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Abstract

Contextual bandit algorithms have been recently studied under the federated learn-
ing setting to satisfy the demand of keeping data decentralized and pushing the
learning of bandit models to the client side. But limited by the required communi-
cation efficiency, existing solutions are restricted to linear models to exploit their
closed-form solutions for parameter estimation. Such a restricted model choice
greatly hampers these algorithms’ practical utility. In this paper, we take the first
step to addressing this challenge by studying generalized linear bandit models un-
der the federated learning setting. We propose a communication-efficient solution
framework that employs online regression for local update and offline regression for
global update. We rigorously proved, though the setting is more general and chal-
lenging, our algorithm can attain sub-linear rate in both regret and communication
cost, which is also validated by our extensive empirical evaluations.

1 Introduction

As a classic model for sequential decision making problems, contextual bandit has been widely used
for a variety of real-world applications, including recommender systems [19], display advertisement
[21] and clinical trials [7]. While most existing bandit solutions are designed under a centralized
setting (i.e., data is readily available at a central server), in response to the increasing application
scale and public concerns of privacy, there is increasing research effort on federated bandit learning
lately [28, 6, 27, 11, 17], where N clients collaborate with limited communication bandwidth to
minimize the overall cumulative regret incurred over a finite time horizon T , while keeping each
client’s raw data local. Compared with standard federated learning [23, 13] that works with fixed
datasets, federated bandit learning is characterized by its online interactions with the environment,
which continuously provides new data samples to the clients over time. This brings in new challenges
in addressing the conflict between the need of timely data/model aggregation for regret minimization
and the need of communication efficiency with decentralized data. A carefully designed model update
method and communication strategy become vital to strike this balance.

Existing federated bandit learning solutions only partially addressed this challenge by considering
simple bandit models, like context-free bandit [27] and contextual linear bandit [28, 6, 17], where
closed-form solution for both local and global model update exists. Therefore, efficient communica-
tion for global bandit model update is realized by directly aggregating local sufficient statistics, such
that the only concern left is how to control the communication frequency over time horizon T . How-
ever, such a solution framework does not apply to the more complicated bandit models that are often
preferred in practice, such as generalized linear bandit (GLB) [8] or neural bandit [30], where only
iterative solutions exist for parameter estimation (e.g., gradient-based optimization). To enable joint
model estimation, now the learning system needs to solve distributed optimization for multiple times
as new data is collected from the environment, and each requires iterative gradient/model aggregation
among clients. This is much more expensive compared with linear models, and it naturally leads to
the question: whether a communication efficient solution to this challenging problem is still possible?
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In this paper, we answer this question affirmatively by proposing the first provably communication
efficient algorithm for federated GLB that only requires Õ(

√
T ) communication cost, while still

attaining the optimal order of regret. Our proposed algorithm employs a combination of online and
offline regression, with online regression adjusting each client’s model using its newly collected data,
and offline (distributed) regression occasionally soliciting local gradients from all N clients for joint
model estimation when sufficient amount of new data has been accumulated. In order to balance
exploration and exploitation in arm selection, we propose a novel way to construct the confidence
set based on the sequence of offline-and-online model updates that each client has received. The
initialization of online regression with offline regression introduces dependencies that break the
standard martingale argument, which requires proof techniques unique to this paper.

We also explored other non-trivial solution ideas to further justify our current design. Specifically, in
practice, a common way to update the deployed model for applications with streaming data is to set a
schedule and periodically re-train the model using iterative optimization methods. For comparison,
we propose and rigorously analyze a federated GLB algorithm designed based on this idea, as well
as a variant that further enables online updates on the clients. We also consider another solution
idea motivated by distributed/batched online convex optimization, which is characterized by lazy
online updates over batches of data. Moreover, extensive empirical evaluations on both synthetic and
real-world datasets are performed to validate the effectiveness of our algorithm.

2 Related Work

GLB, as an important extension of linear bandit models, has demonstrated encouraging performance
in modeling binary rewards (such as clicks) that are ubiquitous in real-world applications [18]. The
study of GLB under a centralized setting dates back to Filippi et al. [8], who proposed a UCB-type
algorithm that achieved Õ(d

√
T ) regret. Li et al. [20] later proposed two improvements: a similar

UCB-type algorithm that improves the result of [8] by a factor of O(log T ), which has been popularly
used in practice as it avoids the projection step needed in [8]; and another impractical algorithm that
further improves the result by a factor of O(

√
d) assuming fixed number of arms. To improve the

time and space complexity of the aforementioned GLB algorithms, followup works adopted online
regression methods. In particular, motivated by the online-to-confidence-set conversion technique
from [2], Jun et al. [12] proposed both UCB and Thompsan sampling algorithms with online Newton
step, and Ding et al. [4] proposed a Thompson sampling algorithm with online gradient descent,
which, however, requires an additional context regularity assumption to obtain a sub-linear regret.

