Appendix for “Stability and Generalization Analysis of Gradient
Methods for Shallow Neural Networks”

A Lemmas

In this section, we collect several lemmas useful for our analysis. The following lemma shows that
the loss function is smooth and the loss function is weakly convex. We develop a lower bound for the
eigenvalue of the Hessian matrix which is slightly different from that in [51]]. Let A, (A) denote
the smallest eigenvalue of a matrix A and V2 f denote the Hessian matrix of a function f. We use
aV b= max{a,b} for any a,b € R.
Lemma A.1 (Smoothness and Curvature [51]])). Let z € Z. The function W +— £(W; z) is p-smooth.
For any W, we have
b/
Amin (V20(W; >——(W—W v1). Al
(V2(W:2) 2~ (W = Woll (A1)

Proof. The smoothness of the loss function was established in [51]]. We only prove Eq. (A.T). The
following inequality was established in [S1]]

CQB 7
)\min 26 W; > ——= ¢
(V2U(Wiz) > 2t

fw(x) - y‘
We know
| fw (%) —y| < |fw(®) = fw,(X)| + | fw, (%) — 9]
< CuBy [|[W — Woll2 + /20(W; 2),
where we have used the following inequality established in [51]
[fw(x) = fw: (x)] < Ce By [[W = W[
It then follows that

OQB "
Amin (V2U(W;2)) > — %’ (Ode)/HW ~ Wolls + v/20(Wo; z)). (A.2)
The stated bound then follows directly. The proof is completed. O

Lemma A.2. Let W, W' € R*™_ Then
VR
vm

UW;z) — ((W';2) — (W = W' VI{(W';2)) > ———||W — W/|3, (A3)

where R = max{1, |[W — Wy||2, |W' — Wy||2}.

Proof. According to Taylor’s theorem, there exists « € [0, 1] such that

((W;z) = (W';2) — (W = W' VUW;2)) = (W - W V(W (a);2)(W - W)
VR
vm
where W(a) = W + (1 — )W’ and we have used Lemma[A.1] The proof is completed. O

> Amnin (VAW (@));2) [W = W[5 > ——=||W - W[5,

The following lemma shows the self-bounding property of smooth and nonnegative functions.

Lemma A.3 ([57]). Assume for all z, the function w — ¢(w; z) is nonnegative and L-smooth. Then
|Ve(w;2)[3 < 2L0(w; 2)

The following recursive relationship on stability of GD was established in [51]. Note €, defined in Eq.
(A-4) is slightly different from that in [31]]. Indeed, the discussions [51]] derive the following lemma

in their analysis. The difference is that they further control |W; — W,Ei) ||l2 in Eq. (A:4) as follows
W, = W o < W, — Wollo + [Wo — W5 < 20/25tC.
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Lemma A.4 ([511). Let Assumptions[I| 2| hold. Let {W}, be produced by B-1). If n < 1/(2p), then
foranyt € N we have

1+ anz . 2(1+1/p)n?
[Weer-WEL 2 < b2 w w2 2O (10w, e saig),
where ,
C B 17 /L
€ = f/;f (B¢/Cx(1+np)HWt - W, )||2+2\/ﬁ). (Ad)

The following lemma shows how the GD iterate would deviate from the initial point.
Lemma A.5 ([511). Let Assumptions[I|[2|hold and assume n < 1/(2p). Let {W} be produced by
Eq. B1). Then for any t € N we have

HWt — W()HQ S Qﬁth(Wo).

The following lemma shows an almost co-coercivity of the gradient operator associated with shallow
neural networks, which plays an important role for the stability analysis.

Lemma A.6 (Almost Co-coercivity of the Gradient Operator [511). Let Assumptions|I| 2| hold. If
1 < 1/(2p), then for any t € N we have

(Wo = Wi (Wi z) = VEWL2.)) = 20 (1= ) [VAWi2,) = VOW (s 2,)]3

—e|lw, - W = (VEWyiz) — VEW D, 2,) H
where
CzB 1" .
¢ = \/%’ (B¢/C’m(1+2np) max{||W, — Wo|lz, [W? 7W0||2}+\/200). (A.5)

Remark 6. The above lemma can be proved in a way similar to Lemma 5 in [31] but using the
following inequality to control the eigenvalue of Hessian matrix (see, e.g, (A-2))

