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Abstract

We study the regret of Thompson sampling (TS) algorithms for exponential family
bandits, where the reward distribution is from a one-dimensional exponential fam-
ily, which covers many common reward distributions including Bernoulli, Gaussian,
Gamma, Exponential, etc. We propose a Thompson sampling algorithm, termed
ExpTS, which uses a novel sampling distribution to avoid the under-estimation
of the optimal arm. We provide a tight regret analysis for ExpTS, which simulta-
neously yields both the finite-time regret bound as well as the asymptotic regret
bound. In particular, for a K-armed bandit with exponential family rewards, Ex-
pTS over a horizon T is sub-UCB (a strong criterion for the finite-time regret that
is problem-dependent), minimax optimal up to a factor

√
logK, and asymptoti-

cally optimal, for exponential family rewards. Moreover, we propose ExpTS+, by
adding a greedy exploitation step in addition to the sampling distribution used in
ExpTS, to avoid the over-estimation of sub-optimal arms. ExpTS+ is an anytime
bandit algorithm and achieves the minimax optimality and asymptotic optimality
simultaneously for exponential family reward distributions. Our proof techniques
are general and conceptually simple and can be easily applied to analyze standard
Thompson sampling with specific reward distributions.

1 Introduction

The Multi-Armed Bandit (MAB) problem is centered around a fundamental model for balancing
the exploration versus exploitation trade-off in many online decision problems. In this problem,
the agent is given an environment with a set of K arms [K] = {1, 2, · · · ,K}. At each time step
t, the agent pulls an arm At ∈ [K] based on observations of previous t − 1 time steps, and then a
reward rt is revealed at the end of the step. In real-world applications, reward distributions often
have different forms such as Bernoulli, Gaussian, etc. As suggested by Auer et al. [8, 9], Agrawal
and Goyal [5], Lattimore [29], Garivier et al. [16], a good bandit strategy should be general enough
to cover a sufficiently rich family of reward distributions. In this paper, we assume the reward rt is
independently generated from some canonical one-parameter exponential family of distributions with
a mean value µAt . It is a rich family that covers many common distributions including Bernoulli,
Gaussian, Gamma, Exponential, and others.

The goal of a bandit strategy is usually to maximize the cumulative reward over T time steps, which
is equivalent to minimizing the regret, defined as the expected cumulative difference between playing
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the best arm and playing the arm according to the strategy: Rµ(T ) = T ·maxi∈[K] µi − E[
∑T
t=1 rt].

We assume, without loss of generality, µ1 = maxi∈[K] µi is the best arm throughout this paper. For a
fixed bandit instance (i.e., mean rewards µ1, · · · , µK are fixed), Lai and Robbins [26] shows that for
distributions that are continuously parameterized by their means,

lim
T→∞

Rµ(T )

log T
≥
∑
i>1

µ1 − µi
kl(µi, µ1)

, (1.1)

where kl(µi, µ1) is the Kullback-Leibler divergence between two distributions with mean µi and µ1.
A bandit strategy satisfying limT→∞Rµ(T )/ log T =

∑
i>1

µ1−µi
kl(µi,µ1) is said to be asymptotically

optimal or achieve the asymptotic optimality in regret. The asymptotic optimality is one of the most
important statistical properties in regret minimization, which shows that an algorithm is consistently
good when it is played for infinite steps and thus should be a basic theoretical requirement of any
good bandit strategy [8].

In practice, we can only run the bandit algorithm for a finite number T steps, which is the time
horizon of interest in real-world applications. Therefore, the finite-time regret is the ultimate property
of a practical bandit strategy in regret minimization problems. A strong notion of finite-time regret
bounds is called the sub-UCB criteria [29]. An algorithm is sub-UCB if there exist universal constants
C1, C2 > 0 such that for any problem instances,

Rµ(T ) = C1

∑
i∈[K]:∆i>0

∆i + C2

∑
i∈[K]:∆i>0

log T

∆i
, (1.2)

where ∆i = µ1 − µi is the sub-optimal gap between arm 1 and arm i. Note that the regret bound in
(1.2) is a problem-dependent bound since it depends on the bandit instance and the sub-optimal gaps.
Sub-UCB is an important metric for finite-time regret bound and has been adopted by recent work of
Lattimore [29], Bian and Jun [10]. Another special type of finite-time bounds is called the worst-case
regret, which is defined as the finite-time regret of an algorithm on any possible bandit instance
within a bandit class. Specifically, for a finite time horizon T , Auer et al. [8] proves that any strategy
has at least worst-case regret Ω(

√
KT ) for a K-armed bandit. We say the strategy that achieves a

worst-case regret O(
√
KT ) is minimax optimal or achieves the minimax optimality. Different from

the asymptotic optimality, the minimax optimality characterizes the worst-case performance of the
bandit strategy in finite steps.

A vast body of literature in multi-armed bandits [6, 5, 22, 32, 16, 29] have been pursing the afore-
mentioned theoretical properties of bandit algorithms: generality, asymptotic optimality, problem-
dependent finite-time regret, and minimax optimality. However, most of them focus on one or two
properties and sacrifice the others. Moreover, many of existing theoretical analyses of bandit strategies
are for optimism-based algorithm. The theoretical analysis of Thompson sampling (TS) is much less
understood until recently, which has been shown to exhibit superior practical performances compared
to the state-of-the-art methods [13, 34]. Specifically, its finite-time regret, asymptotic optimality, and
near minimax optimality have been studied by Agrawal and Goyal [3, 4, 5] for Bernoulli rewards. Jin
et al. [20] proved the minimax optimality of TS for sub-Gaussian rewards. For exponential family
reward distributions, the asymptotic optimality is shown by Korda et al. [25], but no finite-time regret
of TS is provided. See Table 1 for a comprehensive comparison of these results.

In this paper, we study the regret of Thompson sampling for exponential family reward distributions
and address all the theoretical properties of TS. We propose a variant of TS algorithm with a general
sampling distribution and a tight analysis for frequentist regret bounds. Our analysis simultaneously
yields both the finite-time regret bound and the asymptotic regret bound.
Specifically, the main contributions of this paper are summarized as follows:

• We propose ExpTS, a general variant of Thompson sampling, that uses a novel sampling distribution
with a tight anti-concentration bound to avoid the under-estimation of the optimal arm and a tight
concentration bound to avoid the over-estimation of sub-optimal arms. For exponential family of
reward distributions, we prove that ExpTS is the first Thompson sampling algorithm achieving the
sub-UCB criteria, which is a strong notion of problem-dependent finite-time regret bounds. We
further show that ExpTS is also simultaneously minimax optimal up to a factor of

√
logK, as well

as asymptotically optimal, where K is the number of arms.
• We also propose ExpTS+, which explores between the sample generated in ExpTS and the em-

pirical mean reward for each arm, to get rid of the extra
√

logK factor in the worst-case regret.
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Table 1: Comparisons of different Thompson sampling algorithms onK-armed bandits over a horizon
T . For any algorithm, Asym. Opt is the indicator whether it is asymptotically optimal, minimax ratio
is the scaling of its worst-case regret w.r.t. the minimax optimal regret O(

√
V KT ), where V is the

variance of reward distributions, and sub-UCB is the indicator if it satisfies the sub-UCB criteria.

Algorithm Reward Type Asym. Finite-Time Regret Anytime ReferenceOpt Minimax Ratio Sub-UCB

TS Bernoulli yes
√
log T –* yes [4]

TS Bernoulli –
√
logK –* yes [5]

TS Exponential Family yes – – yes [25]
MOTS sub-Gaussian no 1 no no [20]

MOTS-J Gaussian yes 1 no no [20]
ExpTS Exponential Family yes

√
logK yes yes This paper

ExpTS+ Exponential Family yes 1 no yes This paper
* [4, 5] did not explicitly show that their regret bounds are sub-UCB. However, the intermediate results

in their proofs might imply sub-UCB regret bounds.

Thus ExpTS+ is the first Thompson sampling algorithm that is simultaneously minimax and
asymptotically optimal for exponential family of reward distributions.

• Our regret analysis of ExpTS can be easily extended to analyze standard Thompson sampling with
common reward distributions. We prove that standard Thompson sampling without inflating the
posterior distribution1 is minimax optimal up to a factor of

√
logK, which matches the regret lower

bound for standard Thompson sampling in Agrawal and Goyal [5]. Similar to the idea of ExpTS+,
we can add a greedy exploration step to the posterior distributions used in these variants of TS, and
then the algorithms are simultaneously minimax and asymptotically optimal.

Our techniques are novel and conceptually simple. First, we introduce a lower confidence bound
in the regret decomposition to avoid the under-estimation of the optimal arm, which is important
in obtaining the finite-time regret bound. Specifically, Jin et al. [20] (Lemma 5 in their paper)
shows that for Gaussian reward distributions, Gaussian-TS has a regret bound at least in the order
of Ω(

√
KT log T ) if the standard regret decomposition in existing analysis of Thompson sampling

[5, 30, 20] is adopted. With our new regret decomposition that is conditioned on the lower confidence
bound introduced in this paper, we improve the worst-case regret of Gaussian-TS for Gaussian reward
distributions to O(

√
KT logK).

Second, we do not require the closed form of the reward distribution, but only make use of the
corresponding concentration bounds. This means our results can be readily extended to other reward
distributions. For example, we can extend ExpTS+ to sub-Gaussian reward distributions and the
algorithm is simultaneously minimax and asymptotically optimal2, which improve the results of
MOTS proposed by Jin et al. [20] (see Table 1).

Third, the idea of ExpTS+ is simple and can be used to remove the extra
√

logK factor in the
worst-case regret. We note that MOTS [20] can also achieve the minimax optimal via the clipped
Gaussian. However, it is not clear how to generalize the clipping idea to the exponential family
of reward distribution. Moreover, it uses the MOSS [6] index for clipping, which needs to know
the horizon T in advance and thus cannot be extended to the anytime setting, while ExpTS+ is an
anytime bandit algorithm which does not need to know the horizon length in advance.

Notations. We let T be the total number of time steps, K be the total number of arms, and
[K] = {1, 2, · · · ,K}. For simplicity, we assume arm 1 is the optimal throughout this paper, i.e.,
µ1 = maxi∈[K] µi. We denote log+(x) = max{0, log x} and ∆i := µ1 − µi, i ∈ [K] \ {1} for the

1This is a common trick in the literature. In particular, for Bernoulli rewards, instead of using Beta posterior,
Agrawal and Goyal [5] consider Thompson sampling with Gaussian posterior, whose variance is larger. Moreover,
Jin et al. [20] inflate the variance of the sampling distribution by a factor 1/ρ, where ρ < 1. However, both of
these methods lose the asymptotic optimality.

2Note that sub-Gaussian is a non-parametric family and thus the lower bound (1.1) by Lai and Robbins [26]
does not directly apply to a general sub-Gaussian distribution. Following similar work in the literature [20], in
this paper, when we say an algorithm achieves the asymptotic optimality for sub-Gaussian rewards, we mean its
regret matches the asymptotic lower bound for Gaussian rewards, which is a stronger notion.
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gap between arm 1 and arm i. We let Ti(t) :=
∑t
j=1 1{At = i} be the number of pulls of arm i at

the time step t, µ̂i(t) := 1/Ti(t)
∑t
j=1

[
rj · 1{At = i}

]
be the average reward of arm i at the time

step t, and µ̂is be the average reward of arm i after its s-th pull. We reserve notations C1, C2, · · · to
be positive universal constants that are independent of problem parameters.

2 Related Work

There are series of works pursuing the asymptotic regret bound and worst-case regret bound for
MAB. For asymptotic optimality, UCB algorithms [15, 31, 5, 29], Thompson sampling [23, 25, 5, 20],
Bayes-UCB [22], and other methods [21, 10] are all shown to be asymptotically optimal. Among
them, only a few [15, 12, 25] can be extended to exponential families of distributions. One notable
result in Cappé et al. [12] shows that for [0, 1] bounded distribution, there exists an algorithm that has
regret

∑
i>1 ∆i log T/kl(µi, µ1) + O(

∑
i>1(log T )4/5 log log T ·∆i)

3, which is better than (1.2).
It is an interesting problem whether we can achieve such regret for unbounded reward distributions.
For the worst-case regret, MOSS [6] is the first algorithm proved to be minimax optimal. Later,
KL-UCB++ [5], AdaUCB [29], MOTS [20] also join the family. The anytime version of MOSS
is studied by Degenne and Perchet [14]. There are also some works that focus on the near optimal
problem-dependent regret bound [27, 28]. As far as we know, no algorithm has been proved to
achieve the sub-UCB criteria, asymptotic optimality, and minimax optimality simultaneously for
exponential family reward distributions.

For Thompson sampling, Russo and Van Roy [33] studied the Bayesian regret. They show that
the Bayesian regret of Thompson sampling is never worse than the regret of UCB. Bubeck and
Liu [11] further showed the Bayesian regret of Thompson sampling is optimal using the regret
analysis of MOSS. There are also a line of works focused on the frequentist regret of TS. Agrawal
and Goyal [3] proposed the first finite time regret analysis for TS. Kaufmann et al. [23], Agrawal
and Goyal [4] proved that TS with Beta posteriors is asymptotically optimal for Bernoulli reward
distributions. Korda et al. [25] extended the asymptotic optimality to the exponential family of reward
distributions. Subsequently, for Bernoulli rewards, Agrawal and Goyal [5] proved that TS with Beta
prior is asymptotically optimal and has worst-case regret O(

√
KT log T ). Besides, they showed that

TS with Gaussian posteriors can achieve a better worst-case regret bound O(
√
KT logK). They

also proved that for Bernoulli rewards, TS with Gaussian posteriors has a worst-case regret at least
Ω(
√
KT logK). Very recently, Jin et al. [20] proposed the MOTS algorithm that can achieve the

minimax optimal regret O(
√
KT ) for multi-armed bandits with sub-Gaussian rewards but at the

cost of losing the asymptotic optimality by a multiplicative factor of 1/ρ, where 0 < ρ < 1 is an
arbitrarily fixed constant. For bandits with Gaussian rewards, Jin et al. [20] proved that MOTS
combined with a Rayleigh distribution can achieve the minimax optimality and the asymptotic
optimality simultaneously. We refer readers to Tables 1 and 2 for more details.

3 Preliminary on Exponential Family Distributions

A one-dimensional canonical exponential family [15, 17, 32] is a parametric set of probability
distributions with respect to some reference measure, with the density function given by

pθ(x) = exp(xθ − b(θ) + c(x)),

where θ is the model parameter, and c is a real function. Denote the measure of pθ(x) as νθ. Then,
the above definition can be rewritten as

dνθ
dρ

(x) = exp(xθ − b(θ)),

for some measure ρ and b(θ) = log(
∫
exθdρ(x)). We make the classic assumption used by Garivier

and Cappé [15], Ménard and Garivier [32] that b(θ) is twice differentiable with a continuous second
derivative. Then, we can verify that exponential families have the following properties:

b′(θ) = E[νθ] and b′′(θ) = Var[νθ] > 0.