GLB under federated/distributed setting still remains under-explored. The most related works are
the federated/distributed linear bandits [16, 28, 6, 11, 17]. In these works, thanks to the existence of
closed-form solution for linear models, the clients only communicate their local sufficient statistics for
global model update. Korda et al. [16] considered a peer-to-peer (P2P) communication network and
assumed the clients form clusters, i.e., each cluster is associated with a unique bandit problem. But as
they only focused on reducing per-round communication, the communication cost is still linear over
time. Huang et al. [11] considered a star-shaped communication network as in our paper, but their
proposed phase-based elimination algorithm only works in fixed arm set setting. The closest works
to ours are [28, 6, 17], which uses event-triggered communication protocols to obtain sub-linear
communication cost over time for federated linear bandit with a time-varying arm set.

Another related line of research is the standard federated learning that considers offline supervised
learning problems [13]. Since its debut in [23], FedAvg has become the most popularly used algorithm
for offline federated learning. However, despite its popularity, several works [22, 14, 24] identified
that FedAvg suffers from a client-drift problem when the clients’ data are non-IID (which is an
important signature of our case), i.e., local iterates in each client drift towards their local minimum.
This leads to a sub-optimal convergence rate of FedAvg: for example, one has to suffer a sub-linear
convergence rate for strongly convex and smooth losses, though a linear convergence rate is expected
under a centralized setting. To alleviate this, Pathak and Wainwright [26] proposed an operator
splitting procedure to guarantee linear convergence to a neighborhood of the global minimum. Later,
Mitra et al. [24] introduced variance reduction techniques to guarantee exact linear convergence to
the global minimum.
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3 Preliminaries

In this section, we first introduce the general problem formulation of federated bandit learning, and
discuss the existing solutions under the linear reward assumption. Then we formulate the federated
GLB problem considered in this paper, followed by detailed discussions about the new challenges
compared with its linear counterpart.

3.1 Federated Bandit Learning

Consider a learning system with 1) N clients responsible for taking actions and receiving correspond-
ing reward feedback from the environment, e.g., each client being an edge device directly interacting
with a user, and 2) a central server responsible for coordinating the communication between the
clients for joint model estimation.

At each time step t = 1, 2, ..., T , all N clients interact with the environment in a round-robin
manner, i.e., each client i ∈ [N ] chooses an arm xt,i from its time-varying candidate set At,i =

{x(1)
t,i ,x

(2)
t,i , . . . ,x

(K)
t,i }, where x

(a)
t,i ∈ Rd denotes the context vector associated with the a-th arm

for client i at time t. Without loss of generality, we assume ||x(a)
t,i ||2 ≤ 1,∀i, a, t. Then client i

receives the corresponding reward yt,i ∈ R from the environment, which is drawn from the reward
distribution governed by an unknown parameter θ? ∈ Rd (assume ‖θ?‖ ≤ S), i.e., yt,i ∼ pθ?(y|x(a)

t,i ).
The interaction between the learning system and the environment repeats itself, and the goal of the
learning system is to minimize the cumulative (pseudo) regret over all N clients in the finite time
horizon T , i.e., RT =

∑T
t=1

∑N
i=1 rt,i, where rt,i = maxx∈At,i E[y|x]−E[yt,i|xt,i].

In a federated learning setting, the clients cannot directly communicate with each other, but through
the central server, i.e., a star-shaped communication network. Raw data collected by each client
i ∈ [N ], i.e., {(xs,i, ys,i)}s∈[T ], is stored locally and cannot be shared with anyone else. Instead, the
clients can only communicate the parameters of the learning algorithm, e.g., models, gradients, or
sufficient statistics; and the communication cost is measured by the total number of times data being
transferred across the system up to time T , which is denoted as CT .

3.2 Federated Linear Bandit

Prior works have studied communication-efficient federated linear bandit [28, 6], i.e., the reward
function is a linear model yt,i = x>t,iθ? + ηt,i, where ηt,i denotes zero-mean sub-Gaussian noise.
Consider an imaginary centralized agent that has direct access to the data of all clients, so that it can
compute the global sufficient statistics At =

∑
i∈[N ]

∑
s∈[t] xs,ix

>
s,i, bt =

∑
i∈[N ]

∑
s∈[t] xs,iys,i.

Then the cumulative regret incurred by this distributed learning system can match that under a
centralized setting, if all N clients select arms based on the global sufficient statistics {At, bt}.
However, it requires N2T communication cost for the immediate sharing of each client’s update to
the sufficient statistics with all other clients, which is expensive for most applications.