2
win A (VW ();2)) > — 2222 i (CoBy W () = W2 + /20(Wo3 7)),

agl0,1] \/ﬁ a€l0,1]

where o € [0, 1] and
W(a) = aW,; + (1 - )W — an(VHW,;2,) — VEW; 2,)).
From the smoothness of ¢, we further know that
[W(a) = Woll2 < [aW, + (1 — @)W — Wylo + an| VAW 2;) — VW 2;)]|2
< max{|[W; — Wola, [W( = Wollo} + np| W, — W
< max{[[W, = Wolo, [Wi” = Woll2} + o W, = Wollz + npl| Wo — Wi
< (1 + 2np) max{||[W; — Wol|2, [W! — W2}

Consequently,

min_Apin (V24(W(a);2)) > —C‘%Bw
acfo,a]” = m

The remaining arguments in proving Lemma|[A.6]is the same as proving Lemma 5 in [51]. We omit
the proof for simplicity.

(€ (1 + 2np) masc{ [ W, = Wollz, [W” = Wolla} + /2Co).

As a comparison, the paper [S1] uses the following inequality

C By
N Amin (VW (a);2)) > ——2£22
Jnin, (VW ();2)) > N

16



and uses the following decomposition to estimate | fw (q)(x) — ¥|

[ fw () (%) =yl < [farie) (%) = frgrto ()| + | fgro (%) — 9
< BCo[W(@) = WPz + | fyeo (%) — ]

< BLCo(1+1p) Wi = WiV ll2 + | fiyeo (%) = yl.

However, the above estimation does not apply to SGD because we consider the loss function over
a single datum instead of the empirical risk over the whole training data and one cannot guarantee

[fw o (%) =yl < v2Co.

B Proofs on Gradient Descent

B.1 Proofs on Generalization Bounds
We first present a lemma on the uniform stability of GD, which will be used in lower bounding the
smallest eigenvalue of Hessian matrices.

Lemma B.1. Let Assumptions[I| 2| hold. Let {W} be produced by Eq. (31). If n < 1/(2p) and Eq.
@) holds, then

meT\/2Cop(pnT + 2
< e op(pnT +2) vt e [T].

< ! 7

IWe -

Proof. We can apply Lemma [A.4]recursively and derive

; 1+1 ! L1+
(Wi ~WEL 2 < 2P0 S (10w )+ VW) ] sl
=0 j=j+1 7
(B.1)

Furthermore, it follows from the p-smoothness of ¢ and Lemma [A.5]that

IVEW 55 2)3 < 2| VHW3 2) = VEWo; 2)[[3 + 2] VE(Wo; 2)]I3
< 20°[W; = Wo[3 + 4pl(Wo; 2) < 4p*1njLs(Wo) + 4pt(Wo; 2).

In a similar way, we can show
VAW 2)I13 < 4p%niLisco (Wo) + 4pl( W 2).
We can combine the above three inequalities together and derive

||Wt+1 W§+1||2
t

8pn? (1 + 8o (14 1/p) , 1+p
< —5—=>) (PUJLS Wo) + pnjLsa (Wo) + £(Wo; z;) + £(Wo; Zi)) 1T T ore:
j=0 TSR

8on2(1+1/p) v 14p < , .

< (n2 f2) Hlife >~ (pmiLs(Wo) + pniLsio (Wo) + {(Woiz,) + {(Wo: )
j=1 J=0

ApP(1+1/p) ¢ H 1+p

N n? 1 — 2n€;

J 1
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We can choose p = 1/t and use (1 + 1/t)! < e to get

(Wi = Wi

< dprell+1) I ! (Pn(Ls(Wo) + Lseo (Wo)(t + 1) +2(t + 1)(A(Wo3 2:) + £(Wo: ) )

n? i — 2n¢€;
_ AL (W) L (Wo)) 4+ 2(Wos )+ 26(Woi 1)) T] —
= T(Pﬁt( s(Wo) + Lgi)(Wo)) + 26(Wo; z;) + 2¢( O,Zz‘)) HW
j=1
2e(1 + 1) 2) 4 1
< 8Copn*e(l+t)*(pnt + )H B.2)
n?2 1—2ne;
j_
‘We now prove by induction to show that
; 2meT/2Cop(pnT + 2
Wy, — W, < 2 (;f(p" ™2 ke (B.3)

Eq. (B.3) with & = 0 holds trivially. We now assume Eq. (B.3) holds for all £ < ¢ and want to show
that it holds for £ = ¢ + 1 < T'. Indeed, according to the induction hypothesis we know

