æ 2
Ô

fie≠ 1
32 –2 .
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To prove Lemma 4.4, we plug Lemma 4.3 into Weyl’s Inequality (Lemma 3.3), to show that

“i(t) ≠ “i+1(t) Ø ‡i ≠ ‡i+1 ≠ ÎB(t)Î2 Ø �(‡i ≠ ‡i+1 ≠ T
Ô

d) Ø �(‡i ≠ ‡i+1),
with high probability for each i Æ k (Lemma 4.4). The last inequality holds since Assump-
tion 2.1 ensures ‡i ≠ ‡i+1 Ø 1

2 T
Ô

d for i Æ k. The full proof is in Appendix D.

4.4 Step 5: Integrating the stochastic di�erential equation

Next, we would like to integrate the derivative d�(t) to obtain an expression for E[Î�(T ) ≠
�(0)Î2

F ], and to then plug in our high-probability bounds (Lemma 4.4) for the gaps �ij(t).
To allow us to later plug in these high-probability bounds after we integrate and take the
expectation, we define a new di�usion process Z÷(t) which has nearly the same stochastic
di�erential equation as 4.2, except that each eigenvalue gap �ij(t) is not permitted to
become smaller than the value ÷ij = 1

4 (‡i ≠ max(‡j , ‡k+1)) for each i < j.

Towards this end, fix any ÷ œ Rd◊d, define the following matrix-valued Itô di�usion Z÷(t)
via its Itô derivative dZ÷(t):

dZ÷(t) := 1
2

qd
i=1

q
j ”=i |⁄i ≠ ⁄j | dBij(t)

max(|�ij(t)|,÷ij) (ui(t)u€
j (t) + uj(t)u€

i (t))

+
qd

i=1
q

j ”=i(⁄i ≠ ⁄j) dt
max(�2

ij(t),÷2
ij) ui(t)u€

i (t), (7)

with initial condition Z÷(0) := �(0). Thus, Z÷(t) = �(0) +
s t

0 dZ÷(s) for all t Ø 0. We
then integrate dZ÷(t) over the time interval [0, T ], and apply Itô’s Lemma (Lemma 3.1) to
obtain an expression for the Frobenius norm of this integral:
Lemma 4.5 (Frobenius distance integral). For any T > 0, E

Ë
ÎZ÷ (T ) ≠ Z÷(0)Î2

F

È
=

2
s T

0 E
Ëqd

i=1
q

j ”=i
(⁄i≠⁄j)2

max(�2
ij(t),÷2

ij) dt
È

+ T
s T

0 E
5qd

i=1

1q
j ”=i

⁄i≠⁄j

max(�2
ij(t),÷2

ij)

226
dt.

To prove Lemma 4.5, we write

Z÷ (T ) ≠ Z÷(0) = 1
2

⁄ T

0

dÿ

i=1

ÿ

j ”=i

|⁄i ≠ ⁄j | dBij(t)
max(|�ij(t)|, ÷ij) (ui(t)u€

j (t) + uj(t)u€
i (t))

≠
⁄ T

0

dÿ

i=1

ÿ

j ”=i

(⁄i ≠ ⁄j) dt

max(�2
ij(t), ÷2

ij)ui(t)u€
i (t). (8)

To compute the Frobenius norm of the first term on the r.h.s. of (8), we use Itô’s Lemma
(Lemma 3.1), with X(t) :=

s t
0

qd
i=1

q
j ”=i |⁄i ≠ ⁄j | dBij(s)

max(|�ij(s)|,÷ij) (ui(s)u€
j (s) + uj(s)u€

i (s))
and the function f(X) := ÎXÎ2

F =
qd

i=1
qd

j=1 X2
ij . By Itô’s Lemma, we have

E[ÎX(T )Î2
F ≠ ÎX(0)Î2

F ] = E[ 12

⁄ t

0

ÿ

¸,r

ÿ

–,—

( ˆ

ˆX–—
f(X(t)))R(¸r)(–—)(t)dB¸r(t)]

+ E

S

U1
2

⁄ t

0

ÿ

¸,r

ÿ

i,j

ÿ

–,—

3
ˆ2

ˆXijˆX–—
f(X(t))

4
R(¸r)(ij)(t)R(¸r)(–—)(t)dt

T

V , (9)

where R(¸r)(ij)(t) :=
1

|⁄i≠⁄j |
max(|�ij(t)|,÷ij) (ui(t)u€

j (t) + uj(t)u€
i (t))

2
[¸, r], and where we denote

by either H¸r or H[¸, r] the (¸, r)’th entry of any matrix H.
The first term on the r.h.s. of (9) is equal to zero since dB¸r(s) is independent of both X(t)
and R(t) for all s Ø t and the time-integral of each Brownian motion increment dB–—(s)
has zero mean. To compute the second term on the r.h.s. of (9), we use the fact that

