
A Table of Notations

Table 3: Table of Notations throughout the paper.
Indices:
c , c1 index for classes (c P t1, ..., Cu “ rCs)
i index for data (i P t1, ..., Nu “ rN s)
k , k1 index for clients (k P t1, ...,Ku “ rKs or P Kptq)
t index for rounds (t P t1, ..., T u “ rT s)
e index for local epochs (t P t1, ..., Eu “ rEs)

Parameters:
α Parameter for the Dirichlet Distribution
s The Number of shards per user
β Hyperparameter for the distillation loss; generally controls

the relative weight of divergence loss
τ The temperature on the softmax
γ Learning rate

Data and Weights:
D whole dataset
Dk local dataset
x datum
y class label for datum
wptq weight of the server model on the round t

w
ptq
k weight of the k-th client model on the round t

}WG ´ WL} Collection of L1-norm between server and client models,
among all rounds.

Softmax Probabilities:
qTτ { qSτ The softened softmax probability of teacher/student model
qg { ql The softmax probability on the server/client model
q̃gτ { q̃lτ The softened softmax probability calculated without true-

class logit on the server/client model

Class Distribution on Datasets:
p “ rp1 , . . . , pCs In-local distribution of dataset
p̃ “ rp̃1 , . . . , p̃Cs Out-local distribution of dataset

Loss Functions:
LCE cross-entropy loss
LKL Kullback-Leibler divergence
LNTD Proposed Not-True Distillation Loss

Accuracy and Forgetting Measure:
Aptq

c Accuracy of the server model on the c-th class, at round t.
}AG ´ pkL} Collection of L1-norm between normalized global accuracy

and data distribution on each client, among all rounds.
F Backward Transfer (BwT). For the federated learning situa-

tion, we calculate this measure on the server model.

15

B Experimental Setups

Here we provide details of our experimental setups. The code is implemented by PyTorch [41] and the
overall code structure is based on FedML [16] library with some modifications. We use 1 Titan-RTX
and 1 RTX 2080Ti GPU card. Multi-GPU training is not conducted in the paper experiments.

B.1 Model Architecture

The model architecture used in our experiment is from [37], which is composed of two convolutional
layers followed by max-pooling layers, and two fully connected layer. A similar architecture is used
in [28, 34].

B.2 Datasets

We mainly used four benchmarks: MNIST [11], CIFAR-10 [25], CIFAR-100 [25], and CINIC-10
[10]. The details about each datasets and setups are described in Table 4. We augment the training
data using Random Cropping, Horizontal Flipping, and Normalization. For MNIST, CIFAR-10, and
CIFAR-100, we add Cutout [12] augmentation.

Table 4: Details datasets setups used in the experiment.

Datasets MNIST CIFAR-10 CIFAR-100 CINIC-10
Datasets Classes 10 10 100 10

Datasets Size 50,000 50,000 50,000 90,000
Number of Clients 100 100 100 200

Client Sampling Ratio 0.1 0.1 0.1 0.05
Local Epochs (E) 3 5 5 5

Batch Size (B) 50 50 50 50

B.3 Learning Setups

We use a momentum SGD optimizer with an initial learning rate of 0.01, and the momentum is set as
0.9. The momentum is only used in the local training, which implies the momentum information is
not communicated to the server. The learning rate is decayed with a factor of 0.99 at each round, and
a weight decay of 0.00001 is applied. In the motivational experiment in Section 3, we fix the learning
rate as 0.01. Since we assume a synchronized federated learning scenario, parallel distributed learning
is simulated by sequentially training the sampled clients and then aggregating them as a global model.

B.4 Algorithm Implementation Details

For the implemented algorithms, we search hyperparameters and choose the best among the candidates.
The hyperparameters for each algorithm is in Table 5.

Table 5: Algorithm-specific hyperparameters used in the experiment.

Method Hyperparameters Searched Candidates
FedAvg [37] None None
FedCurv [43] s “ 500, λ “ 1.0 s P t250, 500u, λ P t0.1, 0.5, 1.0u

FedProx [30] µ “ 0.1 µ P t0.1, 0.5, 1.0u

FedNova [47] None None
SCAFFOLD [20] None None
MOON [28] µ “ 1.0, τ “ 0.5 µ P t0.1, 0.5, 1.0u, τ P t0.1, 0.5, 1, 0u

FedNTD (Ours) β=1.0, τ “ 1.0 None

16

B.5 Non-IID Partition Strategy

To widely address the heterogeneous federated learning scenarios, we distribute the data to the local
clients with the following two strategies: (1) Sharding and (2) Latent Dirichlet Allocation (LDA).

