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In this supplementary material, we first illustrate some details about the use of existing assets, and the
data of our method. In our main paper and supplementary material, we use existing public datasets
for training or testing, including Div2K, SIDD Medium Dataset, RENOIR Dataset, DnD benchmark,
SIDD benchmark, SIDD validation dataset, BSD68, Kodak24, and Nam. All these datasets are widely
used in the image denoising field and are publicly available. Similar to other image denoising papers,
we have cited the original papers that produced these datasets. We also use existing public codes
for comparisons, including CBM3D, TNRD, DnCNN, FFDNet, DCDicL, CBDNet, VDN, RIDNet,
AINDNet, InvDN, DANet, and DeamNet. All the codes of these methods are publicly available,
and we have also cited these original papers. For the data, we have submitted the denoised images
of our method on SIDD and DnD benchmarks to their online servers, which further verifies the
effectiveness of our method. Note that ScaoedNet is called ‘Scaoed_1’ and ScaoedNet† is called
‘Scaoed_2’ on these sites. Please see these sites for details (SIDD: http://www.cs.yorku.
ca/~kamel/sidd/benchmark.php; DnD: https://noise.visinf.tu-darmstadt.
de/benchmark/#overview). In addition, we provide more experimental results and analysis
about our method. Specifically, the following items are contained in our supplementary material:
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Algorithm 1 SCAOED algorithm

Input: Noisy image y.
Initialization: Set iteration number K; Initialize the LS estimate z(0) = E(y); Initialize the noise

map u(0) via Uini(y).
Main Iteration: Increment i by 1 and perform the following steps:

1: for i = 0 to K − 1 do
2: Obtain the guidance information by g(i) = G(u(i));
3: With given u(i), g(i), and z(i), update the LS denoising estimate z(i+1) by

argminzH(z,u(i),y) + τ G̃(z,g(i), z(i));
4: if i < K − 1 then
5: With given u(i) and z(i+1), update the noise map estimate u(i+1) via

argminuH(z(i+1),u,y) + ηψ̃(u,u(i));
6: end if
7: end for
8: Obtain the denoising result x̂ via D(z(K)).

Output: Denoised image x̂.

S1. Algorithm 1

The details about the proposed SCAOED algorithm are given in this section. First, the noisy input
y is transformed to the LS version z(0) = E(y). In addition, we initially estimate the noise map
u(0) via Uini(y), and then get the guidance information g(0) via G(u(0)). After that, we update the
LS denoising result z(i+1) via argminzH(z,u(i),y) + τ G̃(z,g(i), z(i)). Next, we update the noise
map estimate u(i+1) via argminuH(z(i+1),u,y)+ ηψ̃(u,u(i)). Then, we repeat the previous steps
to iteratively update the guidance information, the estimate of the noise map, and the estimate of the
clean image in LS. Finally, we can obtain the denoising result x̂ via D(z(K)).

S2. Details of CIG-SA and CIG-CA

For CIG-SA, the input feature map a is first processed by average pooling (Apool, between channels),
maximum pooling (MPool, between channels), and a Conv layer. Then, ‘Concat-Conv’ layers are
used to adjust the feature map. Next, the complementary feature information in channel dimension
is calculated by the APool (within each channel), Conv, and Sigmoid layers. After that, the feature
map is adjusted by the element-wise product with the complementary feature information in channel
dimension, and followed by a skip connection to get the CIG spatial feature map. Finally, the spatial
weights can be obtained by ‘1× 1 Conv-Sigmoid’. For CIG-CA, a spatial information guided feature
map is first obtained by the element-wise product of a and the weights calculated by ‘Conv-Sigmoid’.
Then, both the guided map and a are input into APool (within each channel) and MPool (within each
channel) followed by a Concat layer to get the CIG channel feature map. After that, ‘Conv-ReLU-
Conv’ layers are used for non-linear mapping. Then, the following ‘Reshape-Conv-Reshape-Sigmoid’
layers are used to map the previous output map to the channel weighting vector.

S3. Details of DnD and SIDD

DnD consists of 50 pairs of real clean-noisy scenes taken by different cameras with specifical settings,
where 20 smaller images of size 512× 512 are extracted from each scene. To capture these scenes,
the base ISO level is used for taking the clean scenes while higher ISO and appropriately adjusted
exposure time are used for taking the noisy scenes. To obtain the ground-truth images for the DnD
benchmark, post-processing is further applied to the initial clean images, including small camera shift
adjustment, linear intensity scaling, and removal of low-frequency bias. However, the corresponding
ground-truth images are not available for users. The PSNR/SSIM results can only be obtained by
uploading the denoised images to the DnD website.