ˆ2

ˆXijˆX–—
f(X) is equal to 2 for i = j and 0 for i ”= j

To compute the Frobenius norm of the second term on the r.h.s. of (8), we use the Cauchy-
Schwarz inequality. The full proof appears in Appendix E.
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4.5 Step 6: Completing the proof

To complete the proof, we plug in the high-probability bounds on the eigenvalue gaps from
Section 4.3 into Lemma 4.5. Since by Lemma 4.4 �ij(t) Ø 1

2 (‡i ≠ ‡j) w.h.p. for each
i, j Æ k + 1, and ÷ij = 1

4 (‡i ≠ max(‡j , ‡k+1)), we must also have that Z÷(t) = �(t) for
all t œ [0, T ] w.h.p. Plugging in the high-probability bounds �ij(t) Ø 1

2 (‡i ≠ ‡j) for each
i, j Ø k + 1, and noting that ⁄i ≠ ⁄j = 0 for all i, j > k, we get that

E
Ë
ÎV̂ �V̂ € ≠ V �V €Î2

F

È
= E

Ë
Î� (T ) ≠ �(0)Î2

F

È

Æ 2
⁄ T

0
E

S

U
dÿ

i=1

ÿ

j ”=i

(⁄i ≠ ⁄j)2

(‡i ≠ ‡j)2

T

V dt + T

⁄ T

0
E

S

WU
dÿ

i=1

Q

a
ÿ

j ”=i

⁄i ≠ ⁄j

(‡i ≠ ‡j)2

R

b
2T

XV dt

Æ T
kÿ

i=1

dÿ

j=i+1

(⁄i ≠ ⁄j)2

(‡i ≠ max(‡j , ‡k+1))2 + T 2
kÿ

i=1

Q

a
dÿ

j=i+1

⁄i ≠ ⁄j

(‡i ≠ max(‡j , ‡k+1))2

R

b
2

. (10)

Since (‡i ≠ max(‡j , ‡k+1) Ø �(
Ô

d) for all i Æ k and j œ [d], we can use the Cauchy-
Schwarz inequality to show that the second term is (up to a factor of T) smaller than the
first term:

qk
i=1

1qd
j=i+1

⁄i≠⁄j

(‡i≠max(‡j .‡k+1))2

22
Æ

qk
i=1

qd
j=i+1

(⁄i≠⁄j)2

(‡i≠max(‡j ,‡k+1) . Plugging

T =
Ô

2 log( 1.25
” )

Á into (10), we obtain the bound in Theorem 2.2. For the full proof of
Theorem 2.2, see Appendix F

5 Conclusion and Future Work

We present a new analysis of the Gaussian mechanism for a large class of symmetric matrix
approximation problems, by viewing this mechanism as a Dyson Brownian motion initialized
at the input matrix M . This viewpoint allows us to leverage the stochastic di�erential
equations which govern the evolution of the eigenvalues and eigenvectors of Dyson Brownian
motion to obtain new utility bounds for the Gaussian mechanism. To obtain our utility
bounds, we show that the gaps �ij(t) in the eigenvalues of the Dyson Brownian motion
stay at least as large as the initial gap sizes (up to a constant factor), as long as the initial
gaps in the top k + 1 eigenvalues of the input matrix are Ø �(

Ô
d) (Assumption 2.1).

While we observe that our assumption on the top-k+1 eigenvalue gaps holds on multiple real-
world datasets, in practice one may need to apply di�erentially private matrix approximation
on any matrix where the “e�ective rank” of the matrix is k— that is, on any matrix where
the k’th eigenvalue gap ‡k ≠ ‡k+1 is large— including on matrices where the gaps in the
other eigenvalues may not be large and may even be zero. Unfortunately, for matrices with
initial gaps in the top-k eigenvalues smaller than O(

Ô
d), the gaps �ij(t) in the eigenvalues

of the Dyson Brownian motion become small enough that the expectation of the (inverse)
second moment term 1

�2
ij(t) appearing in the Itô integral (Lemma 4.5) in our analysis may

be very large or even infinite. Thus, the main question that remains open is whether one
can obtain similar bounds on the utility for di�erentially private matrix approximation for
any initial matrix M where the k’th gap ‡k ≠ ‡k+1 is large, without any assumption on the
gaps between the other eigenvalues of M .
Finally, this paper analyzes a mechanism in di�erential privacy, which has many implications
for preserving sensitive information of individuals. Thus, we believe our work will have
positive societal impacts and do not foresee any negative impacts to society.
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