Sharding In the Sharding strategy, we sort the data by label and divide it into the same-sized shards
without overlapping. In detail, a shard contains |D|

Nˆs size of same class samples, where D is the
total dataset size, N is the total number of clients, and s is the number of shards per user. Then, we
distribute s number of shards to each client. s controls the heterogeneity of local data distribution.
The heterogeneity level increases as the shard per user s becomes smaller and vice versa. Note that
we only test the statistical heterogeneity (skewness of class distribution across the local clients) in the
Sharding strategy, and the size of local datasets is identical.

Latent Dirichlet Allocation (LDA) In LDA strategy, Each client k is allocated with pc,k proportion
of the training samples of class c, where pc „ DirKpαq and α is the concentration parameter
controlling the heterogeneity. The heterogeneity level increases as the concentration parameter α
becomes smaller, and vice versa. Note that both the class distribution and local datasets sizes differ
across the local clients in LDA strategy.

C Conceptual comparison to prior works

The conceptual illustration of federated distillation methods is in Figure 9. The existing algorithms
either use additional local information (Figure 9a) or need an auxiliary (or proxy) data to conduct
distillation. On the other hand, our proposed FedNTD does not have such constraints (Figure 9c).

(a) Use Additional Local Info (b) Use Auxiliary Datasets (c) FedNTD (ours)

Figure 9: An overview of federated distillation methods.

Table 6: Additional resource requirements compared to FedAvg.

Method No Additional Requirements on:
Statefulness? Communication Cost? Auxiliary Data?

FedEnsemble [33] ✔ ✔ ✕

FedBE [9] ✔ ✕ ✕

MOON [28] ✕ ✔ ✔

SCAFFOLD [20] ✕ ✕ ✔

FedNTD (Ours) ✔ ✔ ✔

17

D Related Work: Continual Learning

Continual Learning (CL) is a learning paradigm that updates a sequence of tasks instead of training on
the whole datasets at once [42, 45]. In CL, the main challenge is to avoid catastrophic forgetting [15],
whereby training on the new task interferes with the previous tasks. Existing methods try to mitigate
this problem by various strategies. In Parameter-based approaches, the importance of parameters for
the previous task is measured to restrict their changes [3, 5, 22]. Regularization-based approaches
[4, 32] introduce regularization terms to prevent forgetting. Memory-based approaches [6, 8] keep a
small episodic memory from the previous tasks and replay it to maintain knowledge. Our work is
more related to the regularization-based approaches, introducing the additional local objective term
to prevent forgetting out-local knowledge.

It would be worth to mention that there are some works that tried to conduct classical continual
learning problems in federated learning setups. For example, [51] studied the scenario in which each
local client has to learn a sequence of tasks. Here, the task-specific parameters are decomposed from
the global parameters to minimize the interference between tasks. In [13], the relation knowledge for
the old classes is transferred round by round with class-aware gradient compensations.

E Server Prediction Consistency

We extend the motivational experiment in Section 3.1 to the main experimental setups. Here, we
plotted the normalized class-wise test accuracy for each case to identify the contribution of each
class on the current accuracy. This helps observe the prediction consistency regardless of the highly
fluctuating global server accuracy in the non-IID case. As in Figure 10, FedNTD effectively preserves
the knowledge from the previous rounds; thereby the global server model becomes to predict each
class evenly much earlier than FedAvg. Note that we normalize the class-wise test accuracy as
round-by-round manner, which makes the sum for each round as 1.0.

Figure 10: Visualized server test accuracy of FedAvg and FedNTD on CIFAR-10 datasets.

18

F Experiment Table with Standard Deviation
Table 7: Accuracy@1 (%) on MNIST [11], CIFAR-10 [25], CIFAR-100 [25], and CINIC-10 [10]. The values
in the parenthesis are the standard deviation. The arrow (Ó, Ò) shows the comparison to the FedAvg.

NIID Partition Strategy : Sharding

Method MNIST CIFAR-10 CIFAR-100 CINIC-10
s “ 2 s “ 3 s “ 5 s “ 10

FedAvg [37] 78.63˘0.42 40.14˘1.15 51.10˘0.11 57.17˘0.12 64.91˘0.69 25.57˘0.44 39.64˘0.78

FedCurv [43] 78.56˘0.23 Ó 44.52˘0.44 Ò 49.00˘0.41 Ó 54.61˘0.20 Ó 62.19˘0.47 Ó 22.89˘0.66 Ó 40.45˘0.25 Ò

FedProx [30] 78.26˘0.28 Ó 41.48˘1.08 Ò 51.65˘0.53 Ò 56.88˘0.15 Ó 64.65˘0.61 Ó 25.10˘0.67 Ó 41.47˘0.99 Ò

FedNova [47] 77.04˘0.98 Ó 42.62˘1.32 Ò 52.03˘1.49 Ò 62.14˘0.74 Ò 66.97˘0.39 Ò 26.96˘0.59 Ò 42.55˘0.10 Ò

