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Abstract

LiDAR-produced point clouds are the major source for most state-of-the-art 3D
object detectors. Yet, small, distant, and incomplete objects with sparse or few
points are often hard to detect. We present Sparse2Dense, a new framework to
efficiently boost 3D detection performance by learning to densify point clouds in
latent space. Specifically, we first train a dense point 3D detector (DDet) with a
dense point cloud as input and design a sparse point 3D detector (SDet) with a
regular point cloud as input. Importantly, we formulate the lightweight plug-in
S2D module and the point cloud reconstruction module in SDet to densify 3D
features and train SDet to produce 3D features, following the dense 3D features in
DDet. So, in inference, SDet can simulate dense 3D features from regular (sparse)
point cloud inputs without requiring dense inputs. We evaluate our method on
the large-scale Waymo Open Dataset and the Waymo Domain Adaptation Dataset,
showing its high performance and efficiency over the state of the arts. The code is
available at https://github.com/stevewongv/Sparse2Dense.

1 Introduction

( c ) Sparse features visualization  
from baseline 

( a )  Detection results of baseline ( b ) Our detection results

( d ) Our densified 3D features 
visualization from S2D

Figure 1: Our approach is able to produce dense and
good-quality 3D features (d) from regular (raw) point
clouds, enabling better detection of small, distant, and
incomplete objects (b) vs. [1] (a,c). Red boxes are detec-
tion results and green boxes are the ground truths.

3D object detection is an important
task for supporting autonomous vehicles
to sense their surroundings. Previous
works [1–4] design various neural network
structures to improve the detection perfor-
mance. Yet, it remains extremely chal-
lenging to detect small, distant, and in-
complete objects, due to the point sparsity,
object occlusion, and inaccurate laser re-
flection. These issues hinder further im-
provements in the precision and robust-
ness of 3D object detection.

To improve the detection performance,
some works attempt to leverage additional
information, e.g., images [5–9], image
segmentations [10, 11], and multi-frame
information [12, 13]. By fusing the in-
formation with the input point cloud in
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physical or latent space, the 3D detector
can obtain enhanced features for small and distant objects to improve the 3D detection performance.
However, the above works require additional data pre-processing and fusion in inference, thereby
unavoidably increasing the computational burden and slowing down the overall detection efficiency
in practice.

More recently, [14] associates incomplete perceptual features of objects with more complete features
of the corresponding class-wise conceptual models via an incomplete-aware re-weighting map and a
weighted MSE loss. However, this network still struggles to deal with sparse regions with limited
points, due to the difficulty of generating good-quality features in these regions. Recently, [15]
proposes to generate semantic points on the predicted object regions and then train modern detectors,
leveraging both the generated and original points. However, as the generated points in sparse regions
could be incomplete, the generation quality in these regions is still far from satisfactory. Also, it takes
a long time to generate the semantic points in large scenes.

In this work, we present a new approach to address the point sparsity issue in 3D object detection.
Specifically, we design the Sparse2Dense framework with two detectors: (i) the Dense point 3D
Detector (DDet), which is pre-trained with dense point clouds for 3D detection, and (ii) the Sparse
point 3D Detector (SDet), which is trained with regular (raw) point clouds as input. Very importantly,
when we train SDet, we use DDet to teach SDet to simulate densified 3D features, so that it can
learn to produce good-quality 3D features from regular point clouds to improve the detection
performance. Unlike previous approaches, we design two effective modules to further help densify
the sparse features from regular point clouds in latent space. Also, unlike previous multi-modal
approaches [9, 10], which require extra information, like image segmentation and images, in both
training and inference, our approach needs dense point data only in training but not in inference.

Our framework is trained in two stages. First, we prepare dense point clouds by fusing multi-frame
point clouds for training DDet. Then, we transfer the densified 3D features derived from DDet for
embedding into the SDet features when training SDet, such that it can learn to generate densified 3D
features, even from regular normal point clouds. To facilitate SDet to simulate dense 3D features, we
design the lightweight and effective (S2D) module to densify sparse 3D features in latent space. Also,
to further enhance the feature learning, we formulate the point cloud reconstruction (PCR) module
to learn to reconstruct voxel-level point cloud as an auxiliary task. Like DDet, we need this PCR
module only in training but not in inference.