CB// 2./2C T + 2)neT By Cy(1
S<e \/j( 0p(pnT + 2)neT By +1p) 49 TC()) Vi <t

It then follows from Eq. that

Wi -W |2 < 8CopPe(L+1)%(ont+2) 11 1 8CopnPe(l +t)2(pnt+2)( 1 )t
i trillz = n? - 1 —2me n? 1—2n¢
j=
Furthermore, Eq. {@.1) implies 2ne’ < 1/(¢ + 1) and therefore
1 t 1 ¢ 1N
——— ) < (——FF——) =1 f) <e. B.4

(1—2776’) *(1—1/(t+1)) ( t3) = B4

It then follows that
8Copn*e*(1+t)* (ot +2) _ 8Copn*e*T?(pnT + 2)
HWtH W§+1H2 2 = 2 :
n n

This shows the induction hypothesis and completes the proof. O

Proof of Theorem 2] According to Eq. with p = 1/t and Eq. we get

; 2 1+1) & y
\ywt+l—w££1\\§s%2(|w szl + VAW i 20)]3)
=0
4e? 1+t :
<2 Z( 2) + (W),

Jj=

where we have used the self-bounding property of smooth functions (Lemma [A.3). We take an
average over ¢ € [n] and get

( 46 1+t ¢ n ()
*ZE [Weer = Wih[lg] « =53 (S Ble(Wyiz) +ZE (W{":)])
= j=0 =
8e2n 1—|—t L 8e2n?p(1 +1)
_ S S § spew ) - ) S wy)
7j=0i=1 7=0
(B.5)
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where we have used E[((W;;z;)] = E[¢ (WEZ), z)] due to the symmetry between z; and z.. Accord-
ing to Lemma [T we further get

42 16¢2 2t]EL (W,)] < 3
E[L(W,) — Ls(W,)] < - ZE Ls(W ( Ge™n s(We) Z]E )
7=0
It then follows from Lg(W,) < 2 3°"7) Lg(W) [51] that
462 P2t 4enp .
E i ).
[L(Wy) = Ls(Wy)] < ZE - ZE[Ls(Wy)]
7=0 7=0
The proof is completed. ]

B.2 Proofs on Optimization Error Bounds

Before giving the proof on optimization error bounds, we first prove Lemma [3]on a bound of the GD
iterates.

Proof of Lemma[3] According to Theorem[2] we know

BlL(w) ~ Ls(wo] < (275004 A0) S i (w,). ®6)

The following inequality was established in [51] for any W

t—1

|H “tH2 H“ “0”% b 3
— g L — = < Lg(W)+ + E 1VI[W-W,|35). (B.7
S nt ( ) nt \/mtq 0( \/|| H2) B.7)

We take expectation over both sides and choose W = W*, to get (note we do not have E[1V |W —
nT

W3] < 1VE[|W — W,|3]. However, Eq. still holds if one check the analysis in [31]].
Indeed, they upper bounded a sum of two terms by the maximum and one can exchange the sum and
expectation. We omit the details for simplicity)

=1 E[|W* — W3]
1Z]E[L (W,)] + u i < E[Ls(W* )]+
t g nt = TSV
E[[W?, — Woll3 ] =1
a = Z LVE[[W?, — W3 ). (B.8)
s=0

According to Eq. (B.6) we further get

il E[|W*  — W3] 2.2 t—1
1 = 2 4e%n?p’t 4enp
- E[L(W, L < E[L
s (S L
L B Wal * )
FEIL(WS, )+ —— Z LVE[IW?, — W, |3).
=0

Since E[L(Wy)] > L(W™*, ) we further get

nT

E[||W*1 _Wt”§] 422 t—1
wT noptt | denp
< (5 + =) Yo EILs (W)

nt n =
E[”W%_WOH%] p L LVEIW WIS
z v = WIE)).
+ " + e 2 (LVEIW S, — Wil
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We can further use Lemma[A3]to derive

t—1

. de*n’p*t>  den’tp .
EIIW, ~ W3] < (<= + L) S EILs(W,)] + E[[W?, — W3
n n n 0 nT
bn(V2nTCo + E[[W?, — Woll2]) 1= . ,
¥ = S (LVEIWS, — WZ),

Let A = max,c7 E[|W*, — W,||3] V 1. The above inequality actually implies
nT

A - (462 T2 46772T,0) ZEL NT— ”2+b77TA(\/277TC0 +E[||W’% - Wyll2])
- n? n = S/ T ol vm '

According to the assumption m > 4b*(nT)?(/2nTCo + E[||[W*,_ — W Hg])2, we further get
nT

4e? p?n3T? 46772Tp 5 A
A§< o )Z]ELS N+ W~ Wol3+ 5
and therefore

T-1
) D_EILs(W,)] +2[ W7y — Wl
=0

8e2p?n3T? + 8en?*Tp
n? n

Ag(

.