SCAFFOLD [20] 81.05˘0.26 Ò 44.60˘2.24 Ò 54.26˘0.22 Ò 65.74˘0.36 Ò 68.97˘0.34 Ò 30.82˘0.31 Ò 42.66˘0.92 Ò

MOON [28] 76.56˘0.24 Ó 38.51˘0.96 Ó 50.47˘0.15 Ó 56.69˘0.11 Ó 65.30˘0.51 Ò 25.29˘0.24 Ó 37.07˘0.24 Ó

FedNTD (Ours) 84.44˘0.43 Ò 52.61˘1.00 Ò 58.18˘1.42 Ò 64.93˘0.34 Ò 68.56˘0.24 Ò 31.69˘0.13 Ò 48.07˘0.36 Ò

NIID Partition Strategy : LDA

Method MNIST CIFAR-10 CIFAR-100 CINIC-10
α “ 0.05 α “ 0.1 α “ 0.3 α “ 0.5

FedAvg [37] 79.73˘0.20 28.24˘3.11 46.49˘0.93 57.24˘0.21 62.53˘0.41 30.69˘0.27 38.14˘3.40

FedCurv [43] 78.72˘0.44 Ó 33.64˘2.98 Ò 44.26˘0.79 Ó 54.93˘0.46 Ó 59.37˘0.24 Ó 29.16˘0.22 Ó 36.69˘3.03 Ó

FedProx [30] 79.25˘0.16 Ó 37.19˘3.17 Ò 47.65˘0.90 Ò 57.35˘0.40 Ò 62.39˘0.31 Ó 30.60˘0.16 Ó 39.47˘3.40 Ò

FedNova [47] 60.37˘2.71 Ó 10.00 (Failed) Ó 28.06˘0.12 Ó 57.44˘1.69 Ò 64.65˘0.34 Ò 32.15˘0.13 Ò 30.44˘1.35 Ó

SCAFFOLD [20] 71.57˘0.72 Ó 10.00 (Failed) Ó 23.12˘0.55 Ó 62.01˘0.34 Ò 66.16˘0.13 Ò 33.68˘0.13 Ò 28.78˘1.26 Ó

MOON [28] 78.95˘0.46 Ó 28.35˘3.68 Ò 44.77˘1.12 Ó 58.38˘0.09 Ò 63.10˘0.00 Ò 30.64˘0.12 Ó 37.92˘3.31 Ó

FedNTD (Ours) 81.34˘0.33 Ò 40.17˘3.19 Ò 54.42˘0.06 Ò 62.42˘0.53 Ò 66.12˘0.26 Ò 32.37˘0.02 Ò 46.24˘1.67 Ò

G Additional Experiments
G.1 Effect of Local Epochs

Table 8: Accuracy@1 on CIFAR-10 (Sharding s “ 2). The value in the parenthesis is the forgetting F .

NIID Partition Strategy: Sharding (s “ 2)

Method Local Epochs (E)
1 3 5 10 20

FedAvg [37] 29.49 (0.70) 34.49 (0.64) 40.14 (0.59) 50.08 (0.49) 56.93 (0.42)
FedProx [30] 29.44 (0.69) Ó 34.00 (0.64) Ó 41.48 (0.57) Ò 42.74 (0.53) Ó 43.39 (0.52) Ó

FedNova [47] 27.77 (0.71) Ó 32.00 (0.64) Ó 42.62 (0.56) Ò 48.59 (0.50) Ó 58.24 (0.39) Ò

SCAFFOLD [20] 34.46 (0.64) Ò 39.26 (0.58) Ò 44.60 (0.53) Ò 55.35 (0.41) Ò 62.80 (0.34) Ò

FedNTD (Ours) 35.77 (0.64) Ò 45.47 (0.50) Ò 52.61 (0.43) Ò 60.22 (0.36) Ò 60.61 (0.34) Ò

Table 9: Accuracy@1 on CIFAR-10 (LDA α “ 0.1). The value in the parenthesis is the forgetting F .

NIID Partition Strategy: LDA (α “ 0.1)

Method Local Epochs (E)
1 3 5 10 20

FedAvg [37] 29.77 (0.69) 37.70 (0.60) 46.49 (0.51) 53.80 (0.43) 57.70 (0.39)
FedProx [30] 33.37 (0.65) Ò 37.88 (0.57) Ò 47.65 (0.49) Ò 44.02 (0.50) Ó 44.98 (0.49) Ó

FedNova [47] 26.35 (0.73) Ó 24.37 (0.74) Ó 28.06 (0.71) Ó 47.41 (0.50) Ó 10.00 (Failure) Ó

SCAFFOLD [20] 13.36 (0.86) Ó 22.04 (0.75) Ó 23.12 (0.74) Ó 38.49 (0.57)Ó 47.07 (0.47) Ó

FedNTD (Ours) 33.94 (0.64) Ò 45.92 (0.50) Ò 54.42 (0.42) Ò 60.67 (0.33) Ò 62.25 (0.30) Ò

19

G.2 Effect of Sampling Ratio

Table 10: Accuracy@1 on CIFAR-10 (Sharding s “ 2). The value in the parenthesis is the forgetting F .