To ensure communication efficiency, prior works like DisLinUCB [28] let each client i maintain
a local copy {At−1,i, bt−1,i} for arm selection, which receives immediate local update using each
newly collected data sample, i.e., At,i = At−1,i + xt,ix

>
t,i, bt,i = bt−1,i + xt,iyt,i. Then client i

checks whether the event (t− tlast) log(
detAt,i
detAtlast

) > D is true, where tlast denotes the time step of last
global update. If true, a new global update is triggered, such that the server will collect all clients’
local update since tlast, aggregate them to compute {At, bt}, and then synchronize the local sufficient
statistics of all clients, i.e., set {At,i, bt,i} = {At, bt},∀i ∈ [N ].

3.3 Federated Generalized Linear Bandit

In this paper, we study federated bandit learning with generalized linear models, i.e., the conditional
distribution of reward y given context vector x is drawn from the exponential family [8, 20]:

pθ?(y|x) = exp

(
yx>θ? −m(x>θ?)

g(τ)
+ h(y, τ)

)
(1)
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Figure 1: Illustration of FedGLB-UCB algorithm, which uses online regression for local update, i.e.,
immediately update each client’s local model θt,i using its newly collected data sample, and uses
offline regression for global update, i.e., synchronize all N clients to a globally updated model θtlast

using all the data samples collected so far.

where τ ∈ R+ is a known scale parameter. Given a function f : R → R, we denote its first and
second derivatives by ḟ and f̈ , respectively. It is known that ṁ(x>θ?) = E[y|x] := µ(x>θ?), which
is called the inverse link function, and m̈(x>θ?) = V(y|x>θ?). Based on Eq.(1), the reward yt,i
observed by client i at time t can be equivalently represented as yt,i = µ(x>t,iθ?) + ηt,i, where ηt,i
denotes the sub-Gaussian noise. Then we denote the negative log-likelihood of yi,t given xi,t as
l(x>t,iθ?, yt,i) = − log pθ?(yt,i|xt,i) = −yt,ix>t,iθ? +m(x>t,iθ?). In addition, we adopt the following
two assumptions about the reward, which are standard for GLB [8].
Assumption 1. The link function µ is continuously differentiable on (−S, S), kµ-Lipschitz on [−S, S],
and infz∈[−S,S] µ̇(z) = cµ > 0.

Assumption 2. E[ηt,i|Ft,i] = 0,∀t, i, where Ft,i = σ{xt,i, [xs,j , ys,j ](s,j):s<t∩j=i} denotes the
σ-algebra generated by client i’s previously pulled arms and observed rewards, and maxt,i |ηt,i| ≤
Rmax for some constant Rmax > 0.

New Challenges Compared with federated linear bandit discussed in Section 3.2, new challenges
arise in designing a communication-efficient algorithm for federated GLB due to the absence of a
closed form solution:

• Iterative communication for global update: compared with the global update for federated
linear bandit that only requires one round of communication to share the sufficient statistics,
now it takes multiple iterations of gradient aggregation to obtain converged global optimiza-
tion. Moreover, as the clients collect more data samples over time during bandit learning,
the required number of iterations for convergence also increases.

• Drifting issue with local update: during local model update, iterative optimization using
only local gradient can push the updated model away from the global model, i.e., forget the
knowledge gained during previous communications [15].

4 Methodology

In this section we propose the first algorithm for federated GLB that addresses the aforementioned
challenges. We rigorously prove that it attains sub-linear rate in T for both regret and communication
cost. In addition, we propose and analyze different variants of our algorithm to facilitate understanding
of our algorithm design.

4.1 FedGLB-UCB Algorithm

To ensure communication-efficient model updates for federated GLB, we propose to use online
regression for local update, i.e., update each client’s local model only with its newly collected data
samples, and use offline regression for global update, i.e., solicit all clients’ local gradients for
joint model estimation. Based on the resulting sequence of offline-and-online model updates, the
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confidence ellipsoid for θ? is constructed for each client to select arms using the OFUL principle.
We name this algorithm Federated Generalized Linear Bandit with Upper Confidence Bound, or
FedGLB-UCB for short. We illustrate its key components in Figure 1 and describe its procedures in
Algorithm 1. In the following, we discuss about each component of FedGLB-UCB in details.