SIDD contains about 30,000 real clean-noisy image pairs captured by five representative smartphones
from 10 scenes under varying lighting conditions. For each noisy image, the corresponding noise-free
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Table 1: PSNRs (dB) and SSIMs on SIDD validation dataset for ScaoedNet with FSM and SCA
respectively.

Method PSNR↑ SSIM↑

ScaoedNet with FSM 39.48 0.9186

ScaoedNet with SCA 39.39 0.9178

Table 2: Ablation on FSM and DEM for SIDD validation dataset.

FSM % % " "

DEM % " % "

PSNR↑/SSIM↑ 39.28/0.9164 39.34/0.9167 39.35/0.9171 39.48/0.9186

image is estimated through some statistical methods [1]. However, only 320 clean-noisy image
pairs (SIDD Medium Dataset) are provided for training. For testing, SIDD benchmark provides 40
noisy images without the corresponding clean images, and the PSNR/SSIM results can be obtained
through its online server. In addition, SIDD validation also consists of 1280 clean-noisy image pairs
to evaluate the denoising performance.

S4. FSM vs. SCA

The proposed FSM module can be regarded as an improved SCA module, which fully exploits the
spatial and channel information. In fact, by removing the complementary information guidance
in FSM, it becomes a traditional SCA module. Different from the existing SCA, complementary
information guidance is introduced in FSM. To further prove the effectiveness of FSM, we compare
it to SCA. Table 1 shows that higher PSNR/SSIM values can be obtained on the SIDD validation
dataset by using FSM. The results indicate that the complementary information guidance can better
inform the capture of the feature tensor information, which verifies the superiority of FSM over SCA.

S5.Ablation on FSM and DEM

The proposed attention module mainly consists of two parts, i.e., FSM and DEM. Table 2 shows
that ScaoedNet (i.e., with both FSM and DEM) can achieve the best results compared with the
ones without FSM, without DEM, and without FSM&DEM. For instance, by removing FSM, the
PSNR/SSIM will decrease 0.14dB/0.0019. Similarly, by removing DEM, the performance will
decrease 0.13dB/0.0015. Consequently, the effectiveness of FSM, DEM, and their combination are
verified.

S6. Study on Degradation Estimation Update

Degradation estimation is important for the denoising performance of ScaoedNet, and the overall
improvements of ScaoedNet partially come from more accurate retrieved noise map. In this section,
we show the effectiveness of the update for the noise map estimation, and thus the effects of different
settings of K for DE are tested. The results of PSNR and the L1 distance are provided in Table
3, and we can conclude that with the increasing of DE networks (u-Nets), the estimation result
becomes more accurate. That means the update of degradation estimation is an effective scheme
in degradation estimation, leading to higher performance. Therefore, such update scheme of the
degradation estimation provides a convenient and effective means to progressively obtain the DE
results.

3



Table 3: L1 distances and PSNRs for verifying the effectiveness of the multiple DE networks. Note
that during the calculations of the L1 distance and PSNR, u is scaled to lie in the range of [0 255].

K 1 2 3 4 5

L1 distance↓ 5.80 5.01 4.48 4.27 4.20

PSNR↑ 33.16 34.18 34.80 35.21 35.40

Table 4: Average PSNR (dB) and SSIM values of the denoised images by each stage in ScaoedNet.

Stage 1 2 3 4 5

PSNR↑ 36.52 38.96 39.33 39.44 39.48

SSIM↑ 0.8729 0.9140 0.9175 0.9184 0.9186

S7. The Power of the New Cost Function

The cost function mainly introduces LS, noise information, and GC. In Subsection 4.5, ‘w/o LS’
verifies the power of LS; Noise information is introduced to handle the real denoising. In S5 of
‘Supplementary Material’, we prove the power of noise information update; The implementation of
GC: the reconstruction is guided by DEM with the guidance information g realized by G-Module.
‘w/o GC’ verifies the power of GC. Consequently, we can conclude that the proposed new cost
function is effective in real image denoising.

S8. Convergence of ScaoedNet

In the implementation of ScaoedNet, five stages are used. To analyze the convergence of our
ScaoedNet, we report the PSNR/SSIM results of stage 1, stage 2, stage 3, stage 4, and stage 5 in Table
4. Note that, in these stages, the parameters of all the DE networks (u-Nets) (except the initial one
uini-Net) are shared, and the parameters of all the RE networks (z-Nets) are also shared. Therefore,
the LS decoding module D can be directly placed at the end of each RE network (z-Net) to obtain
the denoising result. In addition, the visual results are also provided in Fig. 1. We can find that the
later iteration can generate better results than the previous iterations step-by-step on SIDD validation
dataset, which verifies the convergence of ScaoedNet.