3Cappé et al. [12] used a more general notation Kinf(·, ·) for any distribution supported in [0, 1], which is
equivalent to the kl(·, ·) notation for the one-exponential family distribution studied in our paper.
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Let µ = E[νθ]. The above equality means that the mapping between the mean value µ of ν(θ) and
the parameter θ is one-to-one. Hence, exponential family of distributions can also be parameterized
by the mean value µ = b′(θ). Note that b′′(θ) > 0 for all θ, which implies b′(·) is invertible and its
inverse function b′−1 satisfies θ = b′−1(µ). In this paper, we will use the notion of Kullback-Leibler
(KL) divergence. The KL divergence between two exponential family distributions with parameter θ
and θ′ respectively is defined as follows:

KL(νθ, νθ′) = b(θ′)− b(θ)− b′(θ)(θ′ − θ). (3.1)
Recall that the mapping θ 7→ µ is one-to-one. We can define an equivalent notion of the KL divergence
between random variables νθ and νθ′ as a function of the mean values µ and µ′ respectively:

kl(µ, µ′) = KL(νθ, νθ′),

where E[νθ] = µ and E[νθ′ ] = µ′. Similarly, we define V (µ) = Var(νb′−1(µ)) as the variance of an
exponential family random variable νθ with mean µ. We assume the variances of exponential family
distributions used in this paper are bounded by a constant V > 0: 0 < V (µ) ≤ V < +∞. We have
the following property of the KL divergence between exponential family distributions.
Proposition 3.1 (Harremoës [17]). Let µ and µ′ be the mean values of two exponential family
distributions. The Kullback-Leibler divergence between them can be calculated as follows:

kl(µ, µ′) =

∫ µ′

µ

x− µ
V (x)

dx. (3.2)

Based on Proposition 3.1, we can also verify the following properties.
Proposition 3.2 (Jin et al. [19]). For all µ and µ′, we have

kl(µ, µ′) ≥ (µ− µ′)2/(2V ). (3.3)
In addition, for ε > 0 and µ ≤ µ′ − ε, we can obtain that

kl(µ, µ′) ≥ kl(µ, µ′ − ε) and kl(µ, µ′) ≤ kl(µ− ε, µ′). (3.4)

Exponential families cover many of the most common distributions used in practice such as Bernoulli,
exponential, Gamma, and Gaussian distributions. In particular, for two Gaussian distributions with
the same known variance σ2 but different means µ and µ′, we can choose V (·) = σ2, and it holds
that kl(µ, µ′) = (µ− µ′)2/(2σ2). For two Bernoulli distributions with means µ and µ′ respectively,
the variance upper bound is set as V = 1/4. Thus we can recover the result in Proposition 3.1 as
kl(µ, µ′) = µ log(µ/µ′) + (1−µ) log((1−µ)/(1−µ′)). For exponential and Gamma distributions,
it suffices to ensure the variance id bounded as long as we assume the mean value is bounded.

The definition of one-dimensional exponential family in our paper is pθ(x) = exp(xθ− b(θ) + c(x)),
which is the same as that used by Garivier and Cappé [15], Harremoës [17], Jin et al. [19], Ménard
and Garivier [32] as well as Cappé et al. [12]. The one-dimensional exponential family considered in
Korda et al. [25] (pθ(x) = exp(T (x)θ−b(θ)+c(x))) is more general than that in the aforementioned
papers (see page 4 in Korda et al. [25]). Lai and Robbins [26] considers parametric distributions that
satisfies some mild conditions, which is also more general than ours. Moreover, Cappé et al. [12]
also considered the general reward distributions supported in [0, 1], which is not compatible to ours.

4 Thompson Sampling for Exponential Family Reward Distributions

We present a general variant of Thompson sampling for exponential family rewards in Algorithm 1,
named as ExpTS. At round t, ExpTS maintains an estimate of a sampling distribution for each arm,
denoted as P . The algorithm generates a sample parameter θi(t) for each arm i independently from
their sampling distribution and chooses the arm that attains the largest sample parameter. For each
arm i ∈ [K], the sampling distribution P is usually defined as a function of the total number of pulls
Ti(t) and the empirical average reward µ̂i(t). After pulling the chosen arm, the algorithm updates
Ti(t) and µ̂i(t) for each arm based on the reward rt it receives and proceeds to the next round.

Since we study the frequentist regret bound of Algorithm 1, ExpTS is not restricted as a Bayesian
method. It has been shown [1, 20, 24, 36] that the sampling distribution does not have to be a
posterior distribution derived from a pre-defined prior distribution. Therefore, we call P the sampling
distribution instead of the posterior distribution as in Bayesian regret analysis of Thompson sampling
[33, 11]. To obtain the finite-time regret bound of ExpTS for exponential family rewards, we will
discuss the choice of a general sampling distribution and a new proof technique.
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Algorithm 1 Exponential Family Thompson Sampling (ExpTS)
1: Input: Arm set [K]
2: Initialization: Play each arm once and set Ti(K) = 1; let µ̂i(K) be the observed reward of

playing arm i
3: for t = K + 1,K + 2, · · · do
4: For all i ∈ [K], sample θi(t) independently from P(µ̂i(t), Ti(t))
5: Play arm At = arg maxi∈[K] θi(t) and observe the reward rt
6: For all i ∈ [K], update the mean reward estimator and the number of pulls:

µ̂i(t) =
Ti(t− 1) · µ̂i(t− 1) + rt 1{i = At}

Ti(t− 1) + 1{i = At}
, Ti(t) = Ti(t− 1) + 1{i = At}

7: end for

4.1 Challenges in Regret Analysis for Exponential Family Bandits

Before we choose a specific sampling distribution P for ExpTS, we first discuss the main challenges
in the finite-time regret analysis of Thompson sampling, which is the main motivation for our design
of P in the next subsection.

Under-Estimation of the Optimal Arm. Denote µ̂is as the average reward of arm i after its s-th
pull, Ti(t) as the number of pulls of arm i at time t, and P(µ̂is, s) as the sampling distribution of arm
i after its s-th pull. The regret of the algorithm contributed by pulling arm i is ∆iE[Ti(T )], where
Ti(T ) is the total number of pulls of arm i. All existing analyses of finite-time regret bounds for
TS [3–5, 20] decompose this regret term as ∆iE[Ti(T )] ≤ Di + hi(∆i, T, θi(1), . . . , θi(T )), where
hi() is a quantity characterizing the over-estimation of arm i which can be easily dealt with by some
concentration properties of the sampling distribution (see Lemma A.3 for more details). The term Di

characterizes the under-estimation of the optimal arm 1, which is usually bounded as follows.

Di = ∆i

T∑
s=1

Eµ̂1s

[
1

G1s(ε)
− 1

]
, (4.1)

where G1s(ε) = 1 − F1s(µ1 − ε), F1s is the CDF of the sampling distribution P(µ̂1s, s), and
ε = Θ(∆i). In other words, G1s(ε) = P(θ1(t) > µ1 − ε) is the probability that the best arm will not
be under-estimated from the mean reward by a margin ε. Furthermore, we can interpret the quantity
in (4.1) as the result of a union bound indicating how many samples TS requires to ensure that at least
one sample of the best arm {θ1(t)}Tt=1 is larger than µ1 − ε. If G1s(ε) is too small, arm 1 could be
significantly under-estimated, and thus Di will be unbounded. In fact, as shown in Lemma 5 by Jin
et al. [20], for MAB with Gaussian rewards, TS using Gaussian posteriors will unavoidably suffer
from the lower bound of K ·Di = Ω(

√
KT log T ).

To address the above issue, we introduce a lower confidence bound for measuring the under-estimation
problem. We use a new decomposition of the regret that bounds Di with the following term

∆i

T∑
s=1

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ≥ Lows}

]
, (4.2)

where Lows is a lower confidence bound of µ̂1s. Intuitively, due to the concentration of arm 1’s
rewards, the probability of µ̂1s ≤ Lows is very small. Thus, even when G1s(ε) is small, the overall
regret can be well controlled.

In the regret analysis of TS, we can bound (4.2) from two facets: (1) the lower confidence bound can
be proved using the concentration property of the reward distribution; and (2) the term G1s(ε) =
P(θ1(t) > µ1 − ε) can be upper bounded by the anti-concentration property for the sampling
distribution P . To achieve an optimal regret, one needs to carefully balance the interplay between
these two bounds. For a specific reward distribution (e.g., Gaussian, Bernoulli) as is studied by
Agrawal and Goyal [5], Jin et al. [20], there are already tight anti-concentration inequalities for the
reward distribution, and thus the lower confidence bound is tight. Therefore, by choosing Gaussian or
Bernoulli as the prior (which leads to a Gaussian or Beta sampling distribution P), we can use existing
anti-concentration bounds for Gaussian [2, Formula 7.1.13] or Beta [18, Prop. A.4] distributions to
obtain a tight bound of G1s(ε).

6



In this paper, we study the general exponential family of reward distributions, which has no closed
form. Thus we cannot obtain a tight concentration bound for µ̂1s as in special cases such as Gaussian
or Bernoulli rewards. This increases the hardness of tightly bounding term (4.2) and it is imperative
for us to design a sampling distribution P with a tight anti-concentration bound that can carefully
control G1s(ε) without any knowledge of the closed form distribution of the average reward µ̂1s. Due
to the generality of exponential family distributions, it is challenging and nontrivial to find such a
sampling distribution to obtain a tight finite-time regret bound.

4.2 Sampling Distribution Design in Exponential Family Bandits

In this subsection, we show how to choose a sampling distribution P that has a tight anti-concentration
bound to overcome the under-estimation of the optimal arm and concentration bound to overcome
the over-estimation of the suboptimal arms.

For the simplicity of notation, we denote P(µ, n) as the sampling distribution, where µ and n are
some input parameters. In particular, for ExpTS, we will choose µ = µ̂i(t) and n = Ti(t) for arm
i ∈ [K] at round t. We define P(µ, n) as a distribution with PDF

f(x;µ, n) = 1/2|(nbn · kl(µ, x))′|e−nbn·kl(µ,x) =
nbn · |x− µ|

2V (x)
e−nbn·kl(µ,x), (4.3)

where (kl(µ, x))′ denotes the derivative of kl(µ, x) with respect to x, and bn is a function of n and
will be chosen later.

We assume the reward is supported in [Rmin, Rmax]. Note that Rmin = 0, and Rmax = 1 for
Bernoulli rewards, and Rmin = −∞, and Rmax =∞ for Gaussian rewards. Let p(x) and q(x) be
the density functions of two exponential family distributions with mean values µp and µq respectively.
By the definition in Section 3, we have kl(µp, µq) = KL(p(x), q(x)) =

∫ Rmax

Rmin
p(x) log p(x)

q(x) dx.

Proposition 4.1. If the mean reward of q(x) is equal to the maximum value in its support, i.e.,
µq = Rmax, we will have kl(µ,Rmax) =∞ for any µ < Rmax.

Proof. First consider the case that Rmax <∞. Since the mean value concentrates on the maximum
value, we must have q(x) = 0 for all x < Rmax, which immediately implies kl(µ,Rmax) =∞ for
any µ < Rmax. For the case that Rmax =∞, from (3.3) and the assumption that V <∞, we also
have kl(µ,∞) = (∞− µ)2/V =∞.

Similarly, we can also prove that kl(µ,Rmin) = ∞ for µ > Rmin. Based on these properties, we
can easily verify that a sample from the proposed sampling distribution θ ∼ P has the following tail
bounds: for z ∈ [µ,Rmax), it holds that

P(θ ≥ z) =

∫ Rmax

z

f(x;µ, n)dx = −1/2e−nbn·kl(µ,x)

∣∣∣∣Rmax

z

= 1/2e−nbn·kl(µ,z), (4.4)

and for z ∈ (Rmin, µ], it holds that

P(θ ≤ z) =

∫ z

Rmin

f(x;µ, n)dx = 1/2e−nbn·kl(µ,x)

∣∣∣∣z
Rmin

= 1/2e−nbn·kl(µ,z). (4.5)

Note that
∫ Rmax

Rmin
f(x;µ, n)dx =

∫ µ
Rmin

f(x;µ, n)dx+
∫ Rmax

µ
f(x;µ, n)dx = 1, which indicates the

PDF of P is well-defined.

Intuition for the Design of the Sampling Distribution. The tail bounds in (4.4) and (4.5) provide
proper anti-concentration and concentration bounds for the sampling distribution P as long as we
have corresponding lower and upper bounds of e−nbn·kl(µ,z). When n is large, we will choose bn to
be close to 1, and thus (4.4) and (4.5) ensure that the sample of the corresponding arm concentrates
in the interval (µ− ε, µ+ ε) with an exponentially small probability e−nkl(µ−ε,µ+ε), which is crucial
for achieving a tight finite-time regret.

How to Sample from P . We show that sampling from P is tractable when the CDF of P is invertible.
In particular, according to (4.4) and (4.5), the CDF of P(µ, n) is

F (x) =

{
1− 1/2e−nbn·kl(µ,x) x ≥ µ,
1/2e−nbn·kl(µ,x) x ≤ µ.
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Table 2: Comparisons of different algorithms on K-armed bandits over a horizon T . For any
algorithm, Asym. Opt is the indicator whether it is asymptotically optimal, minimax ratio is the
scaling of its worst-case regret w.r.t. the minimax optimal regret O(

√
V KT ), sub-UCB indicates

whether it satisfies the sub-UCB criteria, and Anytime indicates whether it needs the knowledge of
the horizon length T in advance.

Algorithm Reward Type Asym. Finite-Time Regret Anytime ReferencesOpt Minimax Ratio Sub-UCB

MOSS [0, 1] no 1 no no [6]
Anytime MOSS [0, 1] no 1 no yes [14]

KL-UCB++ Exponential Family yes 1 no no [32]
OCUCB sub-Gaussian no

√
log log T yes yes [28]

AdaUCB Gaussian yes 1 yes no [29]
MS sub-Gaussian yes

√
logK yes yes [10]

ExpTS Exponential Family yes
√
logK yes yes This paper

ExpTS+ Exponential Family yes 1 no yes This paper

To sample from P(µ, n), we can first pick y uniformly random from [0, 1]. Then, for y ≥ 1/2,
we solve the equation y = 1 − 1/2e−nbn·kl(µ,x) for x (x ≥ µ), which is equivalent to solving
log(1/(2(1− y)))/(nbn) = kl(µ, x). For y ≤ 1/2, we solve the equation y = 1/2e−nbn·kl(µ,x) for
x (x ≤ µ), which is equivalent to solving log(1/(2y))/(nbn) = kl(µ, x). If b(θ) is reversible and the
mapping θ 7→ µ is given4, then according to (3.1), kl(µ, x) is also reversible for x. We can obtain an
exact sample from distribution P by solving kl(µ, x) = log(1/(2y))/(nbn). Alternatively, we can
also use approximate sampling methods such as Monte Carlo Markov Chain and Hastings-Metropolis
[25] or gradient based Langevin Monte Carlo [35] to obtain samples from the target distribution.

4.3 Regret Analysis of ExpTS for Exponential Family Rewards

Now we present the regret bound of ExpTS for general exponential family bandits. The sampling
distribution used in Algorithm 1 is defined in (4.3).
Theorem 4.2. Let bn = (n− 1)/n. Let P be the sampling distribution defined in Section 4.2. There
exist universal constants C0, C1 > 0 such that the regret of Algorithm 1 satisfies

Rµ(T ) ≤ C0

( ∑
i∈[K]:∆i>λ

∆i +
V log(T∆2

i /V )

∆i

)
+ max
i∈[K],∆i≤λ

∆i · T, (4.6)

Rµ(T ) ≤ C1

( K∑
i=2

∆i +
√
V KT logK

)
, (4.7)

where λ ≥ 16
√
V/T , and also satisfies the following asymptotic bound simultaneously:

lim
T→∞

Rµ(T )

log T
=

K∑
i=2

∆i

kl(µi, µ1)
. (4.8)

Remark 4.3. Similar to the argument by Auer and Ortner [7], we can see that the logarithm term
in (4.6) is the main term for suitable λ. For instance, if we choose λ = 16

√
V/T , we will have

maxi∈[K],∆i≤λ ∆iT ≤
√
V T , which is in the order of O(V/∆i) due to ∆i ≤ λ. Thus it is obvious

to see that the regret in (4.6) satisfies the sub-UCB criteria.