Algorithm 1 FedGLB-UCB
1: Input: threshold D, regularization parameter λ > 0, δ ∈ (0, 1) and cµ.
2: Initialize ∀i ∈ [N ]: A0,i = λ

cµ
I ∈ Rd×d, b0,i = 0 ∈ Rd, θ0,i = 0 ∈ Rd,∆A0,i = 0 ∈ Rd×d;

A0 = λ
cµ

I ∈ Rd×d, b0 = 0 ∈ Rd, θ0 = 0 ∈ Rd, tlast = 0

3: for t = 1, 2, ..., T do
4: for client i = 1, 2, ..., N do
5: Observe arm set At,i for client i
6: Select arm xt,i ∈ At,i by Eq.(5), and observe reward yt,i
7: Update client i: At,i = At−1,i + xt,ix

>
t,i, ∆At,i = ∆At−1,i + xt,ix

>
t,i

8: if (t− tlast) log
det(At,i)

det(At,i−∆At,i)
< D then

9: Client i: perform local update θt,i = ONS-Update(θt−1,i, At,i,∇l(x>t,iθt−1,i, yt,i)),
bt,i = bt−1,i + xt,ix

>
t,iθt−1,i

10: else
11: Clients ∀i ∈ [N ]: send ∆At,i to server, and reset ∆At,i = 0
12: Server: compute At = Atlast +

∑N
i=1 ∆At,i

13: Server: perform global update θt = AGD-Update(θtlast , Jt) (see Eq.(3) for the choice of
Jt), bt = btlast +

∑N
i=1 ∆At,iθt, and set tlast = t

14: Clients ∀i ∈ [N ]: set θt,i = θt, At,i = At, bt,i = bt

• Local update. As mentioned earlier, iterative optimization over local dataset {(xs,i, ys,i)}s∈[t]

leads to the drifting issue that pushes the updated model to the local optimum. Due to the small
size of this local dataset, the confidence ellipsoid centered at the converged model has increased
width, which leads to increased regret in bandit learning. However, as we will prove in Section 4.2,
completely disabling local update and restricting all clients to use the previous globally updated
model for arm selection is also a bad choice, because the learning system will then need more frequent
global updates to adapt to the growing dataset.

To enable local update while alleviating the drifting issue, we adopt online regression in each client,
such that the local model estimation θt,i is only updated for one step using the sample (xt,i, yt,i)
collected at time t. Prior works [2, 12] showed that UCB-type algorithms with online regression
can attain comparable cumulative regret to the standard UCB-type algorithms [1, 20], as long as
the selected online regression method guarantees logarithmic online regret. As the negative log-
likelihood loss defined in Section 3.3 is exp-concave and online Newton step (ONS) is known to attain
logarithmic online regret in this case [10, 12], ONS is chosen for the local update of FedGLB-UCB
and its description is given in Algorithm 2. At time step t, after client i pulls an arm xt,i ∈ At,i
and observes the reward yt,i, its model θt−1,i is immediately updated by the ONS update rule (line
9 in Algorithm 1), where∇l(x>t,iθt−1,i, yt,i) denotes the gradient w.r.t. θt−1,i, and At,i denotes the
covariance matrix for client i at time t.

Algorithm 2 ONS-Update
1: Input: θt−1,i, At,i,∇l(x>t,iθt−1,i, yt,i)

2: θ′t,i = θt−1,i − 1
cµ
A−1
t,i ∇l(x>t,iθt−1,i, yt,i)

3: θt,i = arg minθ∈Bd(S) ||θ − θ′t,i||2At,i
4: Output: θt,i

• Global update The global update of FedGLB-UCB requires communication among the N clients,
which imposes communication cost in two aspects: 1) each global update for federated GLB requires
multiple rounds of communication among N clients, i.e., iterative aggregation of local gradients; and
2) global update needs to be performed for multiple times over time horizon T , in order to adapt to
the growing dataset collected by each client during bandit learning. Consider a particular time step
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t ∈ [T ] when global update happens, the distributed optimization objective is:

min
θ∈Θ

Ft(θ) :=
1

N

N∑
i=1

Ft,i(θ) (2)

where Ft,i(θ) = 1
t

∑t
s=1 l(x

>
s,iθ, ys,i) + λ

2t ||θ||
2
2 denotes the average regularized negative log-

likelihood loss for client i ∈ [N ], and λ > 0 denotes the regularization parameter. Based on
Assumption 1, {Ft,i(θ)}i∈[N ] are λ

Nt -strongly-convex and (kµ+ λ
Nt )-smooth in θ (proof in Appendix

A), and we denote the unique minimizer of Eq.(2) as θ̂MLE
t . In this case, it is known that the

number of communication rounds Jt required to attain a specified sub-optimality εt, such that
Ft(θ)−minθ∈Θ Ft(θ) ≤ εt, has a lower bound Jt = Ω

(√
(kµNt)/λ+ 1 log 1

εt

)
[3], which means

Jt increases at least at the rate of
√
Nt. This lower bound is matched by the distributed version of

accelerated gradient descent (AGD) [25]:

Jt ≤ 1 +
√

(kµNt)/λ+ 1 log
(kµ + 2λ

Nt
)‖θ(1)t − θ̂MLE

t ‖22
2εt

(3)

where the superscript (i) denotes the i-th iteration of AGD.