NIID Partition Strategy: Sharding (s “ 2)

Method Client Sampling Ratio (R)
0.05 0.1 0.3 0.5 1.0

FedAvg [37] 33.06 (0.66) 40.14 (0.59) 49.99 (0.46) 52.98 (0.41) 51.48 (0.30)
FedProx [30] 35.36 (0.63) Ò 41.48 (0.57) Ò 44.54 (0.45) Ó 50.02 (0.31) Ó 52.53 (0.06) Ò

FedNova [47] 29.99 (0.69) Ó 42.62 (0.56) Ò 55.59 (0.31) Ò 56.75 (0.23) Ò 51.89 (0.34) Ò

SCAFFOLD [20] 29.15 (0.70) Ó 44.60 (0.53) Ò 55.59 (0.31) Ò 56.75 (0.23) Ò 57.88 (0.10) Ò

FedNTD (Ours) 46.99 (0.51) Ò 52.61 (0.43) Ò 59.37 (0.28) Ò 60.70 (0.18) Ò 61.53 (0.04) Ò

Table 11: Accuracy@1 on CIFAR-10 (LDA α “ 0.1). The value in the parenthesis is the forgetting F .

NIID Partition Strategy: LDA (α “ 0.1)

Method Client Sampling Ratio (R)
0.05 0.1 0.3 0.5 1.0

FedAvg [37] 29.35 (0.70) 46.49 (0.51) 53.73 (0.39) 58.72 (0.25) 61.38 (0.04)
FedProx [30] 36.36 (0.63) Ò 47.65 (0.49) Ò 45.78 (0.37) Ó 49.65 (0.23) Ó 51.31 (0.07)) Ó

FedNova [47] 21.31 (0.78) Ó 28.06 (0.71) Ó 45.83 (0.49) Ó 55.09 (0.50) Ó 56.79 (0.30) Ó

SCAFFOLD [20] 15.80 (0.84) Ó 23.12 (0.74) Ó 41.29 (0.51) Ó 10.00 (Failure)Ó 10.00 (Failure)Ó

FedNTD (Ours) 45.80 (0.53) Ò 54.42 (0.42) Ò 58.57 (0.33) Ò 60.88 (0.19) Ò 62.48 (0.06) Ò

G.3 Results on ResNet-10 Model

We report an additional experiment on popular architecture, ResNet-10. The number of parameters in
ResNet-10 is about 10x larger than the 2-conv + 2-fc model for the main experiments.

FedAvg Scaffold MOON FedNTD (ours)
Shard (s = 2) 36.01 44.59 35.21 46.27
Shard (s = 5) 39.21 65.08 51.02 65.92
LDA (α = 0.1) 33.35 38.78 33.57 49.85

H Comparison to KD

We analyze the advantage of FedNTD over KD by observing the performance of the loss function
below. Note that Lpλq moves from LKD to LNTD as λ increases, and collapses to LKD at λ “ 0 and
LNTD at and λ “ 1.

LKDÑNTD “ LCEpq, 1yq ` Lpλq, (17)

Lpλq “ p1 ´ λq ¨ LKDpqlτ , q
g
τ q ` λ ¨ LNTDpq̃lτ , q̃

g
τ q. (18)

The result is in Table 12, which shows reaching Lpλq to LNTD significantly improves the perfor-
mance. This improvement supports the effect of decoupling the not-true classes and the true classes:
preservation of out-local distribution knowledge using not-true class signals and acquisition of new
knowledge on true classes from local datasets.

Table 12: CIFAR-10 test accuracy by varying λ.

Partition Method KD KD Ñ NTD NTD
0.1 0.3 0.5 0.7 0.9

Sharding (s “ 2) 46.2 46.4 46.9 47.6 48.8 50.2 52.6
LDA (α “ 0.1) 50.8 50.9 51.4 51.9 52.6 53.6 54.9

20

To further analyze the effect of NTD, we measure the performance of the local model as the
communication rounds proceed. The result is plotted in Figure 11. Note that the Personalized
performance is evaluated on the test samples with the same label distribution of the local clients.

The result shows that although the KD considerably improves the server model performance, the
local model learned by KD shows much lower local performance. On the other hand, FedNTD shows
much higher local performance, which implies that NTD successfully tackles the distillation not to
hinder the local learning.