Furthermore, our framework is generic and compatible with various 3D detectors for boosting their
performance. We adopted our framework to work with three different recent works [16, 17, 1] on the
large-scale Waymo [18] Open and Waymo Domain Adaptation Datasets, showing that the detection
performance of all three methods are improved by our approach. Particularly, the experimental results
show that our approach outperforms the state-of-the-art 3D detectors on both datasets, demonstrating
the effectiveness and versatility of our approach.

Below, we summarize the major contributions of this work.

(i) We design a new approach to address the point sparsity issue in 3D detection and formulate
the Sparse2Dense framework to transfer dense point knowledge from the Dense point 3D
Detector (DDet) to the Sparse point 3D Detector (SDet).

(ii) We design the lightweight plug-in S2D module to learn dense 3D features in the latent space
and the point cloud reconstruction (PCR) module to regularize the feature learning.

(iii) We evaluate our approach on the large-scale benchmark datasets, Waymo [18] open and
Waymo domain adaptation, demonstrating its superior performance over the state of the arts.

2 Related Work

3D Object Detection. Recent years have witnessed the rapid progress of 3D object detection,
existing works [19–31] have gained remarkable achievements on 3D object detection. SECOND [16]
employs sparse convolution [32, 33] and PointPillars [17] introduces a pillar representation to achieve
a good trade-off between speed and performance. Recently, CenterPoint [1] proposes a center-based
anchor-free method to localize the object and VoTr [30] joins self-attention with sparse convolution
to build a transformer-based 3D backbone. Besides, PV-RCNN [4] fuses deep features by RoI-grid
pooling from both point and voxel features, and LiDAR R-CNN [26] presents a PointNet-based
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second-stage refinement to address size ambiguity. In this work, we adopt our approach to three
recent methods as representatives, i.e., [16, 17, 1], showing that our approach can effectively enhance
the performance of all three methods, demonstrating the compatibility of our framework.

Sparse/Dense Domain Transformation for 3D Point Cloud. Raw point clouds are typically
sparse and incomplete in practice, thereby limiting the performance of many downstream tasks.
To address this issue, several approaches, including point cloud upsampling [34–36] and comple-
tion [37–40], have been proposed to densify point cloud and complete the objects to improve the 3D
segmentation [41, 42] and detection [43, 14, 15, 31, 44] performance.

Here, we review some works on sparse/dense domain transformation on 3D object detection. [45] first
propose a multi-frame to single-frame distillation framework, which only uses five adjacent frames to
generate the dense features as the guidance, thus limiting the performance for distant objects. [43, 14]
present a self-contained method to first extract complete cars at similar viewpoints and high-density
regions across the dataset, then merge these augmented cars at the associated ground-truth locations
for conceptual feature extraction. Later, [15] introduces semantic point generation to address the
missing point issue. Recently, [44] presents a two-stage framework: first predict 3D proposals then
complete the points by another module, which employs an attention-based GNN to refine the detection
results with completed objects. The above works [43, 14, 15, 44] conduct various operations in the
point cloud explicitly, e.g., object extraction and matching [43, 14], and point generation [15, 44];
however, the explicit point cloud operations lead to two issues. First, it is challenging to conduct the
above operations in distant and occluded regions, due to the high sparsity of points, thus severely
limiting their performance in these regions. Second, it typically takes a very long time to conduct
these operations explicitly, especially for large scenes.

Beyond the prior works, we present an efficient sparse-to-dense approach to learn to densify 3D
features in the latent space, instead of explicitly generating points in the point cloud. Notably, our
approach needs dense point clouds only in training. In inference, it takes only a regular (sparse) point
cloud as input for 3D detection. Quantitative experiments demonstrate that our approach outperforms
existing ones in terms of both accuracy and efficiency.

3 Methodology

3.1 Overall Framework Design

Figure 2 gives an overview of our Sparse2Dense framework, which consists of the Dense point 3D
Detector (DDet) on top and the Sparse point 3D Detector (SDet) on bottom. Overall, DDet takes
a dense point cloud as input, whereas SDet takes a regular (sparse) point cloud as input. Our idea
is to transfer dense point knowledge from DDet to SDet and encourage SDet to learn to generate
dense 3D features, even with sparse point clouds as inputs, to boost its 3D detection performance.
The workflow of our framework design is summarized as follows:

(i) Dense object generation: we prepare dense point clouds for training DDet using raw multi-
frame point cloud sequences. Particularly, we design a dense object generation procedure by
building voxel grids and filling the voxels with object points (Section 3.2). Then, we replace
the object regions in the sparse point cloud PS with the corresponding dense object points
to obtain the dense point cloud PD.