In order to minimize the number of communication rounds in one global update, AGD is chosen as
the offline regression method for FedGLB-UCB, and its description is given in Algorithm 3 (subscript
t is omitted for simplicity). However, other federated/distributed optimization methods can be readily
used in place of AGD, as our analysis only requires the convergence result of the adopted method.
We should note that εt is essential to the regret-communication trade-off during the global update at
time t: a larger εt leads to a wider confidence ellipsoid, which increases regret, while a smaller εt
requires more communication rounds Jt, which increases communication cost. In Section 4.2, we
will discuss the proper choice of εt to attain desired trade-off between the two conflicting objectives.

Algorithm 3 AGD-Update
1: Input : initial θ, number of inner iterations J

2: Initialization: set θ(1) = ϑ(1) = θ, and define the sequences {υj :=
1+
√

1+4υ2
j−1

2 }j∈[J] (with
υ0 = 0), and {γj =

1−υj
υj+1
}j∈[J]

3: for j = 1, 2, . . . , J do
4: Clients compute and send local gradient {∇Fi(θ(j))}i∈[N ] to the server
5: Server aggregates local gradients∇F (θ(j)) = 1

N

∑N
i=1∇Fi(θ(j)), and execute the following

update rule to get θ(j+1):
• ϑ(j+1) = θ(j) − 1

kµ+ λ
Nt

∇F (θ(j))

• θ(j+1) = (1− γj)ϑ(j+1) + γjϑ
(j)

6: Output: arg minθ∈Bd(S)‖gt(θ(J+1))− gt(θ)‖A−1
t

To reduce the total number of global updates over time horizon T , we adopt the event-triggered
communication from [28], such that global update is triggered if the following event is true for any
client i ∈ [N ] (line 8):

(t− tlast) log
det(At,i)

det(At,i −∆At,i)
> D (4)

where ∆At,i denotes client i’s local update to its covariance matrix since last global update at tlast, and
D > 0 is the chosen threshold for the event-trigger. During the global update, the model estimation
θt,i, covariance matrix At,i and vector bt,i for all clients i ∈ [N ] will be updated (line 11-14). We
should note that the LHS of Eq.(4) is essentially an upper bound of the cumulative regret that client
i’s locally updated model has incurred since tlast. Therefore, this event-trigger guarantees that a global
update only happens when effective regret reduction is possible.

• Arm selection To balance exploration and exploitation during bandit learning, FedGLB-UCB
uses the OFUL principle for arm selection [1], which requires the construction of a confidence
ellipsoid for each client i. We propose a novel construction of the confidence ellipsoid based on
the sequence of model updates that each client i has received up to time t: basically, there are 1)
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one global update at tlast, i.e., the joint offline regression across all clients’ accumulated data till tlast:
{(xs,i, ys,i)}s∈[tlast],i∈[N ], which resets all clients’ local models to θtlast ; and 2) multiple local updates
from tlast + 1 to t, i.e., the online regression on client i’s own data sequence {(xs,i, ys,i)}s∈[tlast+1,t]

to get {θs,i}s∈[tlast+1,t] step by step. This can be more easily understood by the illustration in Figure
1. The resulting confidence ellipsoid is centered at the ridge regression estimator θ̂t,i = A−1

t,i bt,i
[2, 12], which is computed using the predicted rewards given by the past sequence of model updates
{θtlast} ∪ {θs,i}s∈[tlast+1,t] (see the update of bt,i in line 9 and 13 of Algorithm 1). Then at time step t,
client i selects the arm that maximizes the UCB score:

xt,i = arg max
x∈At,i

x>θ̂t−1,i + αt−1,i||x||A−1
t−1,i

(5)

where αt−1,i is the parameter of the confidence ellipsoid given in Lemma 4.2. Note that compared
with standard federated/distributed learning where clients only need to communicate gradients for
joint model estimation, in our problem, due to the time-varying arm set, it is also necessary to
communicate the confidence ellipsoid among clients, i.e., At ∈ Rd×d and bt ∈ Rd (line 14 in
Algorithm 1), as the clients need to be prepared for all possible arms x ∈ Rd that may appear in
future for the sake of regret minimization.