The proof is completed. O
Now we are ready to prove Theorem 4]

Proof of TheoremHd] According to Eq. (B.7) with W = W*, we have
T

1 [W*_ — W3 "

T 22 Es(Wo) < Ls(Wh )+ — o+~ ZO (1VIIW2 = W)
W, —Wollp  b(IW?, — Woll2 + max [Wo — Welo) 7

S Ls(Wh )+ — + =T Z (LV W2y = WI3)
[W* — W3 b(|W* —Wolla +v/2¢TCy) T-1

< Ls(Wiy )+ "TnT + = N > (v W7y = Wll3),

s=0
(B.9)

where we have used Lemma[A.3]in the last step. Since { Ls(w;)} is monotonically decreasing [51],
we derive

W Wl
E[Ls(Wr)] < E[LS(W%T)] + T

b(|[W*, — Wollz + v/2nTCh) T-1
+ T > (LVE] W, ~W,|3).
s=0

JmT

We then apply Lemma[3]to get the stated bound. The proof is completed. O

Both bounds in Theorem 2| and Lemma depend on the term ZST;OI E [LS(WS)], for which we
provide a bound in the following lemma.

20



Lemma B.2. Let Assumptions|I| 2| hold. Let {W} be produced by Eq. (3.1) with n < 1/(2p). If Eq.

@ @D @ @)hOld then

2|W*, — W3
§ E[Ls(W,)] <2TL(W* )+ — 2 =
nT ’r]
46T (|| W lT — Woll2 + v27TCh) | W lT - Wy ll3
n n

Jm

_|_

Proof. Taking expectation over both sides of Eq. we derive

}ﬂ
L

. W2, = Woll3
E[Ls(W.,)] < TL(W? ) + e

b(IW?, ~Woll2 + v29TCo) 71 * 2
i NG g@ (LVE[[W? —W,[3]).

@
I
o

It then follows from Lemma[3] that
- W — Woll3
; [Ls(W,)] < TL(W? ) + #4‘
W — Wy V2T : T-1
o7 (|| \/1(%|2 + /20T Cy) ((832;);;73T2+8677;TP> 2 ]E[LS(W]»)]+2|W:1TWO||§).
By Eq. (@.3)), we have
= W~ Wol3 7
g E[Ls(W.)] < TLWy )+ ———— 4 Z E[Ls(W,)]+
QbT(HW% — Woll2 + v27TCh)

Jm
The stated bound follows directly. The proof is completed. O

W= — Woll3.
nT

Combined with Assumption[3} Lemma|[B.2]implies (if m > 1°T?)
1 * —«
> E[Ls(W,)] = O(TL(WZ ) + EHW% ~ Wo|3) = O(TL(W*) + T(Tn)~%).

If L(W*) = 0, we have 31 E[Ls(W,)] = O(T(T)~%), which explains why we can get
improved bounds in a low noise case.

B.3 Proofs on Excess Risks Bounds
Proof of Theorem |5} We have the following error decomposition
E[L(Wr)] — L(W") = (E[L(W7)] - E[Ls(W7)])+
A T RN G \
(BILs (W)l LW, ) = - W2 = Wolld) + (LW )+ W2 =Wl = L(W)).
(B.10)

Theorem 2] implies

E[L(Wr) — Ls(Wr)] < (© Z;”QT + ) S B [Lg(w,)).
s=0
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We can plug the above generalization bounds, the optimization bounds in Theorem[d]and the definition
of A1 back into Eq. (B.I0), and derive
n

T-1
BIL(Wy)] - L(w*) < (272 Aoy > E[Ls(W.)

n n
bRr .
+ T(IIW L = Wolla+v/2nTCo) + Ay (B.1D)

According to the definition of A 1, we know
n

IW* = Woll <\ /nTA 1. (B.12)
nT n

and therefore Rt defined in Lemma [3] satisfies

Ry = O(ni;12 QT) ZE Ls(W +277TA L.