S9. Details of the Total Loss

According to Eq. (6) in the main body of the paper, our total loss contains two main parts: the
reconstruction loss and the noise map estimation loss.

The reconstruction loss, i.e., L(Θ) = 1
N

∑N
g=1(‖D(z

(K)
g ) − xg‖11 + γLS(D(z

(K)
g ),xg)), further

contains two sub-parts: 1) L1 loss between the output and the ground-truth image to ensure their
similarity in pixel-level; 2) the structural similarity loss LS to pay attention to image structures.
In other words, in the reconstruction loss, both the pixel-level constraint and the structure-level
constraint are considered simultaneously to ensure the quality of reconstruction.

The noise map estimation loss is η
N

∑K−1
i=1

∑N
g=1 ‖κi,g ⊗ (û

(i)
g −ug)‖11. That means the estimated

noise maps of the first to (k − 1)th degradation estimation (DE) networks are constrained to be close
to the ground-truth one.

The weight of each stage is determined by κi,g = νi · αg, where νi is the weight for the ith DE
network. Considering that in multiple DE stages, the later DE network will produce more accurate
estimation, and thus a larger weight should be assigned. Therefore, the geometric sequence with a
common ratio ι (greater than 1) and sum 1 can be used for νi-s, i.e., νi = (ι− 1)ιi−1/(ιK−1 − 1).
In addition, the parameter αg is the gth element of the indicator vector α for the noise constraint.
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Table 5: The average PSNR(dB)/SSIM results of different denoising methods on Nam dataset.

DnCNN[21] VDN[19] CBDNet[6] RIDNet[2] DANet[20] ScaoedNet ScaoedNet†

35.54 38.72 39.17 39.12 39.83 41.41 41.54

0.8785 0.9628 0.9667 0.9615 0.9686 0.9762 0.9786

Figure 1: PSNR(dB)/SSIM and visual results of ScaoedNet in each stage.

The reason for introducing α is given in the following. For the commonly used training datasets like
SIDD, RENOIR, etc., in real denoising, the specific noise maps ug-s are unknown, and thus cannot
be used for training the DE network. In this case, the noise map estimation loss should be invalidated
by setting its weight to 0; to update the parameters of the DE networks, we need to synthesize the
dataset according to the real noise model established in Eq. (2) for training. Therefore, when the
training data is synthetic with a known noise map, the weight for the noise map estimation loss should
be 1. This is why we call αg the gth element of the indicator vector α for the noise constraint.

S10. Computational Complexity and Inference Time

According to subsection 4.7, we can see that ScaoedNet has a moderate parameter number (about
3M), which is significantly lower than CBDNet, VDN, AINDNet, and DANet. We have included
FLOPs and inference time so that the readers could better understand the network cost. The FLOPS
and inference time of ScaoedNet with 1 stage, 3 stages and 5 stages for output resolution 512×512
are 212G/0.07s, 640G/0.15s, and 1071G/0.28s, respectively. For the second-best method DeamNet,
it is 589G/0.18s. Moreover, for 256 × 256 images, the FLOPs and inference times of ScaoedNet
with 1 stage, 3 stages and 5 stages are 53G/0.02s, 160G/0.05s, and 268G/0.08s, respectively. For the
second-best method DeamNet, it is 146G/0.05s. We can further reduce the complexity by using the
multi-scale encoder-decoder based UNet architecture similar to DeamNet with four scales, where
each encoder or decoder can consist of two FM2ARBs. Then, the FLOPs in this case for 256×256
images will reduce to about 130G. We should note that the second-best method DeamNet is also an
iterative network. The results show that our method can achieve higher PSNR/SSIM values than the
iterative network DeamNet only with slightly longer but reasonable inference time.

S11. Real-World Denoising on Nam

The real-world noise dataset Nam [15] includes various noisy images from 11 static scenes, whose
ground-truth versions are captured by the mean of 500 noisy images of the same scene. We crop
the images into 512× 512 sub-images and randomly select 100 sub-images from those for testing.
Different from SIDD and DnD, the images from Nam are JPEG compressed. During the generation
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Figure 2: Real denoising results on Nam dataset.

of the synthetic clean-noisy image pairs, the synthetic noisy images are further JPEG compressed
with the quality factor sampled from the range of [60, 100]. In addition, we add Poly dataset [18] for
training according to DANet [20]. Both the PSNR/SSIM and the visual results are provided in Table
5 and Fig. 2. Note that many works are not designed for the noisy images with JPEG compression,
and only several methods (e.g., CBDNet [6], RIDNet [2], and DANet [20]) have taken the JPEG
compression into consideration. Following DANet [20], the deep network based methods DnCNN
[21], VDN [19], CBDNet [6], RIDNet [2], DANet [20] are tested on Nam. We can observe that our
performance in terms of PSNR/SSIM is higher than any of the previous algorithms. For the visual
results, the noise in the denoised images of DnCNN [21] are not well removed. Other methods, i.e.,
VDN [19], CBDNet [6] and RIDNet [2], although can achieve better results than DnCNN, there
still exist certain artifacts. Among all the competing methods, DANet [20] can achieve the second
best denoising performance. In comparison, the noise in the recovered images by ScaoedNet is well
suppressed. Consequently, the effectiveness of the proposed method for real-world image denoising
is further confirmed.