4.2 Theoretical Analysis

In this section, we construct the confidence ellipsoid based on the offline-and-online estimators
described in Section 4.1. Then we analyze the cumulative regret and communication cost of FedGLB-
UCB, followed by theoretical comparisons with its different variants.

• Construction of confidence ellipsoid Compared with prior works that convert a sequence of
online regression estimators to confidence ellipsoid [2, 12], our confidence ellipsoid is built on the
combination of an offline regression estimator θtlast for global update, and the subsequent online
regression estimators {θs−1,i}s∈[tlast+1,t] for local updates on each client i. This construction is new
and requires proof techniques unique to our proposed solution. In the following, we highlight the key
steps, and refer our readers to the appendix for details.

To simplify the use of notations, we assume without loss of generality that the global update at
tlast is triggered by the N -th client, such that no more new data will be collected at tlast, i.e., the
first data sample obtained after the global update has index tlast + 1. We start our construction
by considering the following loss difference introduced by the global and local model updates:∑tlast
s=1

∑N
i=1

[
l(x>s,iθtlast , ys,i) − l(x>s,iθ?, ys,i)

]
+
∑t
s=tlast+1

[
l(x>s,iθs−1,i, ys,i) − l(x>s,iθ?, ys,i)

]
,

where the first term is the loss difference between the globally updated model θtlast and θ?, and
the second term is between the sequence of locally updated models {θs−1,i}s∈[tlast+1,t] and θ?. This
extends the definition of online regret used in the construction in [2, 12]; and due to the existence of
offline regression, the obtained upper bounds in Lemma 4.1 are unique to our solution.
Lemma 4.1 (Upper Bound of Loss Difference). Denote the sub-optimality of the global model
update procedure at time step tlast as εtlast , such that Ftlast(θ) − minθ∈Bd(S) Ftlast(θ) ≤ εtlast . Then
under Assumption 1 and 2, we have

tlast∑
s=1

N∑
i=1

[
l(x>s,iθtlast , ys,i)− l(x>s,iθ?, ys,i)

]
≤ B1 (6)

where B1 = Ntlastεtlast + λ
2S

2, and with probability at least 1− δ,

t∑
s=tlast+1

[
l(x>s,iθs−1,i, ys,i)− l(x>s,iθ?, ys,i)

]
≤ B2 (7)

whereB2 = 1
2cµ

∑t
s=tlast+1‖∇l(x

>
s,iθs−1,i, ys,i)‖2A−1

s,i

+
cµ
2

[
1
cµ
Rmax

√
d log (1 +Ntlastcµ/dλ) + 2 log (1/δ)+

2Ntlast

√
2kµ
λcµ

+ 2
Ntlastcµ

√
εtlast +

√
λ
cµ
S
]2

, respectively.

Specifically, B1 corresponds to the convergence of the offline (distributed) optimization in previous
global update; B2 is essentially the online regret upper bound of ONS, with the major difference that
it is initialized using the globally updated model θtlast , instead of an arbitrary model as in standard
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ONS. Then due to the cµ-strongly-convexity of l(z, y) w.r.t. z, i.e., l(x>s θ, ys) − l(x>s θ?, ys) ≥[
µ(x>s θ?) − ys

]
x>s (θ − θ?) +

cµ
2

[
x>s (θ − θ?)

]2
, and by rearranging terms in Eq.(6) and Eq.(7),

we have:
∑tlast
s=1

∑N
i=1

[
x>s,i(θtlast − θ?)

]2 ≤ 2
cµ
B1 + 2

cµ

∑tlast
s=1

∑N
i=1 ηs,ix

>
s,i(θtlast − θ?), and∑t

s=tlast+1

[
x>s,i(θs−1,i−θ?)

]2 ≤ 2
cµ
B2+ 2

cµ

∑t
s=tlast+1 ηs,ix

>
s,i(θs−1,i−θ?), whose LHS is quadratic

in θ?. To further upper bound the RHS, we should note that the term 2
cµ

∑t
s=tlast+1 ηs,ix

>
s,i(θs−1,i−θ?)

is standard in [2, 12] as x>s,i(θs−1,i − θ?) is Fs,i-measurable for online estimator θs−1,i. However,
this is not true for the term 2

cµ

∑tlast
s=1

∑N
i=1 ηs,ix

>
s,i(θtlast − θ?) as the offline regression estimator θtlast

depends on all data samples collected till tlast; and thus we have to develop a different approach to
bound it. This leads to Lemma 4.2 below, which provides the confidence ellipsoid for θ?.
Lemma 4.2 (Confidence Ellipsoid of FedGLB-UCB). With probability at least 1 − 2δ, for all
t ∈ [T ], i ∈ [N ],