It is worth highlighting that ExpTS is an anytime algorithm and simultaneously satisfies the sub-UCB
criteria in (1.2), the minimax optimal regret up to a factor

√
logK, and the asymptotically optimal

regret. ExpTS is also the first Thompson sampling algorithm that provides finite-time regret bounds
for exponential family of rewards. Compared with state-of-the-art MAB algorithms listed in Table 2,
ExpTS is comparable to the best known UCB algorithms that work for exponential family of reward
distributions and no algorithms can dominate ExpTS. In particular, compared with MS [10] and

4This is true for distributions such as Gaussian with known variance, exponential distribution, and Bernoulli.
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OCUCB [28], ExpTS is asymptotically optimal for exponential family of rewards, while MS is only
asymptotically optimal for sub-Gaussian rewards and OCUCB is not asymptotically optimal. We note
that Exponential Family does not cover the sub-Gaussian rewards. However, since we only use the
tail bound to approximate the reward distribution, ExpTS can also be extended to solve sub-Gaussian
reward bandits, which we leave as a future open direction.

4.4 Simple Variants for Gaussian and Bernoulli Reward Distributions

The choice of P in (4.3) seems complicated for a general exponential family reward distribution,
even though we only need the sampling distribution to satisfy a nice tail bound derived from this
reward distribution. When the reward distribution has a closed form such as Gaussian and Bernoulli
distributions, we can replace P with the posterior in standard Thompson sampling and obtain the
asymptotic and finite-time regrets in the previous section.
Theorem 4.4. If the reward follows a Gaussian distribution with a known variance V , we can set
the sampling distribution in Algorithm 1 as N (µ̂i(t), V/Ti(t)). The resulting algorithm (denoted as
Gaussian-TS) enjoys the same regret bounds presented in Theorem 4.2.
Remark 4.5. Lemma 5 in Jin et al. [20] shows for Gaussian rewards, Gaussian-TS has a regret
bound at least Ω(

√
V KT log T ) if the standard regret decomposition discussed in Section 4.1 is

adopted in the proof [5, 30, 20]. With our new regret decomposition and the lower confidence bound
introduced in (4.2), we improve it to O(

√
V KT logK).

Jin et al. [20] also shows that their algorithms MOTS/MOTS-J can overcome the under-estimation
issue of (4.1). However, they are either at the cost of sacrificing the asymptotic optimality or not
generalizable to exponential family bandits. In specific, (1) For Gaussian rewards, MOTS [20]
enlarges the variance of Gaussian posterior by a factor of 1/ρ, where ρ ∈ (0, 1), which loses
the asymptotic optimality by a factor of 1/ρ resultantly. (2) For Gaussian rewards, MOTS-J
[20] introduces the Rayleigh posterior to overcome the under-estimation while maintaining the
asymptotic optimality. However, it is not clear whether the idea can be generalized to exponential
family rewards. Interestingly, their experimental results show that compared with Rayleigh posterior,
Gaussian posterior actually has a smaller regret empirically. Therefore, to use a Gaussian sampling
distribution, the new regret decomposition and the novel lower confidence bound in our paper is a
better way to overcome the under-estimation issue of Gaussian-TS.
Theorem 4.6. If the reward distribution is Bernoulli, we can set the sampling distribution P in
Algorithm 1 as Beta posterior B(Si(t)+ 1, Ti(t)−Si(t)+ 1), where Si(t) is the number of successes
among the Ti(t) plays of arm i. We denote the resulting algorithm as Bernoulli-TS, which enjoys the
same regret bounds as in Theorem 4.2.

Agrawal and Goyal [5] proved that for Bernoulli rewards, Thompson sampling with Beta posterior
is asymptotically optimal and has a worst-case regret in the order of O(

√
KT log T ). Our regret

analysis improves the worst-case regret to O(
√
KT logK). They also proved that Gaussian-TS

applied to the Bernoulli reward setting has a regret O(
√
KT logK). However, no asymptotic regret

was guaranteed in this setting.

5 Minimax Optimal Thompson Sampling for Exponential Family Rewards

In this section, in order to remove the extra logarithm term in the worst-case regret of ExpTS, we
introduce a new sampling distribution that adds a greedy exploration step to the sampling distribution
used in ExpTS. Specifically, the new algorithm ExpTS+ is the same as ExpTS but uses a new
sampling distribution P+(µ, n). A sample θ is generated from P+(µ, n) in the following way: θ = µ
with probability 1− 1/K and θ ∼ P(µ, n) with probability 1/K.

Over-Estimation of Sub-Optimal Arms. We first elaborate the over-estimation issue of sub-optimal
arms, which results in the extra

√
logK term in the worst-case regret of Thompson sampling. To

explain, suppose that the sample of each arm i has a probability p = P(θi(t) ≥ θ1(t)) to become
larger than the sample of arm 1. Note that when this event happens, the algorithm chooses the wrong
arm and thus incurs a regret. Intuitively, the probability of making a mistake will be K − 1 times
larger due to the union bound over K − 1 sub-optimal arms, which leads to an additional

√
logK

factor in the worst-case regret. To reduce the probability P(θi(t) ≥ θ1(t)), ExpTS+ adds a greedy
step that chooses the ExpTS sample with probability 1/K and chooses the arm with the largest
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empirical average reward with probability 1− 1/K. Then we can prove that for sufficiently large
s, with high probability we have µ̂is < θ1(t) and in this case it holds that P(θi(t) ≥ θ1(t)) = p/K.
Thus the extra factor

√
logK in regret is removed.

In specific, we have the following theorem showing that ExpTS+ is asymptotically optimal and
minimax optimal simultaneously.
Theorem 5.1. Let bn = (n− 1)/n. There exists a constant C1 > 0 such that ExpTS+ satisfies

Rµ(T ) ≤ C1

( K∑
i=2

∆i +
√
V KT

)
, and lim

T→∞

Rµ(T )

log T
=

K∑
i=2

∆i

kl(µi, µ1)
.

This is the first time that the Thompson sampling algorithm achieves the minimax and asymptotically
optimal regret for exponential family of reward distributions. Moreover, ExpTS+ is also an anytime
algorithm since it does not need to know the horizon T in advance.
Remark 5.2 (Sub-Gaussian Rewards). In the proof of Theorem 5.1, we do not need the strict form of
the PDF of the empirical mean reward µ̂is, but only need the maximal inequality (Lemma H.1). This
means that the proof can be straightforwardly extended to sub-Gaussian reward distributions, where
similar maximal inequality holds [21].

It is worth noting that MOTS proposed by [20] (Thompson sampling with a clipped Gaussian
posterior) also achieves the minimax optimal regret for sub-Gaussian rewards, but it can not keep
the asymptotic optimality simultaneously with the same algorithm parameters. In particular, to
achieve the minimax optimality, MOTS will have an additional 1/ρ factor in the asymptotic regret
with 0 < ρ < 1. Moreover, different from ExpTS+, MOTS is only designed for fixed T setting and
thus is not an anytime algorithm.
Remark 5.3 (Gaussian and Bernoulli Rewards). Following the idea in Section 4.4, we can derive
new algorithms Gaussian-TS+ and Bernoulli-TS+ for Gaussian and Bernoulli rewards by replacing
the sampling distribution in ExpTS+. However, the posterior distribution does not fully satisfy the
properties shown in Section 4.2. In particular, the factor bn < 1 in Theorem 5.1 is an essential
requirement for the asymptotic analyses whereas the posterior distribution does not have this factor.
Due to these extra challenges, the proof techniques used for Theorem 5.1 can not be directly applied to
these two new algorithms, and it is interesting to further investigate whether they are simultaneously
minimax and asymptotically optimal.

6 Conclusions

We studied Thompson sampling for exponential family of reward distributions. We proposed the
ExpTS algorithm and proved it satisfies the sub-UCB criteria for problem-dependent finite-time
regret, as well as achieves the asymptotic optimality and the minimax optimality up to a factor of√

logK for exponential family rewards. Furthermore, we proposed a variant of ExpTS, dubbed
ExpTS+, that adds a greedy exploration step to balance between the sample generated in ExpTS
and the empirical mean reward for each arm. We proved that ExpTS+ is simultaneously minimax
and asymptotically optimal. We also extended our proof techniques to standard Thompson sampling
with common posterior distributions and improved existing results. This work is mainly focused on
the theoretical optimality of Thompson sampling type algorithms. It would be an interesting future
direction to investigate the empirical performance of ExpTS and ExpTS+.
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A Proof of the Finite-Time Regret Bound of ExpTS

In this section, we prove the finite-time regret bound of ExpTS presented in Theorem 4.2. Specifically,
we prove the sub-UCB property of ExpTS in (4.6) and the nearly minimax optimal regret of ExpTS
in (4.7).

A.1 Proof of the Main Results

We first focus on bounding the number of pulls of arm i for the case that ∆i > 16
√
V/T . We start

with the decomposition. Note that due to the warm start of Algorithm 1, each arm has been pulled
once in the first K steps. For any ε > 8

√
V/T , define event Ei,ε(t) = {θi(t) ≤ µ1 − ε}, for all

i ∈ [K], which indicates that the estimate of arm i at time step t is smaller than the lower bound of
the true mean reward of arm 1 (µ1 − ε ≤ µ1). The expected number of times that Algorithm 1 plays
arms i is bounded as follows.

E[Ti(T )] = 1 + E

[
T∑

t=K+1

1{At = i, Ei,ε(t)}+

T∑
t=K+1

1{At = i, Eci,ε(t)}

]

= 1 + E

[
T∑

t=K+1

1{At = i, Ei,ε(t)}

]
︸ ︷︷ ︸

A

+E

[
T∑

t=K+1

1{At = i, Eci,ε(t)}

]
︸ ︷︷ ︸

B

, (A.1)

where Ec is the complement of an event E, ε > 8
√
V/T is an arbitrary constant, and we used the

fact Ti(T ) =
∑T
t=1 1{At = i}. In what follows, we bound these terms individually.

Bounding Term A: Let us define

αs = sup
x∈[0,µ1−ε−Rmin)

kl(µ1 − ε− x, µ1) ≤ 4 log(T/s)/s. (A.2)

We decompose the term E
[∑T

t=K+1 1{At = i, Ei,ε(t)}
]

by the following lemma.

Lemma A.1. Let M = d16V log(Tε2/V )/ε2e and αs be the same as defined in (A.2). Then, there
exists a universal constant C2 > 0,

E

[
T∑

t=K+1

1{At = i, Ei,ε(t)}

]
≤

M∑
s=1

E

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]
+
C2V

ε2
,

where Gis(ε) = 1− Fis(µ1 − ε), Fis is the CDF of P(µ̂is, s), and Ls =
(
µ1 − ε− αs, Rmax

]
.

The first term on the right hand side could be further bounded as follows.
Lemma A.2. Let M , G1s(ε), and Ls be the same as defined in Lemma A.1. Then there a universal
constant C3 > 0, such that

M∑
s=1

Eµ̂1s

[(
1

G1s(ε)

)
· 1{µ̂1s ∈ Ls}

]
≤ C3 · V log(Tε2/V )

ε2
.

Combining Lemma A.1 and Lemma A.2 together, we have the upper bound of term A in (A.1).

A =
(C3 + C2) log(Tε2/V )

ε2
.

Bounding Term B: To bound the second term in (A.1), we first prove the following lemma that
bounds the number of time steps when the empirical average reward of arm i deviates from its mean
value.
Lemma A.3. Let N = min{1/(1 − kl(µi + ρi, µ1 − ε)/ log(Tε2/V )), 2}. For any ρi, ε > 0 that
satisfies ε+ ρi < ∆i, then

E

[
T∑

t=K+1

1{At = i, Eci,ε(t)}

]
≤ 1 +

2V

ρ2
i

+
V

ε2
+

N log(Tε2/V )

kl(µi + ρi, µ1 − ε)
.
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Applying Lemma A.3, we have the following bound for term B in (A.1).

E

[
T∑

t=K+1

1{At = i, Eci,ε(t)}

]
≤ 1 +

2V

ρ2
i

+
V

ε2
+

N log(Tε2/V )

kl(µi + ρi, µ1 − ε)

≤ 1 +
2V

ρ2
i

+
V

ε2
+

4V log(Tε2/V )

(∆i − ε− ρi)2
,

where the last inequality is due to (3.3) and N ≤ 2.

Putting It Together: Substituting the bounds of terms A and B back into (A.1), we have

E[Ti(T )] = 1 +
4V log(Tε2/V )

(∆i − ε− ρi)2
+

2V

ρ2
i

+
V

ε2
+

(C3 + C2)V log(Tε2/V )

ε2
.

Let ε = ρi = ∆i/4, we have

E[Ti(T )] = 1 +
(C3 + C2 + 64)V log(T∆2

i /V )

∆2
i

.

Note that we have assumed ∆i > 16
√
V/T at the beginning of the proof. Therefore, there exists a

universal constant C0 > 0 such that

Rµ(T ) ≤ C0 ·
∑

i∈[K]:∆i>λ

O

(
∆i +

V log(T∆2
i /V )

∆i

)
+ max
i∈[K],∆i≤λ

∆i · T,

for any λ ≥ 16
√
V/T . By choosing λ = 16

√
V K logK/T , we obtain the following worst-case

regret: Rµ(T ) ≤ C1 ·
√
V KT logK for some universal constant C1. This completes the proof of

the finite-time regret bounds of ExpTS.

A.2 Proof of Supporting Lemmas

In this subsection, we prove the lemmas used in the proof of our main results in this section.

A.2.1 Proof of Lemma A.1

Define E to be the event such that µ̂1s ∈ Ls holds for all s ∈ [T ]. The proof of Lemma A.1 needs the
following lemma, which is used for bounding P(Ec).
Lemma A.4. Let ε > 0, b ∈ [K] and f(ε) = d16V log(Tε2/(bV ))/ε2e. Assume T ≥ bf(ε). Then,
there exists a universal constant C2 such that

P
(
∃1 ≤ s ≤ f(ε) : µ̂1s ≤ µ1 − ε, kl(µ̂1s, µ1) ≥ 4 log(T/(bs))/s

)
≤ C2bV

Tε2
.

The proof of Lemma A.4 could be found in Section G. Now, we are ready to prove Lemma A.1.

Proof of Lemma A.1. The indicator function can be decomposed based on E , that is

E

[
T∑

t=K+1

1{At = i, Ei,ε(t)}

]

≤ T · P(Ec) + E

[
T∑

t=K+1

[
1{At = i, Ei,ε(t)} · 1{µ̂1Ti(t−1) ∈ LTi(t−1)}

]]

≤ C2V

Tε2
+ E

[
T∑

t=K+1

[
1{At = i, Ei,ε(t)} · 1{µ̂1Ti(t−1) ∈ LTi(t−1)}

]]
, (A.3)

where the second inequality is due to Lemma A.4 with b = 1 and from the fact ε > 8
√
V/T ,

T ≥ f(ε). Let Ft = σ(A1, r1, · · · , At, rt) be the filtration. Note that θi(t) is sampled from
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P(µ̂i(t−1), Ti(t−1)). Recall the definition, we know that µ̂i(t−1) = µ̂is as long as s = Ti(t−1).
By the definition of Gis(x), it holds that

G1T1(t−1)(ε) = P(θ1(t) ≥ µ1 − ε | Ft−1). (A.4)

Consider two cases. Case 1: t : T1(t − 1) ≤ M . The proof of this case is similar to that of [30,
Theorem 36.2]. Let A′t = arg maxi6=1 θi(t). Then

P(At = 1 | Ft−1) ≥ P({θ1(t) ≥ µ1 − ε} ∩
{
A′t = i, Ei,ε(t)

}
| Ft−1)

= P(θ1(t) ≥ µ1 − ε | Ft−1) · P(A′t = i, Ei,ε(t) | Ft−1)

≥
G1T1(t−1)(ε)

1−G1T1(t−1)(ε)
· P(At = i, Ei,ε(t) | Ft−1), (A.5)

The first inequality is due to the fact that when both event {θ1(t) ≥ µ1 − ε} and event {A′t =
i, Ei,ε(t)} hold, we must have {At = 1}. The first equality is due to θ1(t) is conditionally inde-
pendent of A′t and Ei,ε(t) given Ft−1. For the last inequality, let C = {At = i, Ei,ε(t) occurs},
A = {A′t = i, Ei,ε(t) occurs} and B = {θ1(t) ≤ µ1 − ε}. Then A and B are conditionally
independent given Ft−1. Besides, if C happens, then At = i and θi(t) ≤ µ1 − ε. This implies
the θ1(t) ≤ µ1 − ε (otherwise, we will have At 6= i). Therefore, if C happens, we must have
A′t = i, Ei,ε(t) occurs and θ1(t) ≤ µ1 − ε. Therefore, C ⊆ A ∩B and

P(At = i, Ei,ε(t) occurs | Ft−1)

= P(C | Ft−1)

≤ P(A ∩B | Ft−1)

≤ P(A | Ft−1) · P(B | Ft−1)

= P(A′t = i, Ei,ε(t) occurs | Ft−1) · P(θ1(t) ≤ µ1 − ε | Ft−1)

= P(A′t = i, Ei,ε(t) occurs | Ft−1) ·
(
1− P(θ1(t) > µ1 − ε | Ft−1)

)
.