According to Lemma[B.2] we know

" T\/nT

ZE[LS(WS)] = O(TL(W?,)) +0(5 v
= O(TL(W*.)) + O W3 — Woll

= O(TL(W*, )+ ( )

nT

Wy — W3

It then follows that

3T3 2T2
Ry = 0(77 2 n
n

2
JEOW 2 )+ O(Tg + 7 IW, = Wl +207A
We can plug the above bounds on Ry and 23;01 E [LS( %Y S)] back into Eq. (B.IT), which implies

(o) - 108" =05+ 2) iy - 2R

nT

O(\/ﬁ) <<ﬂ3T3 + 772T2)L(W1) + (n2T2 + %)HW% - Woll3 +77TA"1T> + AL

Vv m n2 n nT n2 nT

Since nT" = O(n), the above bound further translates to
nTL(W ) [Wh = W3
nT + nT

E[L(W1)] - LW*) = O( )+
oI <772T2L(W’;1T) L ATIW, wo|3) o)

n n
Since m 2 (nT')* we further have

e s — o TEW ) | Wy, - Wl
[L(Wr)] = L(W") = O( O A ).
The stated bound then follows from L(W ) o HW* -~ Wyll3 = L(W*) + A% The proof
is completed. O
Proof of Corollary[6] According to Theorem 5|and Assumption 3| we know
nTL(W*) 1
E[L(W7)] - LW*) = O( )

[L(Wr)] - L(W") o
We first prove Part (a). For the choice nT' = na%l, we have

777TL(W ) =n~Ta and =n Ta,
Part (b) follows directly from the choice T'n < n. Note these choices of nT satisfy 7" = O(n). The
proof is completed. O
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C Proofs on Stochastic Gradient Descent

C.1 A Crude Bound on SGD Iterates

We first provide a crude bound on the SGD iterates, which would be useful for our analysis.

Lemma C.1 (Iterate Bound). Let Assumpnons [1} | hold. Let {W,} be produced by SGD. If
n < 1/(2p) and m > 64Cy(b')?(Tn)3, then for any t € [T] we have

Wi = Woll2 < 2¢/TnCo.

Proof. According to Eq. (3.2) we have the following inequality for any W,
2
[Wit1 — W5 = |W —nVUWz;,) — W]
< Wi = W3+ 0?([VEW s 23,5 + 20(W — W, VA(W;2;,)). (C.1)
We now prove by induction to show the following inequality for all ¢ € [T]
[W¢ — Wol|3 < 4TnCo. (C2)

It is clear that Eq. (C.2) holds for ¢ = 0. We now assume Eq. (C.2) holds for all ¢ < j and want to
prove it holds for ¢t = j + 1 < T". According to Lemma[A.2]and the induction hypothesis we have
the following inequality for all ¢ < j

\/ 4T’I’]Co

NG

We can combine the above inequality and Eq. (C.I) with W = W, which gives the following
inequality for any ¢ < j

(Wo — W, VUWy;2;,)) < U(Wo;zi,) — L(Wys2,) + [Wo — W3

Wi — Wol3
2nb'/4TnC,
< W = Wollg + 172 [ VAW 23, B+ 20(AWoi ) = (Wi ,)) + =52 2 [Wo — Wl
2nb' /4TnC,
< W — Woll3 + 200 6(Wis zi,) + 20(((Wo3 zi,) — (Wi zi,)) + %HWO - Wil
2nb' /4T C
< W = Wollg + 206(Wos i) + =2 =2 [Wo — W,

where we have used the self-bounding property and the assumption < 1/p. We can take a
summation of the above inequality and derive

2 /AT Cy &

; ,
Wi — Woll3 <20 6(Wo;z,) + D IWo— W3
t=0

= vm
20’ \/4ATnCy
vm
where we have used the assumption m > 64Cq(b')?(T'n)3. This shows Eq. (C.2) with t = j + 1.
The proof is completed. O

<2TCo + T'(4TnCo) < 4nTCyo,

C.2 Proofs on Generalization Bounds

Proof of Theorem[]] We first prove the stability of SGD. We consider two cases. If i, # i, then
according to the SGD update (3.2), we know

(Wi = W2 = [[(We = nVEW 4 2:,)) — (W = pve(W s 2,,) |12
= W, = W2+ 52| VEW i zi,) — 6W 523, — 20(Wi = W VEW 5 2;,) — (W ;i 2,)).