‖θ̂t,i − θ?‖2At,i ≤ βt,i +
λ

cµ
S2 − ‖zt,i‖22 + θ̂>t,ibt,i := α2

t,i

where zt,i denotes the vector of predicted rewards [x>1,1θtlast ,x
>
1,2θtlast , . . . ,x

>
tlast,N−1θtlast ,x

>
tlast,N

θtlast ,

x>tlast+1,iθtlast,i,x
>
tlast+2,iθtlast+1,i, . . . ,x

>
t,iθt−1,i]

>, and βt,i = 8R2
max
c2µ

log
(
1
δ

√
det(I +

∑tlast
s=1

∑N
i=1 xs,ix

>
s,i)
)
+

B1 + 4Rmax
cµ

√
2 log

(
1
δ

√
det(I +

∑tlast
s=1

∑N
i=1 xs,ix

>
s,i)
)(
‖θtlast‖2 + ‖θ?‖2 +

√
B1

)
+ 4B2

cµ
+

8R2
max
c2µ

log
(
N
δ

√
4 + 8

cµ
B2 +

64R4
max

c4µ·4δ2

)
+ 1.

• Regret and communication cost From Lemma 4.2, we can see that αt,i grows at a rate of
Ntlast

√
εtlast through its dependence on the B2 term. To make sure the growth rate of αt,i matches that

in standard GLB algorithms [20, 12], we set εtlast = 1
N2t2last

, which leads to the following corollary.

Corollary 4.2.1 (Order of βt,i). With εtlast = 1
N2t2last

, βt,i = O
(
d logNT

c2µ
[k2
µ +R2

max]
)
.

Then using a similar argument as the proof for Theorem 4 of [28], we obtain the following upper
bounds on RT and CT for FedGLB-UCB (proof in Appendix D).
Theorem 4.3 (Regret and Communication Cost Upper Bound of FedGLB-UCB). Under Assumption
1, 2, and by setting εt = 1

N2t2 ,∀t and D = T
Nd log(NT ) , the cumulative regret RT has upper bound

RT = O

(
kµ(kµ +Rmax)

cµ
d
√
NT log(NT/δ)

)
,

with probability at least 1− 2δ. The corresponding communication cost CT 1 has upper bound

CT = O
(
dN2
√
T log2(NT )

)
.

Theorem 4.3 shows that FedGLB-UCB recovers the standard O
(
d
√
NT log(NT )

)
rate in regret as

in the centralized setting, while only incurring a communication cost that is sub-linear in T . Note that,
to obtain O

(
d
√
NT log(NT )

)
regret for federated linear bandit, the DisLinUCB algorithm incurs a

communication cost of O(dN1.5 log(NT )) [28], which is smaller than that of FedGLB-UCB by a
factor of

√
NT log(NT ). As the frequency of global updates is the same for both algorithms (due

to their use of the same event-trigger), this additional communication cost is caused by the iterative
optimization procedure for the global update, which is required for GLB model estimation. Moreover,
as we mentioned in Section 4.1, there is not much room for improvement here as the use of AGD
already matches the lower bound up to a logarithmic factor.

To facilitate the understanding of our algorithm design and investigate the impact of different
components of FedGLB-UCB on its regret and communication efficiency trade-off, we propose

1This is measured by the total number of times data is transferred. Some works [28] measure CT by the total
number of scalars transferred, in which case, we have CT = O

(
d3N1.5 log(NT ) + d2N2T 0.5 log2(NT )

)
.
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Table 1: Comparison between FedGLB-UCB and its variants with different design choices.
Global Upd. Local Upd. Setting RT CT

AGD ONS D = T
Nd log(NT )

kµ(kµ+Rmax)

cµ
d
√
NT log(NT ) dN2

√
T log2(NT )

AGD no update B =
√
NT

kµRmax
cµ

d
√
NT log(NT ) N2T log(NT )

AGD ONS B = d2N log(NT )
kµ(kµ+Rmax)

cµ
d
√
NT log(NT ) log(T ) d2N2.5

√
T log2(NT )

ONS ONS B =
√
NT

kµ(kµ+Rmax)

cµ
d(NT )3/4 log(NT ) N1.5

√
T

and analyze three variants, which are also of independent interest, and report the results in Table
1. Detailed descriptions, as well as proof for these results can be found in Appendix E. Note that
all three variants perform global update according to a fixed schedule S = {t1 := b TB c, t2 :=

2b TB c, . . . , tB := Bb TB c}, where B denotes the total number of global updates specified in advance
to trade-off between RT and CT , and these variants differ in their global and local update strategies.
This comparison demonstrates that our solution is proven to achieve a better regret-communication
trade-off against these reasonable alternatives. For example, when using standard federated learning
methods (which assume fixed dataset) for streaming data in real-world applications, it is a common
practice to set some fixed schedule to periodically retrain the global model to fit the new dataset,
and FedGLB-UCB1 implements such behaviors. The design of FedGLB-UCB3 is motivated by
distributed online convex optimization that also deals with streaming data in a distributed setting.