Note that from (A.4), G1T1(t−1)(ε) = P(θ1(t) ≥ µ1 − ε | Ft−1). Therefore, the above equation
implies the last inequality of (A.5). Therefore, we have

E

 ∑
t:T1(t−1)≤M

1{At = i, Ei,ε(t)}

 ≤ E

 ∑
t:T1(t−1)≤M

(
1

G1T1(t−1)(ε)
− 1

)
P(At = 1 | Ft−1)


= E

 ∑
t:T1(t−1)≤M

(
1

G1T1(t−1)(ε)
− 1

)
1{At = 1}


≤ E

[
M∑
s=1

(
1

G1s(ε)
− 1

)]
. (A.6)

The first inequality is from (A.5). The first equality is due to E[1{At = 1}] = P(At = 1 | Ft−1).
For the last inequality, note that due to the indicator function, the summation in first inequality is not
zero only when 1{At = 1} = 1. And 1{At = 1} = 1 further means that we have pulled the best
arm (arm 1) at time t. Therefore, the summation over all T1(t− 1) conditional on 1{At = 1} = 1 is
equivalent to the summation over s, which is the number of pulls of arm 1.
Case 2: t : T − 1 ≥ T1(t− 1) > M . For this case, we have

E

[
T−1∑

t:T1(t−1)>M

1{At = i, Ei,ε(t)}

]

≤ E

[
T∑

t:T1(t−1)>M

1{θ1(t) < µ1 − ε}

]
≤ T · P

(
∃s > M : µ̂1s < µ1 − ε/2

)
+ E

[( T∑
t:T1(t−1)>M

1{θ1(t) < µ1 − ε)}
)
1
{
∀t ∈ {t | T1(t− 1) > M} : µ̂1T1(t−1) ≥ µ1 − ε/2

}]
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≤ T · e−M(µ1−(µ1−ε/2))2/(2V )

+ E
[ ∑
t:T1(t−1)>M

P
[
θ1(t) < µ1 − ε | µ̂1T1(t−1) ≥ µ1 − ε/2

]]

≤ V

ε2
+ T · e−Mε2/(16V )

≤ 2V

ε2
. (A.7)

In the first inequality, we use the fact that {At = i, Ei,ε(t)} ⊆ {θ1(t) < µ1 − ε}. In the second
inequality, we decompose the term into two events. Event one: there exists a t with T1(t− 1) > M
and µ̂1T1(t−1) < µ1 − ε/2. Event two: for all T1(t− 1) > M , µ̂1T1(t−1) ≥ µ1 − ε/2. In the third
inequality, we use Lemma H.1 and following facts

E
[( T∑

t:T1(t−1)>M

1{θ1(t) < µ1 − ε}
)
1
{
∀t ∈ {t | T1(t− 1) > M} : µ̂1T1(t−1) ≥ µ1 − ε/2

}]

=E
[ T∑
t:T1(t−1)>M

(
1{θ1(t) < µ1 − ε} · 1

{
∀t ∈ {t | T1(t− 1) > M} : µ̂1T1(t−1) ≥ µ1 − ε/2

})]

≤E
[ T∑
t:T1(t−1)>M

(
1{θ1(t) < µ1 − ε} · 1{µ̂1T1(t−1) ≥ µ1 − ε/2}

)]

=E
[ T∑
t:T1(t−1)>M

(
1
{
θ1(t) < µ1 − ε, µ̂1T1(t−1) ≥ µ1 − ε/2

})]

=E
[ T∑
t:T1(t−1)>M

E
[
1
{
θ1(t) < µ1 − ε, µ̂1T1(t−1) ≥ µ1 − ε/2

} ∣∣∣∣ T1(t− 1)

]]

=E
[ T∑
t:T1(t−1)>M

P(θ1(t) < µ1 − ε, µ̂1T1(t−1) ≥ µ1 − ε/2)

]

≤E
[ T∑
t:T1(t−1)>M

P
(
θ1(t) < µ1 − ε | µ̂1T1(t−1) ≥ µ1 − ε/2

)]
,

where the first inequality is due to the fact 1
(
∀t ∈ T1(t − 1) > M : µ̂1T1(t−1) ≥ µ1 − ε/2

)
≤

1
(
µ̂1T1(t−1) ≥ µ1 − ε/2

)
for any t ∈ {t | T1(t − 1) > M}, and the second inequality is due to

P(A,B) = P(A) · P(A | B) ≤ P(A | B).

In the fourth inequality of (A.7), we apply the following results

E
[ ∑
t:T1(t−1)>M

P(θ1(t) ≤ µ1 − ε | µ̂1T1(t−1) ≥ µ1 − ε/2)

]

= E

 ∑
t:T1(t−1)>M

1/2e−T1(t−1)bT1(t−1)kl(µ̂1T1(t−1),µ1−ε)


≤ E

 ∑
t:T1(t−1)>M

e−
M
2 kl(µ̂1T1(t−1),µ1−ε)


≤ E

 ∑
t:T1(t−1)>M

e−
M
2 kl(µ1−ε/2,µ1−ε)


≤ T · e−Mε2/(16V ),
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where the first equality is due to θ1(t) ∼ P(µ̂1T1(t−1), T1(t − 1)) and (4.5), the first inequality is
due to the fact that bs ≥ 1/2 for any s > 1 and T1(t − 1) > M , the second inequality is due
to µ̂1T1(t−1) ≥ µ1 − ε/2 and the fact that from Proposition 3.2, kl(x, µ1 − ε) is increasing for
x > µ1 − ε/2, and the last inequality is due to (3.3). Combining (A.3), (A.6), and (A.7) together, we
finish the proof of Lemma A.1.

Note that in order to bound term A, we need the following lemma that states the upper bound of the
first term in Lemma A.1.

A.2.2 Proof of Lemma A.2

Let p(x) be the PDF of µ̂1s and θ1s be a sample from P(µ̂1s, s). We have

M∑
s=1

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]

≤
M∑
s=1

(∫ Rmax

µ1−ε/2
p(x)/P(θ1s ≥ µ1 − ε | µ̂1s = x)dx− 1

)
︸ ︷︷ ︸

A1

+

M∑
s=1

∫ µ1−ε/2

µ1−ε
p(x)/P(θ1s ≥ µ1 − ε | µ̂1s = x)dx︸ ︷︷ ︸

A2

+

M∑
s=1

∫ µ1−ε

µ1−ε−αs

[
p(x)/P(θ1s ≥ µ1 − ε | µ̂1s = x)

]
dx︸ ︷︷ ︸

A3

, (A.8)

where the inequality is due to the definition of Ls5.
Bounding term A1. For term A1, we divide

∑M
s=1 into two term, i.e.,

∑b32V/ε2c
s=1 and

∑M
s=d32V/ε2e.

Intuitively, for s ≥ 32V/ε2, P(θ1s ≥ µ1 − ε | µ̂1s ≥ µ1 − ε/2) will be large. We have

A1 =

M∑
s=1

(∫ Rmax

µ1−ε/2

p(x)

P(θ1s ≥ µ1 − ε | µ̂1s = x)
dx− 1

)

≤ 32V

ε2
+

M∑
s=d32V/ε2e

(∫ Rmax

µ1−ε/2

p(x)

P(θ1s ≥ µ1 − ε | µ̂1s = x)
dx− 1

)

≤ 32V

ε2
+

M∑
s=d32V/ε2e

(
1

1− e−s/2·kl(µ1−ε/2,µ1−ε)
− 1

)

≤ 32V

ε2
+

M∑
s=d32V/ε2e

(
1

1− e−sε2/(16V )
− 1

)

=
16V

ε2
+

M∑
s=d32V /ε2e

1

esε2/(16V ) − 1

≤ 16V

ε2
+

16V

ε2

∞∑
s=1

1

e1+s − 1

≤ 32V

ε2
. (A.9)

5For the discrete reward distribution, we can use the Dirac delta function for the integral.
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For the first inequality, we used the fact P(θ1s ≥ µ1 − ε | µ̂1s ≥ µ1 − ε) ≥ 1/2, which is due to
(4.4). The second inequality is due to (4.5) and the fact bs ≥ 1/2. The third inequality is due to (3.3).
Bounding term A2. We have

A2 =

M∑
s=1

∫ µ1−ε/2

µ1−ε

p(x)

P(θ1s ≥ µ1 − ε | µ̂1s = x)
dx ≤ 2

∞∑
s=1

e−sε
2/(8V ) ≤ 2

eε2/(8V ) − 1
≤ 16V

ε2
,

(A.10)

where the first inequality is due to P(θ1s ≥ µ1 − ε | µ̂1s ≥ µ1 − ε) ≥ 1/2 and from Lemma H.1,
P(µ̂1s ≤ µ1 − ε/2) ≤ e−sε2/(8V ), and the last inequality is due to ex − 1 ≥ x for all x > 0.
Bounding term A3. Note that the closed form of the probability density function of µ̂1s is hard to
compute. Nevertheless, we only need to find an upper bound of the integration in A3. In the following
lemma, we show that it is possible to find such an upper bound with an explicit form.

Lemma A.5. Let q(x) = |(s · kl(x, µ1))′|e−s·kl(x,µ1) = s
∫ µ1

x
1/V (t)dt · e−s·kl(x,µ1), g(x) =

esbs·kl(x,µ1−ε) and p(x) be the PDF of distribution of µ̂1s, then∫ µ1−ε

µ1−ε−αs
q(x)g(x)dx+ e−s·kl(µ1−ε−αs,µ1) · g(µ1 − ε− αs) ≥

∫ µ1−ε

µ1−ε−αs
p(x)g(x)dx.

The proof of Lemma A.5 could be found in Section G. Besides, we need the following inequality on
kl-divergence, which resembles the three-point identity property. In particular, for µ1 − ε > x, we
have

−kl(x, µ1) + kl(x, µ1 − ε) = −
∫ µ1

x

t− x
V (t)

dt+

∫ µ1−ε

x

t− x
V (t)

dt

= −
∫ µ1

µ1−ε

t− x
V (t)

dt

≤ −
∫ µ1

µ1−ε

t− (µ1 − ε)
V (t)

dt

= −kl(µ1 − ε, µ1), (A.11)

where the first and the last equality is due to (3.2). For term A3, we have

A3 ≤
M∑
s=1

∫ µ1−ε

µ1−ε−αs
p(x)esbs·kl(x,µ1−ε)dx (A.12)

≤
M∑
s=1

∫ µ1−ε

µ1−ε−αs

[
q(x) · es·kl(x,µ1−ε)

]
dx+

M∑
s=1

e−s·kl(µ1−ε−αs,µ1) · es·kl(µ1−ε−αs,µ1−ε)

≤
M∑
s=1

∫ µ1−ε

µ1−ε−αs

[
|s · kl(x, µ1)′| · e−s·kl(x,µ1) · es·kl(x,µ1−ε)

]
dx+ e−sε

2/(2V ) ·M

≤
M∑
s=1

e−s·kl(µ1−ε,µ1) ·
∫ µ1

µ1−ε−αs

[
|s · kl(x, µ1)|′

]
dx+ e−sε

2/(2V ) ·M

≤
M∑
s=1

e−sε
2/(2V )(1 + s · kl(µ1 − ε− αs, µ1))

≤
M∑
s=1

e−sε
2/(2V )(1 + 4 log(T/s)), (A.13)

where the first inequality is due to (4.4), the second inequality is due to Lemma A.5 and bs ≤ 1, the
third inequality is due to (A.11), the fourth inequality is due to (A.11), and the last inequality is due
to Lemma A.4 and the definition of αs. Let d = dV/ε2e. For term

∑d
s=1 log(T/s), we have

d∑
s=1

log(T/s) = d log T −
d∑
s=1

log s
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≤ d log T −
(

(s log s− s)
∣∣∣∣d
1

− log d

)
≤ d log(T/d) + d+ log d

≤ 2V log(Tε2/V )

ε2
, (A.14)

where the first inequality is due to
∑b
x=a f(x) ≥

∫ b
a
f(x)dx − maxx∈[a,b] f(x) for monotone

function f . For term
∑M
s=d e

−sε2/(2V ) log(T/s), we have

M∑
s=d

e−sε
2/(2V ) log(T/s) ≤ log(T/d)

M∑
s=d

e−sε
2/2V

≤ log(T/d)

∞∑
s=1

e−sε
2/2V

≤ log(T/d)

eε2/(2V ) − 1

≤ 2V log(T/d)

ε2

≤ 2V log(Tε2/V )

ε2
, (A.15)

where the fourth inequality is due to ex ≥ 1 + x for x > 0. Substituting (A.15) and (A.14) to (A.13),
we have A3 = 16V log(Tε2/V )/ε2. Substituting the bounds of A1, A2, and A3 to (A.8), we have
that there exists a constant C3,

M∑
s=1

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]
≤ C3 ·

(
V log(Tε2/V )

ε2

)
,

which completes the proof.

A.2.3 Proof of Lemma A.3

Let T = {t ∈ [K + 1, T ] : 1− FiTi(t−1)(µ1 − ε) > V/(Tε2)}. Then,

E

[
T∑

t=K+1

1{At = i, Eci,ε(t)}

]

≤ E

[∑
t∈T

1{At = i}

]
+ E

[∑
t/∈T

1{Eci,ε(t)}

]

≤ E

 ∑
t≥K+1

(
1{At = i} · 1{1− FiTi(t−1)(µ1 − ε) > V/(Tε2)}

)+ E

[∑
t/∈T

V/(Tε2)

]

≤ E

∑
s∈[T ]

1{1− Fis(µ1 − ε) > V/(Tε2)}

+
V

ε2

≤ E

[
T∑
s=1

1{Gis(ε) > V/(Tε2)}

]
+
V

ε2
. (A.16)

Let s ≥ N log(Tε2/V )/kl(µi + ρi, µ1 − ε). Note that

1

N
= max

{
1− kl(µi + ρi, µ1 − ε)/ log(Tε2/V ),

1

2

}
.