We insist that such significant improvement by discarding true-class logits in the distillation loss
comes from the better trade-off between attaining new knowledge from local data and preserving old
knowledge in the global model, as suggested in Section 3.

Figure 11: CIFAR-10 (Sharding: s “ 2) performances from KD and NTD

I Personalized performance of FL methods
Here we investigate the personalized performance of our FedNTD. As suggested in Appendix H,
although FedNTD aims to improve global convergence, it also improves personalized performance.
However, as the learning curves of SCAFFOLD (the green line) show, the lower local learning
performance does not always lead to the worse server model performance. In all cases, SCAFFOLD
shows significantly lower local performance at each round (the 1st and 2nd row), but it considerably
improves the global convergence (the 3rd row).

Figure 12: Local and global learning curves of FL methods. The accuracy of the local model is
evaluated on: (Local Train) - the local private trains samples, and (Personalized): the test samples
from the same label distribution with the local client

21

J Comparison to FedAlign

Here we compare our FedNTD with a recently proposed method, FedAlign [38], which shares the
motivation of our work that local learning is the bottleneck of FL performance. In FedAlign, a
correction term is introduced in the local learning target to obtain local models that generalize well.
We implemented our FedNTD on officially released FedAlign code 2, and used the hyperparameters
specified in [38]. The results are in Table 13 and Figure 13 shows their corresponding learning
curves. In our experiment, although FedAlign improves the performance at some settings (LDA
α “ 0.5), its learning suffers when the heterogeneity level becomes severe. On the other hand,
FedNTD consistently improves the performance even in such cases.

Figure 13: Learning curves that corresponds to Table 13.

Table 13: CIFAR-10 test accuracy. 16 clients participates for each communication round. The number
local epochs is 20 for all experiments.

Client Number (LDA α) FedAvg [37] FedAlign[38] FedNTD (ours)
Client 16 (α “ 0.05) 0.4556 0.3743 0.4943
Client 16 (α “ 0.1) 0.7083 0.6532 0.7195
Client 16 (α “ 0.5) 0.8163 0.8185 0.8266
Client 64 (α “ 0.05) 0.2535 0.1854 0.3927
Client 64 (α “ 0.1) 0.4247 0.3931 0.5634
Client 64 (α “ 0.5) 0.7568 0.7698 0.7846

The introduced loss term of FedAlign aims to seek out-of-distribution generality w.r.t. global distribu-
tion during local training, resulting in the smooth loss landscape across domains (= heterogeneous
local distributions in FL context). In Figure 14, we analyze the loss landscape using the parameter
perturbation with Gaussian noise and the visualization using top-2 eigenvector axis, as in [38]. Inter-
estingly, our FedNTD also smoothed the local landscape, implying that the local training does not
require significant parameter change to fit its local distribution. We expect that one can get insight
into the intriguing property in the loss space geometry to tackle the data heterogeneity problem for
future work.

2https://github.com/mmendiet/FedAlign

22

(a) Loss change by perturbation (b) Visualized loss landscape with Hessian eigenvectors ϵ0 and ϵ1.

Figure 14: Loss space of learned model (Client 16 / LDA α “ 0.5).

K Effect of FedNTD Hyperparameters
In Figure 15, we plot the effect of FedNTD hyperparameters on the performance. The result shows
that although FedNTD is not much sensitive to the choice of β, too small τ significantly drops
the accuracy., which may be due to the too stiff not-true probability targets. The effect of both
hyperparameters on the forgetting measure F is in Figure 16.

Figure 15: CIFAR-10 (Sharding: s “ 2, LDA: α “ 0.1) test accuracy by varying FedNTD
hyperparameter τ and β values.

Figure 16: Forgetting F of FedNTD on CIFAR-10 by varying hyperparameters. The dotted lines
stands for the baseline FedAvg.

L MSE Loss for Not-True Distillation
We explore how the MSE loss on Not-True Distillation acts. In Table 14, the MSE version FedNTD
(FedNTD (MSE)) shows better accuracy and less forgets as β grows, but at some degree, the model
diverges; thereby cannot reach the original FedNTD, which exploits softmax and KL-Divergence
loss to distill the knowledge in the global model. We explain it as matching all not-true logits using
MSE logits is too strict to learn the global knowledge since the dark knowledge is mainly contained
in top-k logits. FedNTD controls the class signals by using temperature-softened softmax.