According to Lemmal[A.6] we further have

[(W: = nVeWesz:,)) — (W nw( i) < W= W3+

1 (20p=3)|| VEW 3 2:,) 6 (W5 28| |2 4206} || (W~ VE(W 5 2,,) ) — (W v e(W s 2,,) ||

27

b 14
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where ¢, is defined in Eq. (A.3). It then follows from n < 1/(2p) that

i i 1 i
(W, = nVE(W,;2,)) — (W = ve(Wsz,) || < T Wi~ w2 (©3)
t

If iy # 4, we can use (a + b)? < (1 +p)a® + (1 + 1/p)b? to derive
Wit — WELIE = [[(Wh — nVE(Wi52,)) — (W = pve(Wi,; 20))
< (1+p) Wi = W2 4+ (1 + 1/p)n?| VAW 3 25) — VW 2|2
< (1 +p) Wi = W2+ 201+ 1/p)n? (| VEW 4 2:) |2 + || VAW 20)|12)
< (L+p)|[We = W2 +4p(1 + 1/p)n? (((Wi; 2:) + (W3 20)),

where we have used the self-bounding property. We can combine the above two cases to derive

I;

i 1 p iz, 4p(1+1/p)n° i
B [IWen Wi 18] < (7t D)W Wi PV () (w0 ).
ne, n n
We can apply the above inequality recursively and derive

wz WJ,Z1)+£(W§17 Z)) H <ﬁ+8)

n ~
Jj=0 Jj=j+1

E[[[Wigq — W§+1H ]

IN

4p(1+1/p)772ﬁ _1 /+B iE[f(WJ,Zl)‘Fg(Wy)v 1)}
n ] 1 — 2n€. n/ <

8p(1 +nt/nn H<1—2n6 )Z]E (Wj;2:)]

where we have used the symmetry between z; and z; and p = n/t. Since ||[W; — Wy||2 < R and
HWJ(.Z) — Wy||2 < R/, we know

O‘EB(b//
Jm

Furthermore, Eq. (.6) implies 2ne/, < 1/(t + 1) and therefore

[ (=3 1) = (= +8) = (1) =
et L—=2nes ¢t/ = \1—1/(t+1) t/ — t) —

It then follows that

(1 +2np)b' Ry
vmo

<

/
S

(Bqﬁfo(l + 2np) Ry + 200) <

8e%p(1+t/n)n?
E[|Wi - Wi, 3] <« —F———20

We take an average over i € [n] and get

wizwwwz )]

1 & ;
SO E[Wen - Wi 3] < =5
i=1 7j=0i=1
8e%p(1+t/n)n? !
= ;E[LS(W]-)].

Now we prove the generalization bounds for SGD. According to Lemmal([I] we have

p (-) 2pE[Ls (W) ) 3
1) 112 )
E[L(W;) — Ls(Wy)] 2—21@ W — W, 2]+(Z§:1E W, —W,"|I3 ])
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It then follows from (@.7) that

BILOW,) - La(W) < SCEWE S gy )
§=0
§=0
The proof is completed. O

The iterate bound in Lemmalglls a bit crude. In the following lemma, we show this bound can be
improved if we consider bounds in expectation. Recall A, := max,— . E[|W; W*1 [|3] for

any t € N. If tn*> = O(1) and t = O(n), Lemma shows A; = (HWo - W’%H ) Wthh is

significantly better than the bound O(nt) in Lemma This allows us to get excess risk bounds
under a relaxed overparameterization. Similar to the case with GD, this upper bound depends on the
training errors of SGD iterates.

Lemma C.2. Let Assumptions[I} Q| hold. Let {W} be produced by SGD with n < 1/(2p). If Eq.
(@-6) and Eq. @2) hold, then
Apy1 <2||Wo — W%H%‘F

1

enp>i_o(L+37/n)  de(t+1)3(1+1t/n)
- | 2 )f /) )Z]ELS

) 4
4pn (1 +

Proof of Lemma|[C.2] We take expectation w.r.t. i; over both sides of Eq. (C.I) and get
B, [[Wepr = W2 5] < [Wo = W2 IE +07Es, [ VAW 23,)[5] + 20(W?, = Wy, VLs(W1))
217b’RT

T W2 = Wi,

(C4)

< W = W23+ 200°Es, [((Wis2i,)] + 20 (Ls (W7, ) = Ls(We)) +

where the last step is due to Lemma[A:2]and Lemma|C.1] Taking expectation over both sides of Eq.