For case 1/N = 1/2, we have

bs ≥ 1/2 = 1/N.
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For case 1/N = 1− kl(µi + ρi, µ1 − ε)/ log(Tε2/V ), we have

bs ≥ 1− 1/s

≥ 1− kl(µi + ρi, µ1 − ε)/(N log(Tε2/V ))

≥ 1− kl(µi + ρi, µ1 − ε)/(log(Tε2/V ))

= 1/N,

where the second inequality is due to s ≥ N log(Tε2/V )/kl(µi + ρi, µ1 − ε), the third inequality is
due to N > 1. Let Xis be a sample from the distribution P(µ̂is, s), if µ̂is ≤ µi + ρi, we have

P(Xis ≥ µ1 − ε) ≤ exp
(
− sbskl(µ̂is, µ1 − ε)

)
≤ exp

(
− sbskl(µi + ρi, µ1 − ε)

)
≤ V

Tε2
,

(A.17)

where the first inequality is from (4.4), the second inequality is due to the assumption µ̂is ≤ µi + ρi,
and the last inequality is due to s ≥ N log(Tε2/V )/kl(µi + ρi, µ1 − ε) and bs ≥ 1/N . Note
that when P(Xis ≥ µ1 − ε) ≤ V/(Tε2) holds, 1{Gis(ε) > V/(Tε2)} = 0. Now, we check the
assumption µ̂is ≤ µi + ρi that is needed for (A.17). From Lemma H.1, we have P(µ̂is > µi + ρi) ≤
exp(−sρ2

i /(2V )). Furthermore, it holds that
∞∑
s=1

e−
sρ2i
2V ≤ 1

eρ
2
i /(2V ) − 1

≤ 2V

ρ2
i

, (A.18)

where the last inequality is due to the fact 1+x ≤ ex for all x. Let Yis be the event that µ̂is ≤ µi+ρi
and m = N log(Tε2/V )/kl(µi + ρi, µ1 − ε). We further obtain

E

[
T∑
s=1

1{Gis(ε) > V/(Tε2)}

]
≤ E

[
T∑
s=1

[1{Gis(ε) > V/(Tε2)} | Yis]

]
+

T∑
s=1

(1− P[Yis])

≤ E

 T∑
s=dme

[1{P(Xis > µ1 − ε) > V/(Tε2))} | Yis]


+ dme+

T∑
s=1

(1− P[Yis])

≤ dme+

T∑
s=1

(1− P[Yis])

≤ 1 +
2V

ρ2
i

+
N log(Tε2/V )

kl(µi + ρi, µ1 − ε)
, (A.19)

where the first inequality is due to the fact that P(A) ≤ P(A | B) + 1− P(B), the third inequality is
due to (A.17) and the last inequality is due to (A.18). Substituting (A.19) into (A.16), we complete
the proof.

B Proof of the Asymptotic Optimality of ExpTS

Now we prove the asymptotic regret bound (4.8) of ExpTS presented in Theorem 4.2.

B.1 Proof of the Main Result

The proof in this section shares many components with the finite-time regret analysis presented in
Section A. We reuse the decomposition (A.1) by specifying ε = 1/ log log T . In what follows, we
bound terms A and B, respectively.

Bounding Term A: We reuse Lemma A.1. Then, it only remains term
∑M
s=1 E

[(
1/G1s(ε)− 1

)
·

1{µ̂1s ∈ Ls}
]

to be bounded. We bound this term by the following lemma.

21



Lemma B.1. Let ε = 1/ log log T . Let M , G1s(ε), and Ls be the same as defined in Lemma A.1.
Then,

M∑
s=1

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]
= O(V 2(log log T )6 + V (log log T )2 + 1).

Let ε = 1/ log log T . Combining Lemma B.1 and Lemma A.1 together, we have

A = O
(
V 2(log log T )6 + V (log log T )2 + 1

)
.

Bounding Term B: Let ρi = ε = 1/ log log T . Applying Lemma A.3, we have

B = E

[
T∑

t=K+1

1{At = i, Eci,ε(t)}

]

= O(1 + V (log log T )2) +
N log(T/(V (log log T )2))

kl(µi + 1/ log log T, µ1 − 1/ log log T )
. (B.1)

Putting It Together: Substituting the bound of term A and B into (A.1), we have

E[Ti(T )] = O(1 + V 2(log log T )6 + V (log log T )2) +
N log(T/(V (log log T )2))

kl(µi + 1/ log log T, µ1 − 1/ log log T )
.

Note that for T → +∞, N → 1. Therefore,

lim
T→+∞

E[Ti(T )]

log T
=

1

kl(µi, µ1)
.

This completes the proof of asymptotic regret.

B.2 Proof of Lemma B.1

The proof of this part shares many elements with the proof of Lemma A.2. The difference starts at
bounding term A3.
Bounding termA3. We need to bound the term

∫ µ1−ε
µ1−ε−αs p(x)eskl(x,µ1−ε)dx. We divide the interval

[µ1 − ε − αs, µ1 − ε] into n sub-intervals [x0, x1), [x1, x2), · · · , [xn−1, xn], such that x0 ≤ x1 ≤
· · · ≤ xn. For i ∈ [n− 1], we let

xi = sup
x:x≤µ1−ε

4 log(T/ei+1)/s < kl(x, µ1) ≤ 4 log(T/ei)/s. (B.2)

Let n = dlog T e and xn = µ1. Then, from definition of αs, kl(x0, µ1) ≥ kl(µ1 − ε− αs, µ1). Thus,
x0 ≤ µ1 − ε− αs. Now, continue on (A.12), we have∫ µ1−ε

µ1−ε−αs
p(x)esbs·kl(x,µ1−ε)dx ≤

n∑
i=0

∫ xi+1

xi

p(x)esbskl(x,µ1−ε)dx

≤
n∑
i=0

esbskl(xi,µ1)

∫ xi+1

xi

p(x)dx

≤
n∑
i=0

esbskl(xi,µ1)e−s·kl(xi+1,µ1)

≤
n∑
i=0

(
T

ei

)bs(ei+1

T

)

= O

(∫ lnT

0

(
T

ex

)bs
· e

x+1

T
dx+ e

)
= O

(
1

1− bs

)
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= O(s), (B.3)

where the first inequality is due to x0 ≤ µ1 − ε− αs and xn = µ1 ≥ µ1 − ε, the fourth inequality is
due to the definition of xi, and the first equality is due to

∑b
x=a f(x) ≤

∫ b
a
f(x)dx+maxx∈[a,b] f(x)

for monotone function f . Now, we bound term A3 as follows.

A3 ≤
M∑
s=1

∫ µ1−ε

µ1−ε−αs
p(x)esbs·kl(x,µ1−ε)dx

≤
d4V (log log T )3e∑

s=1

∫ µ1−ε

µ1−ε−αs
p(x)esbs·kl(x,µ1−ε)dx

+

M∑
s=d4V (log log T )3e

∫ µ1−ε

µ1−ε−αs
p(x)esbs·kl(x,µ1−ε)dx

≤ O

d4V (log log T )3e∑
s=1

s


︸ ︷︷ ︸

I1

+

M∑
s=d4V (log log T )3e

e−sε
2/(2V )(1 + 4 log T )

︸ ︷︷ ︸
I2

, (B.4)

where the first inequality is from (A.12) and the last inequality is from (B.3) and (A.13). For term I1,
we have I1 = O(V 2(log log T )6 + 1). Let ε = 1/ log log T , then M ≤ O(V log T · (log log T )2).
For s ≥ 4V (log log T )3, we have e−sε

2/(2V ) = 1/ log2 T . Thus, I2 = O(M/ log T ) =
O(V (log log T )2). Therefore,

A3 = O(V 2(log log T )6 + V (log log T )2 + 1). (B.5)

From (A.9) and (A.10), we have

A1 +A2 = O(V (log log T )2).

Substituting the bound of A1, A2 and A3 to (A.8), we have
M∑
s=1

Eµ̂1s

[(
1

G1s(ε)
−1

)
·1{µ̂1s ∈ Ls}

]
≤ A1+A2+A3 = O(V 2(log log T )6+V (log log T )2+1).

This completes the proof.

C Proof of Theorem 4.4 (Gaussian-TS)

The proof of Theorem 4.4 is similar to that of Theorem 4.2. Thus we reuse the notation in the proofs
of Theorem 4.2 presented in Sections A and F. However, the sampling distribution P in Theorem
4.4 is chosen as a Gaussian distribution, and therefore, the concentration and anti-concentration
inequalities for Gaussian-TS are slightly different from those used in previous sections. This further
affects the results of the supporting lemmas whose proofs depend on the concentration bound of P . In
this section, we will prove the regret bounds of Gaussian-TS by showing the existence of counterparts
of these lemmas for Gaussian-TS.

C.1 Proof of the Finite-Time Regret Bound

From Lemma H.1, the Gaussian posterior N (µ, V/n) satisfies P(θ ≤ µ− x) ≤ e−nx2/(2V ). Hence,
A.1 also holds for Gaussian-TS. The proof of Lemma A.2 needs to call (4.4) and (4.5). However, the
tail bound for Gaussian distribution has a different form. We need to replace Lemma A.2 with the
following variant.
Lemma C.1. Let M , G1s(ε), and Ls be the same as defined in Lemma A.1. Then, there exists a
universal constant C3 > 0 such that

M∑
s=1

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]
≤ C3 ·

(
V log(Tε2/V )

ε2

)
.
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In Section A, the proof of Lemma A.3 only uses the following property of the sampling distribution:
let Xis be a sample from P(µ̂is, s) and if µ̂is ≤ µ1 − ε, then

P(Xis ≥ µ1 − ε) ≤ exp(−sbs · kl(µ̂is, µ1 − ε)),
where the kl(·) function is defined for Gaussian distribution with variance V . For Gaussian distribu-
tion, let Xis be a sample from N (µ̂is, V/s). Then from Lemma H.1

P(Xis ≥ µ1 − ε) ≤ exp(−s · kl(µ̂is, µ1 − ε)) ≤ exp(−sbs · kl(µ̂is, µ1 − ε)),
where the last inequality is due to bs ≤ 1 The other parts of the proof of the finite-time bound are the
same as that of Theorem 4.2 and thus are omitted.

C.2 Proof of the Asymptotic Regret Bound

The proof of Lemma B.1 needs to call (4.4) and (4.5). However, the tail bound for Gaussian
distribution has a different form. We need to replace Lemma A.2 with the following variant.
Lemma C.2. Let M , G1s(ε), and Ls be the same as defined in Lemma A.1 and let ε = 1/ log log T .
Then,

lim
T→∞

M∑
s=1

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]
/ log T = 0.

The other parts of asymptotic regret bound are the same as that in Theorem 4.2 and are omitted.

C.3 Proof of Supporting Lemmas

C.3.1 Proof of Lemma C.1

Let Z be a sample from N (µ̂1s, V/s) and µ̂1s = µ1 + x. For x ≤ −ε, applying Lemma H.2 with
z = −

√
s/V (ε+ x) > 0 yields: for 0 < z ≤ 1,

G1s(ε) = P(Z > µ1 − ε) ≥
1

2
√

2π
exp

(
− s(ε+ x)2

2V

)
. (C.1)

Besides, for z > 1,

G1s(ε) ≥
1√
2π

z

z2 + 1
e−

z2

2 ≥ 1

2
√

2π · z
e−

z2

2 =

√
V

−2
√

2π
√
s(ε+ x)

exp

(
− s(ε+ x)2

2V

)
.

(C.2)

Since µ̂1s ∼ N (µ1, V/s), x ∼ N (0, V/s). Let p(x) be the PDF of N (0, V/s). Note that G1s(ε) is
a random variable with respect to µ̂1s and µ̂1s = µ1 + x. We have

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]
≤
∫ +∞

−ε

p(x)

G1s(ε)
dx− 1 +

∫ −ε
−ε−αs

p(x)

G1s(ε)
dx

≤ 1 +

∫ −ε
−ε−αs

p(x)

G1s(ε)
dx

≤ 1 +

∫ −ε
−ε−αs

p(x)

(
2
√

2π · exp

(
s(ε+ x)2

2V

))
dx︸ ︷︷ ︸

I1

+

∫ −ε
−ε−αs

p(x)

(
2
√

2π
√
s/V (−ε− x) · exp

(
s(ε+ x)2

2V

))
dx︸ ︷︷ ︸

I2

.

(C.3)

The second inequality is due to the fact that for µ̂1s ≥ µ1 − ε, G1s(ε) = P(Z ≥ µ1 − ε) ≥ 1/2. The
last inequality is due to (C.1) and (C.2). For term I1, we have

I1 =

∫ −ε
−αs−ε

(
2

√
s

V
exp

(
−sx2

2V

)
exp

(
s(ε+ x)2

2V

))
dx
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≤ 2

√
s

V
exp

(
sε2

2V

)∫ −ε
−∞

exp(sεx/V )dx

=
2
√
V e−sε

2/(2V )

√
sε

. (C.4)

For term I2, we have

I2 ≤
∫ −ε
−αs−ε

(
2s/V (−ε− x) exp

(
−sx2

2V

)
exp

(
s(ε+ x)2

2V

))
dx

≤2s/V exp

(
sε2

2V

)∫ −ε
−αs−ε

(−ε− x) exp(sεx/V )dx

≤2s/V exp

(
−sε2

2V

)∫ −2ε

−αs−2ε

−x exp(sεx/V )dx

≤2e · exp

(
−sε2

2V

)
αs/ε, (C.5)

where the last inequality is due to h(x) = −x exp(sεx/V ) on x < 0 achieve is maximum at
x = −V/(sε). We further obtain that

M∑
s=1

E
[(

1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]
= 2e

( M∑
s=1

αs/ε+

M∑
s=1

√
V√
sε

+M

)

= 2e

( M∑
s=1

αs/ε+

∫ M

s=1

√
V√
sε

ds+M

)

= 2e

( M∑
s=1

αs/ε+

√
VM

ε
+M

)

= 2e

( M∑
s=1

αs/ε+
V log(Tε2/V )

ε2

)
. (C.6)

Note that

kl(µ1 − ε− 4
√
V log(T/s)/s, µ1) ≥ kl(µ1 − ε− 4

√
V log(T/s)/s, µ1 − ε) = 8V log(T/s)/s,

(C.7)

where the equality is due to (3.3). Thus, from the definition of αs in (A.2), we have αs ≤
4
√
V log(T/s)/s. For term

∑M
s=1 αs, we have

M∑
s=1

αs/(4
√
V ) ≤

M∑
s=1

√
log(T/s)√

s

≤
dlogM−1e−1∑

j=0

dej+1e∑
s=deje

√
log(T/ej)√

s

≤
dlogM−1e∑

j=0

√
log(T/ej)

∫ ej+1

ej

1√
s

ds+

dlogM−1e∑
j=0

√
log(T/ej)

ej/2

≤ 2

dlogM−1e∑
j=0

e(j+1)/2 · log(T/ej)

≤ 2
√
e

∫ logM

0

(log T − x)ex/2dx+ 2
√
eM log(T/M)

= 2
√
e

(
2 log(e2T )ex/2 − 2xex/2

∣∣∣∣logM

0

)
+ 2
√
eM log(T/M)
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= 20

(√
V log(Tε2/V )

ε

)
, (C.8)

where the third and sixth inequality is due to
∑b
x=a f(x) ≤

∫ b
a
f(x)dx + maxx∈[a,b] f(x) for

monotone function f . Substituting (C.8) to (C.6), we have that there exists a constant C3 > 0 such
that

M∑
s=1

E
[(

1

G1s(ε)
− 1

)
·1{µ̂1s ∈ Ls}

]
≤ C3 ·

(
V log(Tε2/V )

ε2

)
.

This completes the proof.

C.3.2 Proof of Lemma C.2

The proof of this part is similar to the proof of Lemma C.1. We reuse the notation defined in the
Lemma C.1. Recall Z is a sample from N (µ̂1s, V/s). For µ̂1s = µ1 − ε/2, from (H.1)

P(Z ≤ µ1 − ε) ≤ exp
(
− sε2/(8V )

)
. (C.9)

We have

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]

≤
∫ +∞

−ε/2

p(x)

G1s(ε)
dx+

∫ −ε/2
−ε

p(x)

G1s(ε)
dx− 1 +

∫ −ε
−ε−αs

p(x)

G1s(ε)
dx

≤ e−sε
2/(8V )

∫ +∞

−ε/2
p(x)dx+ 2

∫ −ε/2
−ε

p(x)dx+

∫ −ε
−ε−αs

p(x)

G1s(ε)
dx

≤ e−sε
2/(8V ) + e−sε

2/(8V ) +

∫ −ε
−ε−αs

p(x)

(
2
√

2π · exp

(
s(ε+ x)2

2V

))
dx︸ ︷︷ ︸

I1

+

∫ −ε
−ε−αs

p(x)

(
2
√

2π
√
s(−ε− x) · exp

(
s(ε+ x)2

2V

))
dx︸ ︷︷ ︸

I2

, (C.10)

where the second inequality is due to (C.9) and the fact that for x ≥ −ε, G1s(ε) ≥ 1/2, the third
inequality is due to x ∼ N (0, V/s) and from (H.1), P(x ≤ −ε/2) ≤ exp(−sε2/(8V )). Further, we
have

∞∑
s=1

exp(−sε2/(8V )) ≤ 1

eε2/(8V ) − 1
≤ 8V

ε2
.