(ii) From dense detector to sparse detector: The training has two stages. First, as Figure 2 (a)
shows, we train DDet with dense point cloud PD with a region proposal network (RPN) to
extract region proposals and multiple heads to perform object classification and regression,
following VoxelNet-based methods [1, 16] or Pillar-based method [17]. Second, as Figure 2
(b) shows, we initialize SDet with the weight of the pre-trained DDet, and train SDet with
regular sparse point cloud PS as input. Meanwhile, we freeze the weights of DDet and
adopt an MSE loss to reduce the feature difference (FD

a & FS
a ) between DDet and SDet.

(iii) Dense feature generation by S2D module: MSE loss itself is not sufficient to supervise
SDet to effectively simulate dense 3D features like DDet. To complement the MSE loss,
we further design the S2D module to learn dense 3D features of objects in latent space. In
detail, we feed dense object point cloud PD

O , which is the object region of the dense point
cloud PD, to DDet and then extract the dense object features FD

b ; After that, we further
encourage feature FS

b enhanced by S2D to simulate to the dense object feature FD
b .

3



Dense point 3D Detector (DDet)

( a )

( b )

Masked MSELoss Cut in inferenceFusion

RPN

RPN

S2D
Point Cloud


Reconstruction Module

Multi-

Heads

Multi-

Heads

Sparse point 3D Detector (SDet)

Voxel mask

Centers/

Classes

Centers/

Classes

3D boxes

3D boxes

Point offset

Dense point cloud

Sparse point cloud

Dense object point cloud

VFE/PFN & 3D Backbone

F

F

Training stage: One 

Training stage: Two

Figure 2: The overall framework of our proposed Sparse2Dense. Our framework contains two
training stages: (a) in the first stage, we train the Dense point 3D Detector (DDet) by taking the dense
point cloud as the input (dark arrows); and (b) in the second stage, we train the Sparse point 3D
Detector (SDet) by using the dense features from DDet as the supervision signals (gray and pink
arrows). In testing, we only need SDet for 3D object detection on the raw point cloud input (pink
arrows), without the DDet and the point cloud reconstruction module.

(iv) Feature enhancement by point cloud reconstruction (PCR) module: further, we adopt
the PCR module to promote the S2D module to simulate better dense 3D features; as an
auxiliary task, PCR takes the feature from S2D module and predicts the voxel mask and
point offset for reconstructing the voxel-level dense object point cloud PD

O .

3.2 Dense Object Generation

To prepare dense point clouds to train the DDet network, we design an offline pre-processing pipeline
to process raw point cloud sequences, each with around 198 frames (see Figure 3 (a)):

(i) First, for each annotated object, we fuse the points inside its bounding box from multiple
frames and then filter out the outlier points by using the radius outlier removal algorithm
from Open3D [46], as shown in Figure 3 (b).

(ii) To keep the LiDAR-scanned-line patterns and reduce the point number, we voxelize the fused
object points and obtain a voxel grid (see Figure 3 (c)) of granularity (0.1m, 0.1m, 0.15m),
which is the same size for point cloud voxelization. Specifically, we sort the frames in
descending order of the object point number, as shown in Figure 3 (a). Then, we fill the
voxel grid with object points starting from the beginning of the sorted frames until more
than 95% voxels have been filled (see Figure 3 (d)). Note that we stop filling a single voxel
when the number of points in the voxel has reached five or this voxel has been filled by the
previous frames to obtain enough points for training.

(iii) For the vehicle category, whose shape is often symmetric, we flip and copy the denser side
of each object about its axial plane to further improve its density (see Figure 3 (e)).

3.3 Dense Feature Distillation with the S2D Module

To transfer dense point knowledge from DDet to SDet, a straightforward solution is to pair up
associated features in DDet and SDet and minimize the distance between each pair of features with an
MSE loss. However, MSE loss itself is struggling to achieve satisfying feature transfer, as the inputs
of DDet and SDet differ a lot from each other, especially for objects far from the LiDAR sensor.
Also, the backbone structure [16, 1] built up with VoxelNet consists of SPConv, which processes only
non-empty voxels. Hence, it cannot generate features on empty voxels.
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Figure 3: Dense object generation pipeline. Note that we use the annotated 3D bounding box to
extract points from multiple frames and then fuse the points together with the help of a voxel grid.
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Figure 4: Left: the architecture of the S2D module. Right: ConvNeXt block [47].