(C.4), we derive
EIWe 1~ W, 1] < E[IW, — W, [+ 20 E[Ls(W) +
2nb' R

NG

2B [Ls(W7 ) — Ls(Wy)] + E[|W?y — W3] (C5)

This together with Theorem|[7]implies
E[[Wipr = Wiy 5] < E[[W, — W7, [[3] + 200°E[Ls(W0)] + 20E[Ls(W7, ) — L(W,)]

2nb' R/,
vm

N 8e2p?(1 +t/n)n? !
B, W3]+ TS g
=0

+

=

1+ t/n)E[Ls(W)]
§=0
The assumption E[L(W,)] > L(W*, ) further implies
2nb' R,
f
W)l

E[[W?, — W3]

zt:IE )%.

j=0

E[|Wer — W2, 3] < E[|W, — W 3] + 201°E[Ls(W¢)] +

+ SRR S g () sep (LHE
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We take a summation of the above inequality and derive

t
) ) 2776’ ; .
E[IIWtH—W%TII?} < ||WO_W%T||3+2P772 ZE[LS( = ZE ||W W3]
§=0
8e?p? 14+j/n)n ¢ (1 ! 3
+ N 0( i/m) ZIELS )]+8¢ 7722( ﬂ/” Z]ELS )
Jj=0 7=0
According to the concavity of x — \/x, we further get
2 2 2 ; 2775/ T
E[|Werr=W7 5] < [[Wo=W7 [l3+2p1 > E[Ls(W;, ZE W2y W3]
§=0
8e?p? +j/n)n t+1 +j7/n)E
T Z] 0( / ZELS +86p77 (( )Z ( - / ZELS )

It then follows that

\ \ 20’ Rl .
E[[We — W2 3] < [Wo — W7 |3+ WT EJE“'W%T - W3]
=
1

20230 (L+ /)0 Sepn?(t+ 1) (1 +t/n)*
o | Bepr’( \)f /n) )Z]ELS

Let Ay = max;j_o,. + E[|W; — W*_|3]. Then the above inequality actually implies (note it holds
nT

+ (2pn2 +

for any t)
2(t + Dnb" R Ay

Apyr < ||Wo — WT%T 13+

vm
22\t ; 3 1 Lot
p° Y io(L+3/m)n°  Sepn?(t+1)3(1+t/n)z
2 2 J EIL
+< et n + vn );) s
t N3 1 1ot
AV ] 8e’p® Y i_o(1+34/n)n Sepn?(t +1)2 (1 +t/n)?

< _ * 2 2 J
< [Wo— W I3+ =52 + (200 + . + T )]ZOE[Ls(W

where we have used 4(¢ 4+ 1)nb’ R}, < /m. It then follows that

. 4np 3oL +7/n) de(t + 1)3(1+1/n)%y\ <
Aeer < 2Wo W [3+apn? (14 =20t S 2T ) S BlLs(W;))

The proof is completed. O

Proof of Theorem[§] According to (C.3) and Lemma|C.2] we know
2nb' R Arp
N

We take a summation of the above inequality and get the stated bound. The proof is completed. [

20E[Ls (W)~ Ls(W?, )] < B[Wi— W, [B-E[[Woyr— W, [31+2p7E[Ls(Wo)+

C.3 Proofs on Excess Risk Bounds

Before proving the excess risk bounds, we first develop a useful lemma to control the term
' E[Ls(W,)], which appears in our generalization bounds.

Lemma C.3. Let Assumptions[I| 2| hold. Let {W,} be produced by (3.2) with n < 1/(2p). If Eq.

®@.6), Eq. @2) hold and

m > 4(STpn?Ry)’ (1 +

4e2npT(1 4 T/n) n 4eT= (1 4 T/n)%)

- NG (C.6)
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then we have

!

- 1 4VTR
E[Ls(W¢)] < ATL(W ) Jrg(5 + \/ET

JIWo- W5 3 ()