By applying (C.4) and (C.5) to bound term I1 and I2, we obtain

M∑
s=1

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]
≤ 8V

ε2
+O

( M∑
s=1

e−sε
2/(2V )

√
sε

+

M∑
s=1

e−sε
2/(2V )αs
ε

)

= O

(
V

ε2
+ 2
√

log T/ε

∞∑
s=1

e−sε
2/(2V )

)
= O

(
V

ε2
+
V
√

log T

ε3

)
,

where the first equality is due to (C.7). Let ε = 1/ log log T , we have

lim
T→∞

M∑
s=1

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]
/ log T = 0,

which competes the proof.
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D Proof of Theorem 4.6 (Bernoulli-TS)

Similar to the proof strategy used in Section C, we will prove the regret bounds of Bernoulli-TS via
providing a counterpart of the supporting lemma used in the proof of Theorem 4.6 that depends on
the concentration bound of the sampling distribution P .

D.1 Proof of the Finite-Time Regret Bound

Due to the same reason shown in Section C.1, we only need to replace Lemma A.2 with the following
variant. The rest of the proof remains the same as that of Theorem 4.2.
Lemma D.1. Let M , G1s(ε), and Ls be the same as defined in Lemma A.1. Let ε = ∆/4. There
exists a universal constant C3 such that

M∑
s=1

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]
≤ C3 ·

(
log(Tε2)

ε2

)
.

D.2 Proof of the Asymptotic Regret Bound

We note that Agrawal and Goyal [5] has proved the asymptotic optimality for Beta posteriors under
Bernoulli rewards. One can find the details therein and we omit the proofs here.

D.3 Proof of Lemma D.1

We first define some notations. Let FBn,p(·) denote the CDF, and fBn,p(·) denote the probability mass
function of binomial distribution with parameters n, p respectively. We also let F betaα,β (·) denote the
CDF of the beta distribution with parameters α, β. The following equality gives the relationship
between F betaα,β (·) and FBn,p(·).

F betaα,β (y) = 1− FBα+β−1,y(α− 1). (D.1)

Let y = µ1 − ε. Let j = Si(t) and s = Ti(t). From (D.1), we have G1s(ε) = P(θ1(t) > y) =
FBs+1,y(j). Note that for Bernoulli distribution, we can set V = 1/4. Besides,

kl(µ1 − ε− 4
√
V log(T/s)/s), µ1) ≥ kl(µ1 − ε− 4

√
V log(T/s)/s), µ1 − ε) ≥ 8V log(T/s)/s,

where the inequality is due to (3.3). Thus, from the definition of αs in (A.2), we have αs ≤
2
√

log(T/s)/s. For j/s ∈ Ls, we have j/s ≥ µ1 − ε−
√

2 log(T/s)
s . Hence,

j ≥ ys− 2
√
s log(T/s).

Let γs = dys− 2
√
s log(T/s)e. Therefore,

Eµ̂1s

[(
1

G1s(ε)

)
· 1{µ̂1j ∈ Ls}

]
≤

s∑
j=γs

fs,µ1
(j)

FBs+1,y(j)
.

In the derivation below, we abbreviate FBs+1,y(j) as Fs+1,y(j).
Case s < 8/ε. From Lemma 2.9 of Agrawal and Goyal [5], we have

s∑
j=1

fs,µ1
(j)

FBs+1,y(j)
≤ 3

ε
. (D.2)

Case s ≥ 8/ε. We divide the Sum(γs, s) =
∑s
j=γs

fs,µ1 (j)

FBs+1,y(j)
into four partial sums: Sum(γs, bysc),

Sum(bysc, bysc), Sum(dyse, bµ1s− ε
2sc), and Sum(dµ1s− ε

2se, bsc) and bound them respectively.
We need the following bounds on the CDF of Binomial distribution [18] [Prop. A.4].
There exists a universal constant C4 > 0 such that for j ≤ y(s+ 1)−

√
(s+ 1)y(1− y),

Fs+1,y(j) ≤ C4 ·
(
y(s+ 1− j)
y(s+ 1)− j

(
s+ 1

j

)
yj(1− y)s+1−j

)
; (D.3)

27



and for j ≥ y(s+ 1)−
√

(s+ 1)y(1− y),

Fs+1,y(j) ≤ C4.

Bounding Sum(γs, bysc). Let R = µ1(1−y)
y(1−µ1) . Then we have R > 1. Using the bounds above, we

have for any j, there exists constant C4 such that

fs,µ1(j)

Fs+1,y(j)
≤ C4 ·

 fs,µ1(j)
y(s+1−j)
y(s+1)−j

(
s+1
j

)
yj(1− y)s+1−j

+ C4 · fs,µ1(j)

= C4 ·
((

1− j

y(s+ 1)

)
Rj

(1− µ1)s

(1− y)s+1

))
+ C4 · fs,µ1

(j).

This applies that for s ≤ bysc,(
1− j

y(s+ 1)

)
Rj

(1− µ1)s

(1− y)s+1
=

y(s+ 1)− j
y(1− y)(s+ 1)

Rj−ysRys
(1− µ1)s

(1− y)s

=
e−s·kl(y,µ1)

y(1− y)(s+ 1)
(y(s+ 1)− j)Rj−ys, (D.4)

where the last equality is due to the fact for Bernoulli distribution, kl(y, µ1) = y log(y/µ1) + (1−
y) log((1 − y)/(1 − µ1)). Next, we prove (y(s + 1) − j)Rj−ys ≤ 2R

R−1 + e/ ln 2. Consider the
following two cases.
Case 1: 1/ lnR ≤ y. We have

(y(s+ 1)− j)Rj−ys = (y(s+ 1)− j)Rj−y(s+1)Ry ≤ yR−yRy ≤ 1,

where the inequality is due to xR−x is monotone increasing on x ∈ (0, 1/ lnR) and y(s+ 1)− j ≥
y(s+ 1)− ys = y ≥ 1/ lnR.
Case 2: 1/ lnR ≥ y. We will divide it into the following three intervals of R:
For R ≥ e2, we have

(y(s+ 1)− j)Rj−ys = (y(s+ 1)− j)Rj−y(s+1)Ry

≤ 1

lnR
R−1/ lnRRy

≤ 1

lnR
R−yRy

≤ 1

lnR
≤ 1,

where the first inequality is due to xa−x achieve its maximum at 1/ ln a.
For 2 < R < e2, we have

R−1/ lnR/ lnR ≤ 1/(e ln 2)⇔ −1 ≤ ln(lnR/(e ln 2))⇔ R ≥ 2.

Therefore,

(y(s+ 1)− j)Rj−ys = (y(s+ 1)− j)Rj−y(s+1)Ry

≤ 1

lnR
R−1/ lnRR

≤ R/(e ln 2)

≤ e/ ln 2.

For 1 < R < 2, we have lnR ≥ (R− 1)− (R− 1)2/2. Further,

R−1/ lnR

lnR
≤ 1

lnR
≤ 1

(R− 1)− (R− 1)2/2
≤ 1

(R− 1)(1− (R− 1)/2)
≤ 2

R− 1
.

We have

(y(s+ 1)− j)Rj−ys ≤ (y(s+ 1)− j)Rj−y(s+1)R
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≤ R

lnR
R−1/ lnR

≤ 2R

R− 1
.

Combining Case 1 and Case 2 together, we have (y(s+1)− j)Rj−ys ≤ 2R
R−1 +e/ ln 2. Substituting

this into (D.4), we have(
1− j

y(s+ 1)

)
Rj

(1− µ1)s

(1− y)s+1
≤ e−s·kl(y,µ1)

y(1− y)(s+ 1)

(
2R

R− 1
+ e/ ln 2

)
≤ 2µ1e

−s·kl(y,µ1)

y(µ1 − y)(s+ 1)
+

8e−s·kl(y,µ1)

y(1− y)(s+ 1)

≤ 20e−s·kl(y,µ1)

ε(s+ 1)
. (D.5)

The second inequality is due to R
R−1 = µ1(1−y)

µ1−y . The last inequality is due to

µ1

y
=

µ1

µ1 − ε
=

µ1

µ1 −∆i/4
≤ 4/3 < 2,

and

y(1− y) ≥ ∆i/4(1−∆i/4) = ε(1− ε) ≥ ε/2,

where the first inequality is because y(1− y) is decreasing for y ≥ 1/2 and increasing for y ≤ 1/2
and y = µ1 −∆i/4 ∈ [3/(4∆i), 1 −∆i/4], since µ1 ∈ [0, 1] and µ1 ≥ ∆i by definition, the last
inequality is due to the fact ε = ∆i/4 ≤ 1/4. Therefore, we have

Sum(γs, bysc) =

bysc∑
j=γs

fs,µ1(j)

FBs+1,y(j)

≤ C4 ·
( bysc∑
j=γs

(
1− j

y(s+ 1)

)
Rj

(1− µ1)s

(1− y)s+1

))
+ C4 ·

s∑
j=1

fs,µ1
(j)

≤ 20C4 ·
(
e−s·kl(y,µ1)(ys− γs)

ε(s+ 1)

))
+ C4

=
40C4

√
log(T/s)/s

ε
+ C4, (D.6)

where the second equality is due to (D.5).
Bounding Sum(bysc, bysc) and Sum(dyse, bµ1s− ε

2sc). From Lemma 2.9 of Agrawal and Goyal
[5], we have

Sum(bysc, bysc) ≤ 3e−skl(y,µ1) ≤ 3e−2sε2 , (D.7)

and there exist a universal constant C5 > 0 such that

Sum

(
dyse,

⌊
µ1s−

ε

2
s

⌋)
≤ C5 · e−sε

2/2. (D.8)

Bounding Sum(dµ1s− ε
2se, s). For j ∈ [dµ1s− ε

2se, s], Fs+1,y(j) ≤ C4. Hence,

Sum(dµ1s−
ε

2
se, s) ≤ C4. (D.9)

Combining (D.6), (D.7), (D.8) and (D.9) together, we have that for s ≥ 8/ε, there exists a universal
constant C6 > 0 such that

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1j ∈ Ls}

]
≤ C6 ·

(
1 + e−sε

2/2 + e−2sε2 +

√
log(T/s)/s

ε

)
.

(D.10)
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Combining (D.2) and (D.10) together, we have that there exists a universal constant C3 > 0 such that

M∑
s=1

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]

=
∑

s:1≤s<8/ε

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]

+
∑

s:s≥8/ε

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]

≤ 24

ε2
+ C6 ·

(
M +

∞∑
s=1

e−2sε2 +

∞∑
s=1

e−sε
2/2 +

M∑
s=1

√
log(T/s)/s

ε

)
≤ C3 ·

(
log(Tε2)

ε2

)
,

where the last inequality is due to the fact
∑∞
s=1 e

−2sε2 ≤ 1/(e2ε2 − 1) ≤ 1
2ε2 and∑M

s=1

√
log(T/s)

s ≤ 80(ε−1 log(Tε2)) from (C.8).

E Proof of the Minimax Optimality of ExpTS+

In this section, we prove the worst case regret bound of ExpTS+ presented in Theorem 5.1.

E.1 Proof of the Main Result

Regret Decomposition: For simplicity, we reuse the notations in Section A. Let Sj = {i ∈ [K] |
2−(j+1) ≤ ∆i < 2−j} be the set of arms whose gaps from the optimal arm are bounded in the
interval [2−(j+1), 2−j). Define γ = 1/2 log2(T/(V K))−3. Then we know that for any arm i ∈ [K]

that ∆i > 4
√
V K/T = 2−(γ+1), there must exist some j ≤ γ such that i ∈ Sj . Therefore, the

regret of ExpTS+ can be decomposed as follows.

Rµ(T ) =
∑

i:∆i>0

∆i · E[Ti(T )]

≤
∑

i:∆i>4
√
V K/T

∆i · E[Ti(T )] + max
i:∆i<4

√
V K/T

∆i · T (E.1)

<
∑
j<γ

∑
i∈Sj

2−j · E[Ti(T )] + 4
√
V KT, (E.2)

where in the first inequality we used the fact that
∑
i E[Ti(T )] = T , and in the last inequality we

used the fact that ∆i < 2−j for ∆i ∈ Sj . The expected number of times that Algorithm 1 plays arms
in set Sj with j < γ is bounded as follows.

∑
i∈Sj

E[Ti(T )] = |Sj |+
∑
i∈Sj

E

[
T∑

t=K+1

1{At = i, Ei,εj (t)}+

T∑
t=K+1

1{At = i, Eci,εj (t)}

]

= |Sj |+
∑
i∈Sj

E

[
T∑

t=K+1

1{At = i, Ei,εj (t)}

]
︸ ︷︷ ︸

A

+
∑
i∈Sj

E

[
T∑

t=K+1

1{At = i, Eci,εj (t)}

]
︸ ︷︷ ︸

B

,

(E.3)

where εj >
√

8V K/T is an arbitrary constant.

30



Bounding Term A: Define

αs = sup
x∈[0,µ1−ε−Rmin)

kl(µ1 − ε− x, µ1) ≤ 4 log+(T/(Ks))/s, (E.4)

where log+(x) = max{0, log x}. We decompose the term
∑
i∈Sj E

[∑T
t=K+1 1{At = i, Ei,ε(t)}

]
by the following lemma.

Lemma E.1. Let εj = 2−j−2. Let Mj = d16V log(Tε2j/(KV ))/ε2je. Then, there exists a universal
constant C2 > 0,

∑
i∈Sj

E

[
T∑

t=K+1

1{At = i, Ei,εj (t)}

]
≤

Mj∑
s=1

E

[(
1

G1s(εj)
− 1

)
· 1{µ̂1s ∈ Ls}

]
+
C2V K

ε2j
,

where Gis(ε) = 1− Fis(µ1 − ε), Fis is the CDF of P(µ̂is, s), and Ls =
(
µ1 − ε− αs, Rmax

]
.

Now, we bound the remaining term in Lemma E.1.

Lemma E.2. Let Mj , G1s(εj), and Ls be the same as defined in Lemma E.1. Then, there exists a
universal constant C3 > 0 such that

Mj∑
s=1

Eµ̂1s

[(
1

G1s(εj)
− 1

)
· 1{µ̂1s ∈ Ls}

]
≤ C3 ·

(
V K log(Tε2j/(KV ))

ε2j

)
.

Combining Lemma E.1 and Lemma E.2 together, we have

A ≤
(

(C3 + C2)V K log(Tε2j/(KV ))

ε2j

)
.

Bounding Term B: We have the following lemma that bounds the second term in (E.3).

Lemma E.3. Let Ni = min{1/(1 − (kl(µi + ρi, µ1 − εj))/ log(Tε2j/V )), 2}. For any ρi, εj > 0
that satisfies εj + ρi < ∆i, then

E

[
T∑

t=K+1

1{At = i, Eci,εj (t)}

]
≤ 1 +

2V

ρ2
i

+
V

ε2j
+
Ni log(Tε2j/(V K))

kl(µi + ρi, µ1 − εj)
.