5 Experiments

We performed extensive empirical evaluations of FedGLB-UCB on both synthetic and real-world
datasets, and the results (averaged over 10 runs) are reported in Figure 2. We included the three
variants of FedGLB-UCB (listed in Table 1), One-UCB-GLM, N-UCB-GLM [20] and N-ONS-GLM
[12] as baselines, where One-UCB-GLM learns a shared bandit model across all clients, and N-
UCB-GLM and N-ONS-GLM learn a separated bandit model for each client with no communication.
Additional results and discussions about experiments can be found in Appendix F.

• Synthetic Dataset We simulated the federated GLB setting defined in Section 3.3, with T =
2000, N = 200, d = 10, S = 1, At (K = 25) uniformly sampled from a `2 unit sphere, and reward
yt,,i ∼ Bernoulli(µ(x>t,,iθ?)), with µ(z) = (1 + exp(−z))−1. To compare the algorithms’ RT
and CT under different trade-off settings, we run FedGLB-UCB with different threshold value D
(logarithmically spaced between 10−1 and 103) and its variants with different number of global
updates B. Note that each dot in the result figure illustrates the CT (x-axis) and RT (y-axis) that a
particular instance of FedGLB-UCB or its variants obtained by time T , and the corresponding value
for D or B is labeled next to the dot. RT of One-UCB-GLM is illustrated as the red horizontal line,
and RT of N-UCB-GLM and N-ONS-GLM are labeled on the top of the figure. We can observe
that for FedGLB-UCB and its variants, RT decreases as CT increases, interpolating between the two
extreme cases: independently learned bandit models by N-UCB-GLM, N-ONS-GLM; and the jointly
learned bandit model by One-UCB-GLM. FedGLB-UCB significantly reduces CT , while attaining
low RT , i.e., its regret is even comparable with One-UCB-GLM that requires at least CT = N2T
(8× 107 in this simulation) for gradient aggregation at each time step.

• Real-world Dataset The results above demonstrate the effectiveness of FedGLB-UCB when data
is generated by a well-specified generalized linear model. To evaluate its performance in a more
challenging and practical scenario, we performed experiments using real-world datasets: CoverType,
MagicTelescope and Mushroom from the UCI Machine Learning Repository [5]. To convert them to
contextual bandit problems, we pre-processed these datasets following the steps in prior works [8],
with T = 2000 and N = 20. Moreover, to demonstrate the advantage of GLB over linear model, we
included DisLinUCB [28] as an additional baseline. Since the parameters being communicated in
DisLinUCB and FedGLB-UCB are different, to ensure a fair comparison of CT in this experiment,
we measure communication cost (x-axis) by the number of integers or real numbers transferred
across the learning system (instead of the frequency of communications). Note that DisLinUCB
has no CT ≥ 3 × 106in Figure 2 because its global update is already happening in every round
and cannot be increased further. As mentioned earlier, due to the difference in messages being sent,
the communication in DisLinUCB’s per global update is much smaller than that in FedGLB-UCB.
However, because linear models failed to capture the complicated reward mappings in these three
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Figure 2: Experiment results on synthetic and real world datasets.

datasets, we can see that DisLinUCB is clearly outperformed by FedGLB-UCB and its variants. This
shows that, by offering a larger variety of modeling choices, e.g., linear, Poisson, logistic regression,
etc., FedGLB-UCB has more potential in dealing with the complicated data in real-world applications.

Conclusion

In this paper, we take the first step to address the new challenges in communication efficient federated
bandit learning beyond linear models, where closed-form solutions do not exist, and propose a
solution framework for federated GLB that employs online regression for local update and offline
regression for global update. For arm selection, we propose a novel confidence ellipsoid construction
based on the sequence of offline-and-online model estimations. We rigorously prove that the proposed
algorithm attains sub-linear rate for both regret and communication cost, and also analyze the impact
of each component of our algorithm via theoretical comparison with different variants. In addition,
extensive empirical evaluations are performed to validate the effectiveness of our algorithm.

An important further direction of this work is the lower bound analysis for the communication cost,
analogous to the communication lower bound for standard distributed optimization by Arjevani and
Shamir [3]. Moreover, in our algorithm, clients’ locally updated models are not utilized for global
model update, so that another interesting direction is to investigate whether using such knowledge,
e.g., by model aggregation, can further improve communication efficiency.
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