Table 14: CIFAR-10 (Sharding s=2) results by varying β for FedNTD (MSE) and FedNTD

Method FedAvg FedNTD (MSE) FedNTD
β 0.0 0.001 0.005 0.01 0.05 0.1 0.3 1.0

Accuracy 40.14 40.53 42.39 43.02 44.41 44.27 Failure 52.61
Forgetting F 0.59 0.58 0.56 0.55 0.53 0.53 Failure 0.43

23

M Visualization of Feature Alignment

To analyze feature alignment, we regard a neuron as the basic feature unit and identify individual
neuron’s class preference as follows:

H “ rh1, h2 . . . hCs, where hc “

Nc
ÿ

i“1

Opxc,iq. (19)

Here, the Opxc,iq denotes the neuron’s activation on data xi of class c, and Nc is the number of
samples for class c. For each neuron, we obtain the largest class index argmaxipHiq, to identify the
most dominantly encoded class semantics. A similar measure is adopted in [53]. In Figure 17, we
visualize the last layer neurons’ class preference. In both IID and NIID (Sharding s “ 2) cases, the
features are more well-aligned in FedNTD.

Figure 17: Visualized server test accuracy of FedAvg and FedNTD on CIFAR-10 (Sharding=2).

N Local features visualization: Hypersphere

To figure out forgetting of knowledge in the global model, we now analyze how the representation
on the global distribution changes during local training. To this end, we design a straightforward
experiment that shows the change of features on the unit hypersphere. More specifically, we modified
the network architecture to map CIFAR-10 (Sharding s “ 2) input data to 2-dimensional vectors and
normalize them to be aligned on the unit hypersphere S1 “ tx P R2 : ||x||2 “ 1u. We then estimate
their probability density function. The global model is learned for 100 rounds of communication on
homogeneous locals (i.i.d. distributed) and distributed to heterogeneous locals with different local
distributions. The result is in Figure 18

Figure 18: Features of CIFAR-10 (Sharding s “ 2) test samples on S2. We plot the feature
distribution with Gaussian kernel density estimation (KDE) in R2 and arctanpy, xq for each point
px, yq P S1. The distributed global model (first column) is trained on heterogeneous locals (middle 3
columns) and aggregated by parameter averaging (last column).

24

O Local features visualization: T-SNE
We further conduct an additional experiment on features of the trained local model. we trained the
global server model for 100 communication rounds on heterogeneous (NIID) locals and distributed
over 10 homogeneous (IID) locals and 10 heterogeneous (NIID) locals. In the homogeneous local
case (Figure 19a, Figure 20a), the features are clustered by classes, regardless of which local they
are learned from. On the other hand, in the heterogeneous local case (Figure 19b, Figure 20b), the
features are clustered by which local distribution is learned. In Figure 21, we visualize the effect of
FedNTD on the local features.

(a) Homogeneous Locals (colored by classes) (b) Heterogeneous Locals (colored by locals)

Figure 19: T-SNE visualization of features on CIFAR-10 test samples after local training on (a) homogeneous
local distributions and (b) heterogeneous local distributions. The T-SNE is conducted together for the test sample
features of global and 10 local models.

(a) Homogeneous Locals (colored by classes) (b) Heterogeneous Locals (colored by locals)

Figure 20: T-SNE visualization of feature region shifting on CIFAR-10 test samples after local training on (a)
Homogeneous local distributions and (b) heterogeneous local distributions. The T-SNE is conducted together for
the test sample features of global and 10 local models.

(a) colored by different algorithms (b) colored by classes

Figure 21: T-SNE on CIFAR-10 testset samples fter local training on heterogeneous local distributions by
FedAvg and FedNTD. The T-SNE is conducted together for the test sample features of global and 20 local
models (10 for FedAvg and 10 for FedNTD).

25

P Proof of Proposition 1

Proof. Since the class-wise gradient gi are mutually orthogonal and have uniform weight, from the
unitarily invariance of the 2-norm we have:

Λpβq “

1
K

řK
k“1 }pk ` βp̃k}2

}
řK

k“1 p
k ` βp̃k}2

p♠q
“

1

K

řK
k“1

řC
c“1ppkpcq ` βp̃kpcqq2

řC
c“1p

řK
k“1 p

kpcq ` βp̃kpcqq2
(20)

p♣q
“

1

p1 ` βq2

C
K3

K
ÿ

k“1

C
ÿ

c“1

ppkpcq ` βp̃kpcqq2 (21)

“
1

p1 ` βq2

C
K3

K
ÿ

k“1

C EcPrCsrpp
k ` βp̃kq2s “

1

p1 ` βq2

C2

K3

K
ÿ

k“1

EcPrCsrpp
k ` βp̃kq2s (22)

“
1

p1 ` βq2

C2

K3

K
ÿ

k“1

´

VarcPrCsrp
k ` βp̃ks ` p1 ` βq2

¯

(23)

“
1

p1 ` βq2

C2

K3

K
ÿ

k“1

¨

˝VarcPrCs

«

pk ` β
1 ´ pk

C ´ 1

ff

˛

‚`
C2

K2
(24)

“
1

p1 ` βq2

C2

K3

K
ÿ

k“1

ˆ

`

1 ´
β

C ´ 1

˘2
VarcPrCsrp

ks

˙

`
C2

K2
. (25)

Where the p♠q follows from pk “
řC

c“1 p
kpcqekpP ∆Cq, and p♣q holds because we are assuming

uniform global data distribution. That is, we have the following equation from the symmetry over
classes.