Putting it Together: Let ρi = εj . Substituting Lemma E.1 and Lemma E.3 to the regret decompo-
sition (E.2), we obtain

Rµ(T ) ≤
∑
j<γ

∑
i∈Sj

εj · E[Ti(T )] + 4
√
V KT

=
∑
j<γ

(C3 + C2 + 64)KV log(Tε2j/(V K))

εj
+
√
V KT +

∑
i≥2

∆i

= 8(C3 + C2 + 64)
√
V KT ·

∞∑
n=0

log 64 + n log 2

2n
+
∑
i≥2

∆i,

which completes the proof of the minimax optimality. Therefore, there exists a universal constant
C1 > 0 such that

Rµ(T ) ≤ C1 ·
(∑
i>1

∆i +
√
V KT

)
.
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E.2 Proof of Supporting Lemmas

E.2.1 Proof of Lemma E.1

The proof of this lemma shares many element with that of Lemma A.1. Let Ft =
σ(A1, r1, · · · , At, rt) be the filtration. By the definition of Gis(x), it holds that

G1T1(t−1)(εj) = P(θ1(t) ≥ µ1 − εj | Ft−1). (E.5)

Define E to be the event such that µ̂1s ∈ Ls holds for all s ∈ [T ]. The indicator function can be
decomposed based on E .∑

i∈Sj

E

[
T∑

t=K+1

1{At = i, Ei,εj (t)}

]

≤ T · P(Ec) +
∑
i∈Sj

E

[
T∑

t=K+1

[
1{At = i, Ei,εj (t)} · 1{µ̂1T1(t−1) ∈ LTi(t−1)}

]]

≤ Θ

(
V K

ε2j

)
+
∑
i∈Sj

E

[
T∑

t=K+1

[
1{At = i, Ei,εj (t)} · 1{µ̂1T1(t−1) ∈ LTi(t−1)}

]]
, (E.6)

where the second inequality is from Lemma A.4 with b = K. Let A′t = arg maxi 6=1 θi(t). Then

P(At = 1 | Ft−1) ≥ P({θ1(t) ≥ µ1 − εj} ∩
{
∃i ∈ Sj : A′t = i, Ei,εj (t)

}
| Ft−1)

= P(θ1(t) ≥ µ1 − εj | Ft−1)P
( ⋃
i∈Sj

{A′t = i, Ei,εj (t)}
)

= P(θ1(t) ≥ µ1 − εj | Ft−1) ·
∑
i∈Sj

P(A′t = i, Ei,εj (t) | Ft−1)

≥
G1T1(t−1)

1−G1T1(t−1)
·
∑
i∈Sj

P(At = i, Ei,εj (t) | Ft−1). (E.7)

The first inequality is due to the fact when both event {θ1(t) ≥ µ1 − ε} and event {∃i ∈ Sj :
A′t = i, Ei,εj (t)} hold, we must have {At = 1}. The first equality is due to θ1(t) is conditionally
independent of A′t and Ei,εj (t) given Ft−1. The second equality is due to that these events are
mutually exclusive. For the last inequality, let C = {∃i ∈ Sj : At = i, Ei,ε(t) occurs}, A =
{∃i ∈ Sj : A′t = i, Ei,ε(t) occurs} and B = {θ1(t) ≤ µ1 − ε}. Then A and B are conditionally
independent given Ft−1. Besides, if C happens, then At = i and θi(t) ≤ µ1 − ε for some i ∈ Sj .
This implies θ1(t) ≤ µ1 − ε. Therefore, if C happens, we must have A′t = i, Ei,ε(t) occurs for some
i ∈ Sj and θ1(t) ≤ µ1 − ε. Therefore, C ⊆ A ∩B and∑

i∈Sj

P(At = i, Ei,εj (t) | Ft−1)

= P(∃i ∈ Sj : At = i, Ei,ε(t) occurs | Ft−1)

= P(C | Ft−1)

≤ P(A ∩B | Ft−1)

≤ P(A | Ft−1) · P(B | Ft−1)

= P(∃i ∈ Sj : A′t = i, Ei,ε(t) occurs | Ft−1) · P(θ1(t) ≤ µ1 − ε | Ft−1)

=
∑
i∈Sj

P(A′t = i, Ei,ε(t) occurs | Ft−1) ·
(
1− P(θ1(t) > µ1 − ε | Ft−1)

)
. (E.8)

Note that G1T1(t−1)(ε) = P(θ1(t) ≥ µ1 − ε | Ft−1). (E.8) implies the last inequality of (E.7).

Consider two cases. Case 1: t : T1(t− 1) ≤Mj . We have

E

 ∑
t:T1(t−1)≤Mj

∑
i∈Sj

P(At = i, Ei,εj (t))

 ≤ E

 ∑
t:T1(t−1)≤Mj

(
1

G1T1(t−1)(εj)
− 1

)
P(At = 1 | Ft−1)
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= E

 ∑
t:T1(t−1)≤Mj

(
1

G1T1(t−1)(εj)
− 1

)
1{At = 1}


≤ E

Mj∑
s=1

(
1

G1s(εj)
− 1

) . (E.9)

The first inequality is from (E.7) The first equality is due to E[1{At = 1}] = P(At = 1 | Ft−1). For
the last inequality, note that due to the indicator function, the summation in first equality is not zero
only when 1{At = 1} = 1. And 1{At = 1} = 1 further means that we have pulled the best arm
(arm 1) at time t. Therefore, the summation over all T1(t − 1) conditional on 1{At = 1} = 1 is
equivalent to the summation over s, which is the number of pulls of arm 1.
Case 2: t : T ≥ T1(t− 1) > Mj . For this case, we have

E

 T∑
t:T1(t−1)>Mj

1{At = i, Ei,εj (t)}


≤ E

 T∑
t:T1(t−1)>Mj

1{θ1(t) < µ1 − εj}


≤ T · P

(
∃s > Mj : µ̂1s < µ1 − εj/2

)
+ E

 ∑
t:T1(t−1)>Mj

P
(
{θ1(t) < µ1 − εj | µ̂1T1(t−1) ≥ µ1 − εj/2}

)
≤ T · e−Mj(µ1−(µ1−εj/2))2/(2V ) + T · e−Mjε

2/(16V )

≤ 2V K

ε2j
, (E.10)

In the first inequality, we use the fact that {At = i, Ei,ε(t)} ⊆ {θ1(t) < µ1 − ε}. In the second
inequality we use the same argument as the third inequality of (A.7). In the third inequality, we use
Lemma H.1 and the following results

E

 ∑
t:T1(t−1)>Mj

P(θ1(t) ≤ µ1 − εj | µ̂1T1(t−1) ≥ µ1 − εj/2)


≤ E

 ∑
t:T1(t−1)>Mj

1/2e−T1(t−1)bT1(t−1)kl(µ̂1T1(t−1),µ1)


≤ E

 ∑
t:T1(t−1)>Mj

e−
Mj
2 kl(µ̂1T1(t−1),µ1)


≤ E

 ∑
t:T1(t−1)>Mj

e−
Mj
2 kl(µ1−εj/2,µ1)


≤ T · e−Mjε

2
j/(16V ),

where the first inequality is due to the facts that θ1(t) ∼ P+(µ̂1T1(t−1), T1(t − 1)), µ̂1T1(t−1) ≥
µ1 − εj , and (4.5), the second inequality is due to the facts that bs ≥ 1/2 for any s > 1 and
T1(t − 1) > Mj , the third inequality is due to µ̂1T1(t−1) ≥ µ1 − εj/2 and the fact that from
Proposition 3.2, kl(x, µ1 − ε) is increasing for x > µ1 − ε/2, and the last inequality is due to (3.3).
Combining (E.6), (E.9), and (E.10) together, we complete the proof of this lemma.
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E.2.2 Proof of Lemma E.2

Let p(x) be the PDF of µ̂1s and θ1s be a sample from P(µ̂1s, s). We have
Mj∑
s=1

Eµ̂1s

[(
1

G1s(ε)
− 1

)
· 1{µ̂1s ∈ Ls}

]

≤
Mj∑
s=1

(∫ Rmax

µ1−εj/2
p(x)/P(θ1s ≥ µ1 − εj | µ̂1s = x)dx− 1︸ ︷︷ ︸

A1

)

+

Mj∑
s=1

(∫ µ1−εj/2

µ1−εj
p(x)/P(θ1s ≥ µ1 − εj | µ̂1s = x)dx︸ ︷︷ ︸

A2

)

+

Mj∑
s=1

∫ µ1−εj

µ1−εj−αs

[
p(x)/P(θ1s ≥ µ1 − εj | µ̂1s = x)

]
dx︸ ︷︷ ︸

A2

, (E.11)

where the inequality is due to the definition of Ls.
Bounding term A1. Similar to the bounding term A1 in Lemma A.2, we divide

∑Mj

s=1 into two term,

i.e.,
∑b32V/ε2jc
s=1 and

∑Mj

s=d32V/ε2je
. We have

A1 =

Mj∑
s=1

(∫ Rmax

µ1−εj/2

p(x)

P(θ1s ≥ µ1 − εj | µ̂1s = x)
dx− 1

)

≤ 32V

ε2j
+

Mj∑
s=d32V/ε2je

(∫ Rmax

µ1−εj/2

p(x)

P(θ1s ≥ µ1 − εj | µ̂1s = x)
dx− 1

)

≤ 32V

ε2j
+

Mj∑
s=d32V/ε2je

(
1

1− e−s/2·kl(µ1−εj/2,µ1−εj)
− 1

)

≤ 32V

ε2j
+

Mj∑
s=d32V/ε2je

(
1

1− e−sε2j/(16V )
− 1

)

=
16V

ε2j
+

Mj∑
s=d32V /ε2je

1

esε
2
j/(16V ) − 1

≤ 32V

ε2j
, (E.12)

For the first inequality, we use the fact that with probability at least 1− 1/K ≥ 1/2, θ1s = µ̂1s ≥
µ1 − ε. For second inequality we use the fact that for θ1s = µ̂1s, θ1s ≥ µ1 − ε; for θ1s ∼ P , from
(4.5), P(θ1s ≥ µ1 − ε | µ̂1s = x) ≥ 1− e−sbsε2/(16V ). The third inequality is due to (3.3).
Bounding term A2. This part is the same as the bounding term A2 in Lemma A.2, thus we omit the
details.
Bounding term A3. The proof of bounding term A3 is similar to that of proofs in Lemma A.2. We
also omit the details. The results are as follows.

A3 ≤ K
Mj∑
s=1

∫ µ1−εj

µ1−εj−αs
p(x)esbs·kl(x,µ1−εj)dx (E.13)

≤ K
Mj∑
s=1

e−sε
2
j/(2V )

(
1 + 4 log(T/(Ks))

)
(E.14)
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= 16

(
V K log(Tε2j/(KV ))

ε2j

)
, (E.15)

where the first inequality is due to the fact that with probability 1/K, we sample from P . Substituting
the bound of A1, A1 and A3 to (E.11), we have that there exists a universal constant C3 such that

Mj∑
s=1

Eµ̂1s

[(
1

G1s(εj)
− 1

)
· 1{µ̂1s ∈ Ls}

]
≤ C3 ·

(
V K log(Tε2j/(V K))

ε2j

)
, (E.16)

which completes the proof.

E.2.3 Proof of Lemma E.3

Similar to (A.16), we can obtain

E

[
T∑

t=K+1

1{At = i, Eci,εj (t)}

]
≤ E

[
T∑
s=1

1{Gis(εj) > V/(Tε2j )}

]
+
V

ε2j
. (E.17)

Let s ≥ Ni log(Tε2j/(V K))/kl(µi + ρi, µ1 − εj). Let s ≥ N log(Tε2/V )/kl(µi + ρi, µ1 − ε).
Note that

1

Ni
= max

{
1− kl(µi + ρi, µ1 − εj)/ log(Tε2j/V ),

1

2

}
.

For case 1/Ni = 1/2, we have

bs ≥ 1/2 = 1/Ni. (E.18)

For case 1/Ni = 1− kl(µi + ρi, µ1 − εj)/ log(Tε2j/V ), we have

bs ≥ 1− 1/s

≥ 1− kl(µi + ρi, µ1 − εj)/(N log(Tε2j/V ))

≥ 1− kl(µi + ρi, µ1 − εj)/(log(Tε2j/V ))

= 1/Ni, (E.19)

where the second inequality is due to s ≥ Ni log(Tε2j/V )/kl(µi+ρi, µ1−εj) and the third inequality
is due to Ni > 1. Let Xis be a sample from the distribution P+(µ̂is, s). Assume µ̂is ≤ µi + ρi.
Then from definition of P+(µ̂is, s), with probability 1− 1/K, µ̂is ≤ µi + ρi; with probability 1/K,
Xis is a random sample from P(µ̂is, s). Therefore if µ̂is ≤ µi + ρi and s ≥ Ni, we have

P(Xis ≥ µ1 − εj) ≤ exp(−sbskl(µ̂is, µ1 − εj))/K
≤ exp(−sbskl(µi + ρi, µ1 − εj))/K

≤ V

Tε2j
, (E.20)

where the first inequality is from (4.4) and the definition of P+(µ, n), the second inequal-
ity is due to the assumption µ̂is ≤ µi + ρi, and the last inequality is due to s ≥
Ni log(Tε2j/(V K))/kl(µi + ρi, µ1 − εj) and bs ≥ 1/Ni from (E.18) and (E.19). The rest of proofs
are similar to the proofs in Theorem 4.2. Note that when P(Xis ≥ µ1 − εj) ≤ V/(Tε2j ) holds, term
1{Gis(εj) > V/(Tε2j )} = 0. Now, we check the assumption µ̂is ≤ µi + ρi that is needed for (E.20).
From Lemma H.1, we have P(µ̂is > µi + ρi) ≤ exp(−sρ2

i /(2V )). Furthermore, it holds that
∞∑
s=1

e−
sρ2i
2V ≤ 1

eρ
2
i /(2V ) − 1

≤ 2V

ρ2
i

, (E.21)

where the last inequality is due to the fact 1+x ≤ ex for all x. Let Yis be the event that µ̂is ≤ µi+ρi
and m = Ni log(Tε2j/(V K))/kl(µi + ρi, µ1 − εj). We further obtain

E

[
T∑
s=1

1{Gis(ε) > V/(Tε2j )}

]
≤ E

[
T∑
s=1

[1{Gis(ε) > V/(Tε2j )} | Yis]

]
+

T∑
s=1

(1− P[Yis])
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≤ E

 T∑
s=dme

[1{P(Xis > µ1 − εj) > V/(Tε2j ))} | Yis]


+ dme+

T∑
s=1

(1− P[Yis])

≤ dme+

T∑
s=1

(1− P[Yis])

≤ 1 +
2V

ρ2
i

+
Ni log(Tε2j/V )

kl(µi + ρi, µ1 − εj)
, (E.22)

where the first inequality is due to the fact that P(A) ≤ P(A | B) + 1− P(B), the third inequality is
due to (E.20) and the last inequality is due to (E.21). Substituting (E.22) into (E.17), we complete
the proof.

F Proof of the Asymptotic Optimality of ExpTS+

Now we prove the asymptotic regret bound of ExpTS+ presented in Theorem 5.1.

F.1 Proof of the Main Result

The proof of the this part shares many elements with finite time regret analysis. In what follows, we
bound terms A and B, respectively.

Bounding Term A: We reuse the Lemma E.1. Then, it only remains term
∑Mj

s=1 E
[(

1/G1s(ε)−
1
)
· 1{µ̂1s ∈ Ls}

]
to be bounded. We bound this term by the following lemma.

Lemma F.1. Let Mj , G1s(εj), and Ls be the same as defined in Lemma E.1.
Mj∑
s=1

Eµ̂1s

[(
1

G1s(εj)
− 1

)
· 1{µ̂1s ∈ Ls}

]
= O(V 2K(log log T )6 + V (log log T )2 +K).

Combining Lemma E.1 and Lemma F.1 together and let ε = 1/ log log T , we have
A = O

(
(V 2K(log log T )6 + V (log log T )2 +K

)
.

Bounding Term B: Let ρi = εj = 1/ log log T . Applying (E.3), we have

E

[
T∑

t=K+1

1{At = i, Eci,εj (t)}

]
= O(V log2 log T ) +

Ni log(Tε2j/V )

kl(µi + 1/ log log T, µ1 − 1/ log log T )
.