To better densify the 3D features, we formulate the S2D module that takes SDet’s backbone feature
as input and learns to output denser features for 3D object detection. Figure 4 shows its architecture,
in which we first project sparse 3D feature to obtain BEV feature FS

c , so that we can employ efficient
2D convolution operations in the BEV space. Then, we down-sample the feature maps to 1/4 size of
the input sparse features by using convolution layers with stride 2. Inspired by the efficient design of
convolution block in [47], we embed three ConvNeXt [47] residual blocks to aggregate the object
information. Each block contains a 7× 7 depth-wise convolution, followed by a layer normalization,
a 1 × 1 conv with a GELU, and a 1 × 1 conv. As shown on the right of Figure 4, the first 1 × 1
conv increases the number of feature channels from 256 to 1024 and the second 1× 1 conv reduces
the channel number back to 256. Next, we upsample the features via a 2D transposed conv and
concatenate the result with the previous features. After that, we feed the concatenated feature to
a 3 × 3 conv layer and upsample the features to obtain the final densified feature FS

b . Note that
each conv, except convs in the ConvNeXt blocks, is followed by a batch normalization and a GELU
non-linear operation. With the densified feature FS

b , we fuse FS
b and FS

c by feeding each of them
into a 1× 1 conv layer and add them together as the final output feature FS

a , as shown in Figure 2.

To train the S2D module, we consider two kinds of supervision. The first one is on the high-level
features in the DDet network, where FD

a and FD
b are the features obtained on the dense point

cloud with and without background information, respectively. We minimize the feature difference
between FS

a and FD
a as well as between FD

b and FS
b . The second supervision comes from the point

reconstruction module to be presented in the next subsection.

3.4 Point Cloud Reconstruction Module

To encourage the S2D module to produce good-quality dense 3D features, we further design the point
cloud reconstruction (PCR) module with an auxiliary task. In short, the PCR module reconstructs
a voxel-level dense object point cloud PD

O from feature FS
b , i.e., the output of the S2D module.

Yet, it is extremely challenging to directly reconstruct large-scale dense object points [15]. Thus,
we propose a voxel-level reconstruction scheme to predict only the average of the input points in
each non-empty voxel. Specifically, we decouple this task into two sub-tasks: first predict a soft
voxel-occupancy mask indicating the probability that the voxel is non-empty; further predict point
offset Poffset for each non-empty voxel, i.e., an offset from voxel center Vc to the averaged input
points of this voxel.
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Figure 5 shows the architecture of the PCR mod-
ule. The densified feature FS

b is first projected
back to 3D view and fed to two 3D convolution
layers and one transposed 3D convolution to up-
scale to 1/4 scale of the original input. Then, we
predict the voxel-occupancy mask Vmask by us-
ing one 1×1 3D convolution with sigmoid func-
tion and predict point offset Poffset by using
one 1× 1 3D convolution. Next, we repeat the
same steps to further predict voxel mask Vmask

and point offset Poffset at 1/2 scale. Then, the
reconstructed point Pc is predicted as

Pc = (Poffset + Vc) × Vmask , (1)

and Pc is optimized to reconstruct the voxelized dense object point cloud PD
O .

3.5 Training Loss

Our Sparse2Dense framework is trained in two stages. First, we train DDet with the following loss:

LDDet = Lreg + Lhm/cls , (2)

where we adopt an L1 Loss as the regression loss Lreg followed [16, 1, 17]; heatmap loss Lhm is a
variant of the focal loss [48] for center-based methods [1, 17]; and classification loss Lcls is the focal
loss for anchor-based method [16]. Here, Lhm/cls means we use Lhm or Lcls, depending which method
that we adopt our framework to. Second, we train SDet with the following overall loss function:

LSDet = Lreg + Lhm/cls + LS2D + Lmask + Loffset + Lhm_dis, (3)

where LS2D is for optimizing S2D; Lmask and Loffset are for training PCR; and Lhm_dis is the distillation
loss like Lhm, but its input is the predicted heat maps of SDet and DDet. In detail, LS2D helps to
optimize SDet to learn to densify 3D features based on the associated features in DDet and it is an
MSE Loss with the masks to indicate the empty and non-empty elements in the feature maps:

LS2D = β
1

|N |

N∑
i

(FS
a i − F

D
a i)

2 + γ
1

|Ñ |

Ñ∑
i

(FS
a i − F

D
a i)

2

+ β
1

|M |

M∑
i

(FS
b i − F

D
b i)

2 + γ
1

|M̃ |

M̃∑
i

(FS
b i − F

D
b i)

2,

(4)

where N and Ñ are numbers of non-zero and zero values, respectively, on FD
a , while M and M̃ are

numbers of non-zero and zero values, respectively, on FD
b . Also, we empirically set β=10 and γ=20

to balance the loss weight on non-empty and empty features. Lmask and Loffset are for training PCR:

Lmask =
∑
j

(
− Nb

Nf
yj log(pj)− (1− yj) log(1− pj)

)
, (5)

and Loffset =
1

|Nf |

Nf∑
i

|(Poffseti + Vci)− Pgti| , (6)

where Nb and Nf are numbers of background and foreground voxels, respectively; pj and yj are the
prediction and ground-truth values of the voxel mask; and j indexes the voxels in Vmask. Note also
that Eq. (3) includes Lhm_dis, only when adopting our method to the center-based methods [1, 17].

4 Experiments

4.1 Datasets and Evaluation Metrics

We employ the Waymo Open Dataset and the Waymo Domain Adaptation Dataset [18], which are
under the Waymo Dataset License Agreement, to evaluate our framework. Waymo Open Dataset is
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Table 1: Comparisons on the Waymo Open Dataset on 202 validation sequences with existing works.
† means re-produced by [28, 4]. ? means re-produced by [14]. ‡ means re-produced by us. Note
that our re-produced models and most of other re-produced models were trained on 20% data of
Waymo Open Dataset following the strategy of [28, 4]. See more details of implementation in Sec. 4.2
and comparison in Sec. 4.3. Note that [30, 29] were trained only on the vehicle category, so they
can largely focus on learning features for vehicles, [15] was trained on the vehicle and pedestrian
categories, and others were trained on all three categories.

Methods Vehicle-L1 Pedestrian-L1 Cyclist-L1 Vehicle-L2 Pedestrian-L2 Cyclist-L2

mAP mAPH MAP mAPH mAP mAPH mAP mAPH MAP mAPH mAP mAPH

Part-A2-Net† [28] 71.82 71.29 63.15 54.96 65.23 63.92 64.33 63.82 54.24 47.11 62.61 61.35
VoTr-SSD [30] 68.99 68.39 - - - - 60.22 59.69 - - - -
VoTr-TSD [30] 74.95 74.95 - - - - 65.91 65.29 - - - -
Pyramid-PV [29] 76.30 75.68 - - - - 67.23 66.68 - - - -

Densified:

PV-RCNN† [4] 74.06 73.38 62.66 52.68 63.32 60.72 64.99 64.38 53.80 45.14 60.72 59.18
PV-RCNN + SPG [15] 75.27 - 66.93 - - - 65.98 - 57.68 - - -

SECOND? [16] 67.40 66.80 57.40 47.80 53.50 52.30 58.90 58.30 49.40 41.10 51.80 50.60
SECOND+AGO-Net? [14] 69.20 68.70 59.30 48.70 55.30 54.20 60.60 60.10 51.80 42.40 53.50 52.50
SECOND‡ [16] 67.49 66.06 55.59 44.66 57.32 54.54 59.42 57.92 47.99 38.50 55.19 52.51
SECOND (ours) 71.94 70.47 58.78 48.29 59.24 56.76 63.49 62.17 51.12 41.92 57.03 54.64

CenterPoint-Pillar‡ [17, 1] 72.36 71.73 69.16 59.16 62.11 60.42 64.12 63.54 61.14 52.13 59.76 58.14
CenterPoint-Pillar(ours) 76.10 75.53 74.29 65.20 67.81 66.22 68.11 67.58 66.41 58.06 65.28 63.74