K
ÿ

k“1

pkpcq “

K
ÿ

k“1

p̃kpcq “
K

C
. (26)

By differentiating the equation (25), we have:

BΛpβq

Bβ
“

¨

˝

C2

K3pC ´ 1q2

K
ÿ

k“1

VarcPrCsrp
ks

˛

‚

B

Bβ

pC ´ p1 ` βqq2

p1 ` βq2
(27)

“

¨

˝

C2

K3pC ´ 1q2

K
ÿ

k“1

VarcPrCsrp
ks

˛

‚

˜

´2
C2

p1 ` βq3
` 2

C
p1 ` βq2

¸

(28)

“ ´

¨

˝

2C3

K3pC ´ 1q2

K
ÿ

k“1

VarcPrCsrp
ks

˛

‚

ˆ

C
p1 ` βq3

´
1

p1 ` βq2

˙

. (29)

By defining MK,C,p ą 0 in the first bracket, we have:

BΛ

Bβ
“ ´MK,C,p

ˆ

C
p1 ` βq3

´
1

p1 ` βq2

˙

, (30)

for all β ě 0. If β ď C{2 ´ 1, we have C{p1 ` βq ě 2, and get following desired inequality:

BΛ

Bβ
ď ´MK,C,p

1

p1 ` βq2
. (31)

Q Proof of Proposition 2

Proof. First, we show the first equation. The summation for the true class is:

Ltrue
KL “ ´

1

N

N
ÿ

i“1

qg,iτ pyiq log

«

ql,iτ pyiq

qg,iτ pyiq

ff

(32)

26

Note that
řN

i“1 “
řC

c“1

ř

iPSc
and i P Sc ñ yi “ c. By using these, we get:

Ltrue
KL “ ´

1

N

N
ÿ

i“1

qg,iτ pyiq log

«

ql,iτ pyiq

qg,iτ pyiq

ff

“ ´
1

N

C
ÿ

c“1

ÿ

iPSc

qg,iτ pcq log

«

ql,iτ pcq

qg,iτ pcq

ff

(33)

“ ´

C
ÿ

c“1

pc ¨

¨

˝

ÿ

iPSc

1

|Sc|
qg,iτ pcq log

«

ql,iτ pcq

qg,iτ pcq

ff

˛

‚ (34)

“ ´

C
ÿ

c“1

pc ¨ EiPSc

»

–qg,iτ pcq log

«

ql,iτ pcq

qg,iτ pcq

ff

fi

fl . (35)

Next, we derive the not-true part of the Kullback-Leibler divergence:

´NLnot-true
KL “

N
ÿ

i“1

C
ÿ

c1‰yi

qg,iτ pc1q log

«

ql,iτ pc1q

qg,iτ pc1q

ff

. (36)

By using the double summation technique (‹), we have:

´NLnot-true
KL “

C
ÿ

c“1

ÿ

iPSc

C
ÿ

c1‰c

qg,iτ pc1q log

«

ql,iτ pc1q

qg,iτ pc1q

ff

“

C
ÿ

c“1

C
ÿ

c1‰c

ÿ

iPSc

qg,iτ pc1q log

«

ql,iτ pc1q

qg,iτ pc1q

ff

(37)

p‹q
“

C
ÿ

c1“1

C
ÿ

c‰c1

ÿ

iPSc

qg,iτ pc1q log

«

ql,iτ pc1q

qg,iτ pc1q

ff

“

C
ÿ

c“1

C
ÿ

c1‰c

ÿ

iPSc1

qg,iτ pcq log

«

ql,iτ pcq

qg,iτ pcq

ff

(38)

“ pC ´ 1q

C
ÿ

c“1

ř

c1‰c |S 1
c|

C ´ 1

¨

˝

ÿ

c1‰c

1
ř

c1‰c |Sc1 |

ÿ

iPS1
c

qg,iτ pcq log

«

ql,iτ pcq

qg,iτ pcq

ff

˛

‚ (39)

“ pC ´ 1q

C
ÿ

c“1

N p̃c ¨ EiRSc

»

–qg,iτ pcq log

«

ql,iτ pcq

qg,iτ pcq

ff

fi

fl . (40)

Therefore, we get our desired result:

Lnot-true
KL

C ´ 1
“

C
ÿ

c“1

p̃cEiRSc

»