(F.1)
Therefore, we have

B =
∑
i∈Sj

E

[
T∑

t=K+1

1{At = i, Eci,εj (t)}

]

≤ O(V K log2 log T ) +
∑
i∈Sj

Ni log(T/(V log2 log T ))

kl(µi + 1/ log log T, µ1 − 1/ log log T )
.

Putting It Together: Substituting the bound of term A and B into (E.2), we have∑
i∈Sj

E[Ti(T )] = O(V 2K log6 log T + V K log2 log T +K) +
∑
i∈Sj

Ni log(T/(V log2 log T ))

kl(µi + 1/ log log T, µ1 − 1/ log log T )
.

Note that for T →∞, Ni → 1. Therefore,

lim
T→∞

∑
i∈Sj

E[Ti(T )]

log T
=
∑
i∈Sj

1

kl(µi, µ1)
.

This completes the proof of the asymptotic regret.
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F.2 Proof of Lemma F.1

The proof of this Lemma shares many elements with the proof of Lemma E.2. We can use the bound
of A1 and A2 in Lemma E.2. Let ε = 1/ log log T , we have

A1 +A2 = O(V (log log T )2).

For term A3, from (E.13), we have

A3 ≤ K
Mj∑
s=1

∫ µ1−εj

µ1−εj−αs
p(x)esbs·kl(x,µ1−εj)dx.

Then, similar to (B.3), we have

K

∫ µ1−εj

µ1−εj−αs
p(x)esbs·kl(x,µ1−εj)dx = O(Ks). (F.2)

Let ε = 1/ log log T . By dividing
∑Mj

s=1 into two terms
∑d4V (log log T )3e
s=1 and

∑Mj

s=d4V (log log T )3e,
from (B.4) and (B.5), we have

A3 = O(V 2K(log log T )6 + V K(log log T )2 +K).

Substituting the bound of A1, A1 and A3 to (E.11), we have

A = O(V 2K(log log T )6 + V K(log log T )2 +K).

This completes the proof.

G Proof of Technical Lemmas

In this section, we present the proofs of the remaining lemmas used in previous sections.

G.1 Proof of Lemma A.4

Let kl+(x, y) = kl(x, y)1(x ≤ y). We only need to prove

P
(
∃s ≤ f(ε) : kl+(µ̂1s, µ1) ≥ 4 log(T/(bs))/s

)
= O

(
bV

Tε2

)
.

The proof of this step relies on the standard “peeling technique”. We have

P
(
∃s ≤ f(ε) : kl+(µ̂1s, µ1) ≥ 4 log(T/(bs))/s

)
≤
∞∑
n=0

P
(
∃ f(ε)

2n+1
≤ s ≤ f(ε)

2n
: kl+(µ̂1s, µ1) ≥ 4 log(T/(bs))/s

)

≤
∞∑
n=0

P
(
∃ f(ε)

2n+1
≤ s ≤ f(ε)

2n
: kl+(µ̂1s, µ1) ≥ 4 log(T/(b · f(ε)/2n))

M/2n

)

≤
∞∑
n=0

exp

(
− f(ε)

2n+1
· 4 log(T/(b · f(ε)/2n))

f(ε)/2n
·
)

=

∞∑
n=0

exp
(
− 2 log(T/(b · f(ε)/2n))

)
≤
∞∑
n=0

(
bf(ε)

T · 2n

)2

, (G.1)

where the third inequality is due to Lemma H.1. Note that f(ε) ≤ 32V log(Tε2/(bV ))/ε2. We have

bf(ε)

T · 2n
≤ bf(ε)

T
≤ 32 log

(
Tε2

bV

)
· bV
Tε2

.
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Continue on equation (G.1), we have
∞∑
n=0

(
bf(ε)

T · 2n

)2

≤
∞∑
n=0

(
bf(ε)

T · 2n
· 32 log

(
Tε2

bV

)
· bV
Tε2

)

≤ 322
∞∑
n=0

(
bV

Tε2 · 2n
·
(

log

(
Tε2

bV

))2

· bV
Tε2

)
≤ 322 · 2bV

Tε2
,

where the last inequality is due to (log(x))2/x ≤ 1 for x ≥ 1.

G.2 Proof of Lemma A.5

We decompose the proof of Lemma A.5 into two cases: Case 1: p(x) is in continues form, and Case
2: p(x) is in discrete form. We first focus on the case that p(x) is in continues form.

Divide the interval [x0, xn] into n sub-intervals [x0, x1),[x1, x2), · · · , [xn−1, xn], such that µ1− ε−
αs = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn = µ1 − ε− bs,

∫ x1

x0
q(x)dx =

∫ xi
xi−1

q(x)dx for all i ∈ [n]. We
now define a new function pn(x). Assume pn(x) has been defined on [xi, xn]. We define pn(x) on
[xi−1, xi) in the following way. We consider two cases.
Case 1:

∫ xn
xi

pn(x)dx+
∫ xi
xi−1

p(x)dx ≥ e−s·kl(xn,µ1)−e−s·kl(xi−1,µ1). Then, we define the function
pn(x) = p(x) for x ∈ [xi−1, xi).
Case 2:

∫ xn
xi

pn(x)dx +
∫ xi
xi−1

p(x)dx < e−s·kl(xn,µ1) − e−s·kl(xi−1,µ1). Let β = e−s·kl(xn,µ1) −
e−s·kl(xi−1,µ1)−

∫ xn
xi

pn(x)dx−
∫ xi
xi−1

p(x)dx. Then, define pn(x) = p(x) +β/(xi−xi−1). Hence,
for case 2, it holds that ∫ xn

xi−1

pn(x)dx = e−s·kl(xn,µ1) − e−s·kl(xi−1,µ1). (G.2)

Let yn = xn = µ1 − ε. For all i ∈ [n], define yi = xi if
∫ yn
xi

pn(x)dx = e−s·kl(µ1−ε−bs,µ1) −
e−s·kl(xi,µ1). Otherwise, define yi such that∫ yn

yi

pn(x)dx = e−s·kl(µ1−ε−bs,µ1) − e−s·kl(xi,µ1).

From the definition, we know

xi ≤ yi. (G.3)

Since pn(x) ≥ p(x) holds for any x ∈ [x0, xn] and g(x) ≥ 0, we have∫ µ1−ε−bs

µ1−ε−αs
p(x)g(x)dx ≤

∫ µ1−ε−bs

µ1−ε−αs
pn(x)g(x)dx. (G.4)

Note that g(x) is monotone decreasing

g′(x) =
(
esbs·kl(x,µ1−ε)

)′
= sbs(kl(x, µ1 − ε))′esbs·kl(x,µ1−ε)

= sbse
sbs·kl(x,µ1−ε)

(∫ µ1−ε

x

t− x
V (t)

dt
)′

= sbse
sbs·kl(x,µ1−ε) ·

∫ µ1−ε

x

−1

V (t)
dt

≤ 0.

We have
n−1∑
i=0

∫ yi+1

yi

pn(x)g(x)dx ≤
n−1∑
i=0

g(yi)

∫ yi+1

yi

pn(x)dx
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≤
n−1∑
i=0

g(xi)

∫ yi+1

yi

pn(x)dx =

n−1∑
i=0

g(xi)

∫ xi+1

xi

q(x)dx

≤
n−1∑
i=0

∫ xi+1

xi

q(x)g(x)dx+

n−1∑
i=0

(g(xi)− g(xi+1))

∫ xi+1

xi

q(x)dx

=

n−1∑
i=0

∫ xi+1

xi

q(x)g(x)dx+ (g(x0)− g(xn])

∫ x1

x0

q(x)dx

≤
n−1∑
i=0

∫ xi+1

xi

q(x)g(x)dx+ (g(x0)− g(xn))/n. (G.5)

In the first inequality, we use the fact that g(x) is monotone decreasing. The second inequality is due
to (G.3). The first equality is from the fact that∫ xi+1

xi

q(x)dx = e−s·kl(x,µ1)

∣∣∣∣xi+1

xi

= e−s·kl(xi+1,µ1) − e−s·kl(xi,µ1),

and the definition of yi such that∫ yi+1

yi

pn(x)dx =

∫ yn

yi

pn(x)dx−
∫ yn

yi+1

pn(x)dx = e−s·kl(xi+1,µ1) − e−s·kl(xi,µ1) =

∫ xi+1

xi

q(x)dx.

The third inequality is due to
∑n−1
i=0

∫ xi
xi+1

q(x)g(x)dx ≥
∑n−1
i=0 g(xi)

∫ xi
xi+1

q(x)dx. Now, we focus
on bounding term

∫ y0
x0
pn(x)g(x)dx. Note that∫ y0

x0

pn(x)g(x)dx ≤ g(x0)

∫ y0

x0

pn(x)dx.

Hence, we only need to bound
∫ y0
x0
pn(x)dx. Let

n′ = min
{
j ∈ {0, · · · , n} : pn(x) = p(x) for all x ∈ [x0, xj)

}
.

From the definition, for x < xn′ , pn(x) = p(x). Besides, for x ∈ [xn′ , xn′+1), it must belong to
case 2 in the definition of pn(x). Hence,∫ xn

xn′

pn(x)dx = e−skl(xn,µ1) − e−skl(xn′ ,µ1).

Therefore, yn′ = xn′ . Further, from Lemma H.1, we have∫ yn′

x0

pn(x)dx =

∫ yn′

x0

p(x)dx ≤ Pr(µ̂1s ≤ yn′) ≤ e−s·kl(yn′ ,µ1). (G.6)

Now, we have∫ y0

x0

pn(x)dx =

∫ yn′

x0

pn(x)dx−
∫ yn′

y0

pn(x)dx

≤ e−skl(yn′ ,µ1) −
(∫ xn

y0

pn(x)dx−
∫ xn

yn′

pn(x)dx
)

= e−skl(yn′ ,µ1) −
(
e−skl(µ1−ε,µ1) − e−skl(xn,µ1) − e−skl(µ1−ε,µ1) + e−skl(xn′ ,µ1)

)
= e−skl(x0,µ1), (G.7)

where the first inequality is due to (G.6), and the last inequality we use the fact yn′ = xn′ . Finally,
we have∫ µ1−ε

µ1−ε−αs
p(x)g(x)dx

≤
∫ µ1−ε

µ1−ε−αs
pn(x)g(x)dx
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=

n−1∑
i=0

∫ yi+1

yi

pn(x)g(x)dx+

∫ y0

x0

pn(x)g(x)dx

≤
n−1∑
i=0

∫ xi+1

xi

q(x)g(x)dx+ (g(x0)− g(xn])/n+ g(x0)

∫ y0

x0

pn(x)dx

≤
n−1∑
i=0

∫ xi+1

xi

q(x)g(x)dx+ (g(x0)− g(xn])/n+ g(µ1 − ε− αs)e−skl(µ1−ε−αs,µ1)

=

∫ µ1−ε−bs

µ1−ε−αs
q(x)g(x)dx+ g(µ1 − ε− αs)e−skl(µ1−ε−αs,µ1) + (g(x0)− g(xn))/n,

where the second inequality is due to (G.5), and the third inequality is due to (G.7). Note that

lim
n→∞

(g(x0)− g(xn))/n = 0.

Therefore, it holds that∫ µ1−ε

µ1−ε−αs
p(x)g(x)dx ≤

∫ µ1−ε

µ1−ε−αs
q(x)g(x)dx+ g(µ1 − ε− αs)e−skl(µ1−ε−αs,µ1)

+ (g(x0)− g(xn))/n,

which completes the Lemma for continues form p(x).
Next, we assume p(x) is in discrete form. Let z0, · · · , zk be all the points such that p(zi) > 0 and
zi ∈ [µ1 − ε− αs, µ1 − ε]. We need to prove∫ µ1−ε−bs

µ1−ε−αs
q(x)g(x)dx+ e−s·kl(µ1−ε−αs,µ1) · g(µ1 − ε− αs) ≥

k∑
i=0

p(zi)g(zi).

We assume z0 ≤ z1 ≤ · · · ≤ zk. Define h(zi) =
∫ zi
zi−1

q(x)dx for i ∈ [K] and h(z0) =∫ z0
µ1−ε−αs q(x)dx. We have∫ µ1−ε

µ1−ε−αs
q(x)g(x)dx−

k∑
i=0

p(zi)g(zi) ≥
∫ zk

µ1−ε−αs
q(x)g(x)dx−

k∑
i=0

p(zi)g(zi)

≥
k∑
i=1

g(zi)

∫ zi

zi−1

q(x)dx+ g(z0)

∫ z0

µ1−ε−αs
q(x)dx

−
k∑
i=0

p(zi)g(zi)

=

k∑
i=0

(h(zi)− p(zi))g(zi). (G.8)

We define k′ = min{j ∈ {0, · · · , k} : p(zi) − h(zi) ≥ 0 for all i ≤ j}. If such k′ does not exist,
then p(zi)− h(zi) < 0 always holds. Hence,

∑k
i=0(h(zi)− p(zi))g(zi) ≥ 0. Otherwise, k′ exists.

From lemma H.1, we have

k′∑
i=0

p(zi) ≤ Pr(µ̂1s ≤ zk′) ≤ e−s·kl(zn′ ,µ1). (G.9)

Continue on (G.8), we have

k∑
i=0

(h(zi)− p(zi))g(zi) ≥ −
k′∑
i=0

(p(zi)− h(zi))g(zi)

≥ −g(µ1 − ε− αs)
k′∑
i=0

p(zi)− h(zi)
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= −g(µ1 − ε− αs)
( k′∑
i=0

p(zi)−
k′∑
i=0

h(zi)

)
≥ −g(µ1 − ε− αs)

(
e−skl(zk′ ,µ1) −

∫ zk′

µ1−ε−αs
q(x)dx

)
= −g(µ1 − ε− αs) · e−skl(µ1−ε−αs,µ1), (G.10)

where the first inequality is from the definition of k′, the second inequality is due to that g(·) is
monotone decreasing, the first equality is due to p(zi) − h(zi) ≥ 0 for all i ∈ {0, 1, · · · , k′}, the
third inequality is due to (G.9), and the last equality is due to∫ zk′

µ1−ε−αs
q(x)dx = e−skl(x,µ1)

∣∣∣∣zk′
µ1−ε−αs

= e−skl(zk′ ,µ1) − e−skl(µ1−ε−αs,µ1).

Combining (G.9) and (G.10), we complete the proof.

H Useful Inequalities

Lemma H.1 (Maximal Inequality [32]). Let N and M be two real numbers in R+ × R+, let γ > 0,
and µ̂n be the empirical mean of n random variables i.i.d. according to the distribution νb′−1(µ).
Then, for x ≤ µ,

P(∃N ≤ n ≤M, µ̂n ≤ x) ≤ e−N ·kl(x,µ),

P(∃N ≤ n ≤M, µ̂n ≤ x) ≤ e−N(x−µ)2/(2V ).
(H.1)

Meanwhile, for every x ≥ µ,

P(∃N ≤ n ≤M, µ̂n ≥ x) ≤ e−N(x−µ)2/(2V ). (H.2)

Lemma H.2 (Tail Bound for Gaussian Distribution). For a random variable Z ∼ N (µ, σ2),

e−z
2/2

z ·
√

2π
≥ P(Z > µ+ zσ) ≥ 1√

2π

z

z2 + 1
e−

z2

2 . (H.3)

Besides, for 0 ≤ z ≤ 1,

P(Z > µ+ zσ) ≥ 1√
8π
e−

z2

2 .

Proof. (H.3) is from Abramowitz and Stegun [2]. For the second statement, we have that for
0 ≤ z ≤ 1,

P(Z > µ+ zσ) ≥ P(Z > µ+ σ) ≥ 1√
8π
e−

z2

2 ,

where the last inequality is due to (H.3).
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