CenterPoint‡ [1] 73.70 72.96 74.73 69.07 68.85 67.73 65.52 65.01 66.30 61.09 66.32 65.24
CenterPoint(ours) 76.09 75.52 78.22 72.50 71.95 70.83 68.21 67.68 70.07 64.72 69.31 68.23

the largest and most informative 3D object detection dataset, which includes 360◦ LiDAR point cloud
and annotated 3D bounding boxes. The training set contains 798 sequences with around 158K LiDAR
frames and the validation set includes 202 sequences with around 40k LiDAR frames. The dataset is
captured across California and Arizona. The labeled object categories include vehicle, pedestrian,
and cyclist. All the objects in sequences are named with a unique ID that can be used to generate
the dense object point cloud in our method. Also, we perform unsupervised domain adaptation on
the Waymo Domain Adaptation dataset without re-training our model to show the generalization
capability of our method. The Waymo Domain Adaptation dataset contains 20 sequences with 3933
frames for evaluation. This dataset is captured in Kirkland and most frames are captured on rainy
day [15], which means the point cloud is sparser and more incomplete than the point cloud in Waymo
Open Dataset. The labeled object categories include vehicle and pedestrian in the Waymo Domain
Adaptation dataset. Following prior works [1, 4], we adopt Average Precision weighted by Heading
(APH) and Average Precision (AP) as evaluation metrics.

4.2 Implementation Details

In the first training stage, following [1], we train DDet from scratch using Adam with a learning rate
of 0.003 and a one-cycle learning rate policy with a dividing factor of 0.1 and a percentage of the
cycle of 0.3. We set the detect range as [−75.2m, 75.2m] for the X,Y axes and set [−2m, 4m] for
the Z axis, and the size of each voxel grid as (0.1m, 0.1m, 0.15m). We apply global rotation around
the Z-axis, random flipping, global scaling, and global translating as the data augmentation. We train
the DDet on four Nvidia RTX 3090 GPUs with a batch size of four per GPU for 30 epochs.

In the second training stage, we adopt DDet’s weights to initialize SDet, then optimize SDet by
adopting the same hyperparameters as the first stage with DDet frozen. Following [4, 14, 30], we
adopt 20% subset of the Waymo Open Dataset to train our models. Note that we adopt the second
stage for CenterPoint-based baselines [1, 17] by following [1].

4.3 Comparison with State-of-the-art Methods on the Waymo Open Dataset

We compare our methods with multiple state-of-the-art 3D object detectors [28, 4, 30, 29, 15–17, 1]
on three categories, i.e., pedestrian, vehicle, and cyclist, and on two difficulty levels, i.e., level 1 (L1)
and level 2 (L2). Note that our method is a plug-and-play module and can be easily adopted to work
with various deep-learning-based 3D object detectors. We obtain the results of the existing works by
copying from their papers and GitHub [28, 4, 14, 30, 29, 15] or by re-producing their methods using
the public code with recommended parameters [1, 16]. We cannot compare with [44], as the authors
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(a) SECOND [16] (b) CenterPoint-Pillar [17, 1] (c) CenterPoint-Voxel [1]

(d) SECOND (Ours) (e) CenterPoint-Pillar (Ours) (f) CenterPoint-Voxel (Ours)

Figure 6: Visual comparison of 3D object detection results and 3D features produced by (a,b,c)
baselines [16, 17, 1] and (d,e,f) our methods (our approach + corresponding baseline), where our
approach successfully densifies the object features and help the baseline methods produce more
accurate detection results than the three baselines. Note that red boxes show the detection results
and green boxes show the ground truths. Orange boxes highlight the improvement brought by our
approach.

did not report the performance of their method on the Waymo Open Dataset and did not release code.
Among the existing works, [15, 14] are the state-of-the-art methods that adopt densified operations
explicitly in point clouds and can be adopted to work with other methods.

Table 1 reports the comparison results, where our method clearly improves all three baseline methods
(SECOND, PointPilllar-center, and CenterPoint) for all categories on all evaluation metrics. Notably,
our approach achieves more performance gain in comparison than [14] when working with [16], and
outperforms [15] when working with [17, 1], even though [15] is built upon a stronger model [4].
Also, level 2 (L2) contains more challenging samples than level 1 (L1), since the point cloud in L2 are
much sparser. Despite that, our method consistently shows greater improvement on L2, demonstrating
its effectiveness to deal with the sparse point clouds. Furthermore, Table 2 shows the performance
gain for three different distant ranges on the Waymo validation set. Our method also achieves
significant improvements over all three baseline methods for all distance ranges, including the
long-range, showing again that our method can effectively learn to densify 3D features in challenging
cases. See more detailed comparison results and the performance of our model trained on the full
Waymo Open Dataset in Appendix A. We further provide the visual comparisons in Figure 6, where
we can see that: (i) our method successfully detects more objects that contain a few points and
compensates sparse features of these objects; (ii) our method generates more accurate 3D bounding
boxes, which are consistent with the ground truth boxes; see the orange boxes in the first row; (iii)
our method generates more dense and robust features in sparse or distant regions. Please see more
visual comparisons in Appendix B.