–qg,iτ pcq log

«

ql,iτ pcq

qg,iτ pcq

ff

fi

fl . (41)

R Derivation of Equation 15

Proof. The main part of the proof is well-known inequality for smooth functions, which is derived
from the Taylor approximation. Since Li : W Ă Rn Ñ R is smooth function, we have

Lipwq “ Lipwiq ` ∇Lipwiq ¨ pw ´ wiq `

ż 1

0

p1 ´ tqpw ´ wiq
J ¨ ∇2Lipwi ` tpw ´ wiqq ¨ pw ´ wiqdt

(42)

“ Lipwiq `

ż 1

0

p1 ´ tqpw ´ wiq
J ¨ ∇2Lipwi ` tpw ´ wiqq ¨ pw ´ wiqdt (43)

ď Lipwiq ` λ

ż 1

0

p1 ´ tqpw ´ wiq
J ¨ pw ´ wiqdt (∇2Lipwq ĺ λ)

“ Lipwiq `
λ

2
∥w ´ wi∥2 . (44)

27

S Proof of Proposition 3

Proof. To show this corollary, enough to show that the below minimax problem is attained on the
uniform distribution.

inf
pP∆C

sup
PPΠ

Ep1„Pr∥p1 ´ p∥s. (45)

Let us define p ÞÑ supPPΠ Ep1„Pr∥p1 ´ p∥s as F ppq. First, we check the continuity of F . That is:

|F pp2q ´ F pp1q| ď

ˇ

ˇ

ˇ

ˇ

sup
PPΠ

Ep1„Pr∥p1 ´ p2∥s ´ sup
PPΠ

Ep1„Pr∥p1 ´ p1∥s

ˇ

ˇ

ˇ

ˇ

(46)

ď sup
PPΠ

ˇ

ˇ

ˇ

ˇ

Ep1„Pr∥p1 ´ p2∥ ´ ∥p1 ´ p1∥s

ˇ

ˇ

ˇ

ˇ

ď sup
PPΠ

Ep1„Pr|∥p1 ´ p2∥ ´ ∥p1 ´ p1∥|s

(47)
ď sup

PPΠ
Ep1„Pr∥p1 ´ p2∥s ď ∥p1 ´ p2∥ . (48)

Therefore, since the function F is 1-Lipschitz, it is clearly continuous. Now, since ∆C is compact, we
have a minimizer p0 P ∆C of above minimax value. Since norm and expectation is convex function,
F is convex. Therefore, for arbitrary minimizer p0 and cycle σ “ p1 2 ¨ ¨ ¨ Cq P SC , we have:

F punif. distq “ F

˜

1

C
ÿ

i

σipp0q

¸

ď
1

C
ÿ

i

F pσipp0qq . (49)

Now, we argue that F pσipp0qq “ F pp0q. From the definition of F ,

F pσipp0qq “ sup
PPΠ

Ep1„Pr∥p1 ´ σipp0q∥s “ sup
PPΠ

Ep1„Pr∥σipσ´ipp1qq ´ σipp0q∥s (50)

“ sup
PPΠ

Ep1„Pr∥σipσ´ipp1qq ´ σipp0q∥s (51)

“ sup
PPΠ

ż

∆C

∥σipσ´ipp1qq ´ p0∥ dPpp1q (52)

“ sup
PPΠ

ż

∆C

∥σ´ipp1q ´ p0∥ dPpσipσ´ipp1qqq (53)

“ sup
PPΠ

ż

∆C

∥p2 ´ p0∥ dPpσipp2qq (54)

“ sup
PPΠ

ż

∆C

∥p2 ´ p0∥ dPpp2q “ F pp0q . (Π is SC-invariant (σi P SC))

(55)

From the equation equation (49), we have:

F punif. distq ď
1

C
ÿ

i

F pσipp0qq “
1

C
ÿ

i

F pp0q “ F pp0q . (56)

Since p0 is minimizer, we can argue that the uniform distribution also attains the minimum.

28

	Table of Notations
	Experimental Setups
	Model Architecture
	Datasets
	Learning Setups
	Algorithm Implementation Details
	Non-IID Partition Strategy

	Conceptual comparison to prior works
	Related Work: Continual Learning
	Server Prediction Consistency
	Experiment Table with Standard Deviation
	Additional Experiments
	Effect of Local Epochs
	Effect of Sampling Ratio
	Results on ResNet-10 Model

	Comparison to KD
	Personalized performance of FL methods
	Comparison to FedAlign
	Effect of FedNTD Hyperparameters
	MSE Loss for Not-True Distillation
	Visualization of Feature Alignment
	Local features visualization: Hypersphere
	Local features visualization: T-SNE
	Proof of Proposition 1
	Proof of Proposition 2
	Derivation of Equation 15
	Proof of Proposition 3