t

Il
<

Proof. According to Eq. (C:4), we know
2nb' R/,
vm

21— pn)E[Ls(W.)] < 20 LW, )4E[[W,— W, [3]-E[[ Wi —W*, [314+22 " TR[|W?,

Since n < 1/(2p), we get

20 RYE[[W, ~ W3]

WE[Ls(W,)] < 29L(W", )+E[[Wi— W'y [3-E[|W,s— W, 3]+

vm
(C.8)
We take a summation of the above inequality and get
-1 E[[Wo — W*,_|]3] Qb/R' -1
> E[Ls(W,)] < 2TL(W? )+ = Z E[[W7y — Wil3].
t=0 " N
According to Lemma|[C.2 we further get
T-1
1 4'TR
E[Ls(W0)] < 2TL(W", ) + (= ) [Wo - W |3
> ElLs(Wo) < 2TLW 5 )+ (=28 IWo = W1y [+
8T pn* Rl 4e2npT(1+T/n)  4eT3(1+T/n)?\ —
1 ) S ElLs(W
NG ( + - + NG tZ: s(Wy).
By Eq. (C.6), we further get
= 1 4WTR, e
* * 2
D EILs (W0 < 2TLW?, ) + (o = = ) [Wo = W [ 45 3 BILs (W)l
t=0 t=0
This shows the stated bound. The proof is completed. O
Now we prove the excess generalization bounds for SGD.
Proof of Theorem[9d] By Theorem|[8] we have
T—1 T-1
. 2Tl Rl A
27 ) E[Ls(Wy) — Ls(W?, )] <E[|[Wo — W7, |I3] + 201’ ZE Ls(Wy)] + %
t=0 =0

.....

S EIL(W,) - Ls(W.)
t=0
T

W=

)

e n)n? < n s !
g;(‘* PO S (W) + depn (LB LSO ”Z_ZOEMWJ'H)

[
n j:O n

4e2p2(T + T2 /n 4epnVT (1 + VT /0)
< °( /n)n” Z]E S(W,)] + 2P0 ( /I)ZE[L
n — vn
where we have used the concavity of z — /2. We can combine the above two inequalities together
and get

T-1

20 3 B[L(W) ~ Ls(W'y )] < El[Wo— W2y [+ 207" 3 BLs(Wo)] + =222 ,//];TAT
t=0
2 2 2 2 =
+277(4€ p (TZT /mn® 4em7\/17(1\/4%\/f/\/ﬁ>) 3 E[Ls(W)].
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It then follows from the assumption m > (4Tmb' R/.)? that

T-1
1 S E[L(W,) — Ls(W*, )] < SE[[Wo - W7 3]+
t=0

Arp
4

T+ T/t VT + VTV o=
o(np + ! E[Ls(W¢)
+ (77 + - + 1 NG );0 s(Wy)
According to Lemma|C.2] we know

P*TA+T/n) | n?T3 1+T/né>T !

n

E[L

Ar <2|Wo - W7 |13 +O<(n2 +
n j:O

We can combine the above two inequalities together to derive

T-1
1Y E[L(W) — Ls(W'y )] < E[[Wo - W7 [+
t=0

T-1
oyt + LHTUNT 0 ‘F(lj}f/\r)ZELS W
t=0

It then follows Assumption [3] that

7Y EIL(WY) — LOW")] =1 3 (BIL(W,) — L(W?, ) — - E[[Wo — W [3)
t=0 t=0
+nz )+ Bl Wo - W [ - L(W))

9 9 T-1
_o(r (T+1;L/n)77 L VTQ jﬁﬁ/\/ﬁ)) E[Ls(Wo)] + (Tr)A s .
t=0

We can use Lemmato control ZZ:OI E[Ls(W¢)] and get

1Y EIL(W,) — LOW")] = (T)A o +
t=0
(T +T*/n)p*  *VT(L+VT/v/n) . 1 TRy .
O+ ¢ NG )(TL(W%T)nL(;Jr\r)HWO W I1).
It then follows that
1T—l
7 S E[L(W,) — L(W")| = A+
t=0
(T +T%/n)p*  nVT(1L+VT/y/n) . 1 R .
Ofn+ ==+ B ) (HW o) + (7 + ) IWo — Wiy 1)

Since [Wo — W, |3 < (yT)A 1, we further get
nT n

% " E[L(W,) — L(W*)] = At
t=0
(T+T?/n)n*  pVT(1+VT/y/n) . 1 Ry
O(n+ - + N0 )(pow, )+ (T—n + \/ﬁ) (1A ).

The stated bound follows from m > (4Tnt' R%.)?, T = O(n) and L(W*, ) < L(W*) + A1 . The
nT n

proof is completed.
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Proof of Corollary[I0} According to Assumption [3]and Theorem [} we know

T-1
= ST EIL(W,) — L(W)] = O((To) ™ +nL(W*).
t=0

We first prove Part (a). Since n =< T~ 1% and T = n, we know
(Tn)~ @ = O(Tfl%) and n= O(rfl%).
If L(W*) = 0, we know

T-1
= SELW,) - LW = 0((Tn) ),
t=0

In this case, we can choose 7' < nand i < 1 to get (T'n) = = O(n~). The proof is completed. [
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