4.4 Quantitative Comparison on the Waymo Domain Adaptation Dataset

We further evaluate our methods on the Waymo Domain Adaptation Dataset and compare it with
the state-of-the-art methods. Table 3 shows that our method is able to consistently improve the
performance of all three methods [16, 17, 1] for all categories and all difficulty levels. Note also
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Table 2: Performance gain over baseline approaches on Waymo validation set (level-2) in different
ranges. Evaluated on three categories.

Methods All Range Range [0, 30) Range [30, 50) Range [50, +inf)

mAP mAPH MAP mAPH mAP mAPH mAP mAPH

SECOND [16] 54.20 49.65 70.58 66.17 52.33 46.95 32.64 28.25
SECOND (ours) 57.21 +3.01 52.91 +3.26 72.94 +2.36 68.91 +2.74 55.30 +2.97 50.28 +3.33 36.32 +3.68 31.96 +3.71
CenterPoint-Pillar [17, 1] 61.67 57.94 74.18 70.55 61.63 57.88 42.91 38.83
CenterPoint-Pillar(ours) 66.60 +4.93 63.13 +5.19 77.90 +3.72 74.60 +4.05 66.72 +5.09 63.32 +5.44 49.42 +6.51 45.41 +6.58
CenterPoint-Voxel [1] 66.04 63.78 80.80 78.86 64.24 61.66 45.37 42.35
CenterPoint-Voxel(Ours) 69.19 +3.15 66.88 +3.10 82.72 +1.92 80.77 +1.91 67.60 +3.36 64.96 +3.30 49.45 +4.08 46.28 +3.93

Table 3: Comparisons on the Waymo Domain Adaptation Dataset on 20 validation sequences with
existing works. † means re-produced by [15], ‡ means re-produced by us. Still, our re-produced
models and most of other re-produced models were trained on 20% data of Waymo Open Dataset
following the strategy of [28]; see more details in Sec. 4.2. [15] was trained on two categories (vehicle
and pedestrian) while ours were trained on all the three categories.

Methods
Vehicle-L1 Pedestrian-L1 Vehicle-L2 Pedestrian-L2

mAP mAPH mAP mAPH mAP mAPH mAP mAPH
SPG† [15] 58.31 - 30.82 - 48.70 - 22.05 -
SECOND‡ [16] 51.56 49.55 13.96 12.14 42.90 41.22 9.83 8.54
SECOND(ours) 55.49 53.96 17.45 15.25 46.25 44.95 12.23 10.68
CenterPoint-Pillar‡ [17, 1] 54.15 53.26 12.50 10.36 45.33 44.57 8.80 7.29
CenterPoint-Pillar(ours) 59.18 58.52 18.95 16.26 50.12 49.55 13.31 11.42
CenterPoint-Voxel‡ [1] 57.54 56.99 30.21 28.30 48.36 47.88 21.16 19.82
CenterPoint-Voxel(ours) 60.54 59.87 37.15 35.21 51.01 50.43 26.03 24.66

that the most recent state-of-the-art method SPG [15] is trained only on the vehicle and pedestrian
categories, yet our method can achieve better performance even when trained on three categories.

4.5 Ablation Study

We conduct experiments to evaluate the key components in our Sparse2Dense framework. Here, we
adopt our approach to work with CenterPoint (one stage version) [1]. Then, we conduct the feature
distillation (“+ Distillation”) to distill the 3D features from FD

a in DDet to FS
a in SDet, and adopt

heat map distillation Lhm_dis between the heat maps of SDet and DDet, as discussed in Sec.3.5. Next,
we further add the S2D module (“+ S2D”) in SDet to enable the feature distillation between the FD

b

in DDet and FS
b in SDet. In addition, we construct our full pipeline by further adding the point cloud

reconstruction module (“+ PCR”). Also, we conduct an additional experiment (“- Distillation”) by
ablating the feature loss LS2D and heat map distillation loss Lhm_dis from our full pipeline.

The results are shown in Table 4. First, feature distillation (“+ Distillation”) helps to moderately
improve the performance of both categories. By adopting our S2D module (“+ S2D”), we can largely
improve the quality of the densified features, boosting the performance of 3D object detection by
around 2% on the vehicle and 1% on the cyclist, compared with “+ Distillation”. Next, our point
cloud reconstruction module (“+ PCR”) further enhances the performance on both categories and
metrics consistently by providing additional supervision to regularize the feature learning. Finally,
even without distillation (“- Distillation”), our approach can still improve the baseline performance
by more than 2.5% on the vehicle, demonstrating the effectiveness of our S2D and PCR modules.

4.6 Latency Analysis for S2D module

In our framework, both DDet and PCR are used only in the training stages. In inference, we only add
the lightweight S2D module into the basic 3D object detection framework. To evaluate the efficiency
of the S2D module, we employ the Waymo Open Dataset validation set and report the average
processing time with and without the S2D module in inference. Table 5 reports the results, showing
that S2D only brings around extra 10 ms latency to detectors, thus demonstrating our approach’s high
efficiency. Also, we show the latency of SPG [15] reported in their paper, i.e., 16.9 ms, which is
evaluated on the KITTI dataset with a much smaller number of points and objects than the dataset we
employed, i.e., Waymo. The latency analysis results manifest the superior efficiency of our S2D in
comparison to the state-of-the-art approach [15].
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Table 4: Ablation studies on the Waymo Open Dataset validation set.

Methods Vehicle-L2 Pedestrian-L2 Cyclist-L2
mAP mAPH mAP mAPH mAP mAPH

Baseline 63.03 62.53 63.72 58.03 65.03 63.90
+ Distillation 63.84 63.32 67.04 61.21 67.59 66.44
+ S2D 65.75 65.22 67.62 61.65 68.50 67.34
+ PCR 66.12 65.58 67.47 61.59 68.69 67.54
- Distillation 65.61 65.08 64.75 58.80 65.79 64.62

Table 5: Latency analysis on our S2D module. We evaluate each model with the batch size of 1. The
latency is averaged over the Waymo validation set. As a reference, we include SPG [15] (evaluated
on KITTI). Our method needs only ∼10 ms vs. 16.9 ms by SPG.

Detectors CenterPoint-Pillar [17, 1] CenterPoint-Pillar+S2D CenterPoint-Voxel [1] CenterPoint-Voxel+S2D

Inference time (ms) 42.7 53.1 (+10.4) 53.0 62.8 (+9.8)

Detectors PV-RCNN [4] PV-RCNN+SPG [15]

Inference time (ms) 140.0 156.9 (+16.9)

5 Discussion and Conclusion

This paper presents the novel Sparse2Dense framework that learns to densify 3D features to boost
3D object detection performance. Our key idea is to learn to transfer dense point knowledge from
the trained dense point 3D detector (DDet) to the sparse point 3D detector (SDet), such that SDet
can learn to densify 3D features in the latent space. With the trained SDet, we only need the core
component of SDet to detect 3D objects in regular point clouds, so we can enhance the detection
accuracy without degrading the speed. Further, to enhance the transfer of dense point knowledge,
we design the S2D module and the point cloud reconstruction module in SDet to enhance the sparse
features. Last, we adopt our framework to various 3D detectors, showing that their performance
can all be improved consistently on multiple benchmark datasets. In the future, we will apply our
framework to more point cloud applications that require dense features, such as 3D segmentation and
object tracking, to boost their performance while maintaining high computational efficiency.

Limitations. First, objects far from the LiDAR sensor in the point cloud sequence contain only a
few points. It is still difficult to generate dense features for these objects with our DDet. Second, the
training time of our framework is longer than traditional training, as we need multi-stage training to
pre-train DDet and then transfer knowledge from the pre-trained DDet to SDet. Third, our models
trained on Waymo Open Dataset need inputs containing specific point features like intensity and
elongation, which limits our models evaluating on different datasets, like KITTI. We will explore
removing the specific point features to make the model more general in future works.

Societal Impacts. Our proposed framework can provide better 3D object detection performance for
autonomous vehicles. However, like most existing 3D detectors, it may produce errors in some edge
cases, due to the limited data, so further research is still needed to improve its robustness.
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