S12. Importance of LS

LS has the following advantages: 1) better representation ability than the low-dimensional space; 2)
allows better information flow in the unfolding network.

Theoretically, without using LS, Eq. (5) in the main body of the paper becomes:
g(i) = G(u(i)),

x(i+1) = argminxH(x,u(i),y) + τ G̃(x,g(i),x(i)),

u(i+1) = argminuH(x(i+1),u,y) + ηψ̃(u,u(i)).

(1)

It is obvious that, denoising is performed in the pixel domain to reconstruct x ∈ Rn·c. It will lead to
the z-Net with a low input/output channel dimension c, reducing the information flow in the network.

With LS in Eq. (5), denoising is performed in LS to reconstruct z ∈ Rn·m. Since m > c, z-Net has
better representation ability. Moreover, the channel number between two consecutive z-Nets becomes
larger, and thus the network information flow is enhanced. All of these will benefit the performance.

We can also observe from Sec. 4.5 that LS is important. Moreover, by visualizing the features after
E, we can find that the embeddings are the hierarchical high-dimensional features of the noisy image,
where the noise and image components can be easily decoupled, which can effectively promote the
performance.
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S13. Difference from Existing Deep Networks

S13.1. Differences from Existing Deep Denoising Networks

A large number of deep denoising methods have been proposed in recent years, such as TNRD [3],
UNLNet [10], FFDNet [22], FOCNet [7], MemNet [17], DnCNN [21], RED [13], DPDNN [5], CBD-
Net [6], VDN [19], RIDNet [2], AINDNet [8], InvDN [11], DANet [20], BCDNet [9], GainTuning
[14], and DeamNet [16], etc. However, the network design of our ScaoedNet is significantly different
from those existing methods.

ScaoedNet belongs to the unfolding-based methods. With respect to the theoretical novelty, we first
define a novel enhanced model-based denoising cost function to improve the traditional denoising
method by introducing the concepts of LS, noise information introduction, and GC. Then, we split the
previous problem into three alternative optimization subproblems (i.e., GR, DE and RE subproblems)
via the SC scheme. Finally, the iterative optimization steps of the model-based denoising method are
utilized to inform the network design, leading to an end-to-end trainable and interpretable denoising
network (ScaoedNet). The proposed ScaoedNet consists of LS encoding module (E), LS decoding
module (D), G-module, RE network, and DE network.

For the network novelty, a novel NFAE layer is proposed to further enhance noise feature with
parameter-free scheme, which leads to better noise estimation results. To the best of our knowledge,
we are the first to propose the NFAE layer for noise map estimation. In the RE network, a novel
feature multi-modulation attention residual block called FM2ARB (consists of FSM and DEM) is
proposed to synchronously and dynamically fuse the encoded degradation representation and the
image feature representation, leading to higher denoising performance.

In contrast, the designs of many deep denoising networks are not informed by the traditional methods
and are non-iterative, including FFDNet [22], MemNet [17], DnCNN [21], RED [13], CBDNet [6],
RIDNet [2], AINDNet [8], InvDN [11], BCDNet [9], and DANet [20]. Although UNLNet [10],
TNRD [3], DPDNN [5], VDN [19], FOCNet [7], and DeamNet [16] also use some traditional methods
to inform their network designs, their mathematical foundations are quite different. Specifically,
UNLNet [10] is based on the non-local variational operator, TNRD [3] is based on the iterative
nonlinear reaction diffusion, DPDNN [5] is based on the plug-and-play framework, VDN [19] is
based on the variational inference method, FOCNet [7] is based on the fractional optimal control
theory, and DeamNet [16] is based on the adaptive consistency prior. Some other works focus on
how to improve network generalization for various data distributions, such as [14] which proposes a
‘GainTuning’ methodology for adaptive denoising. In summary, the mathematical foundation and the
network architecture design of the proposed ScaoedNet are significantly different from the existing
deep networks.

S13.2. Differences from Deep Alternating Network (DAN) [12]

Although both DAN and our method adopt alternative optimization (different tasks, i.e., super-
resolution (SR) and denoising), their theoretical novelties and the network novelties are much
different.

Theoretical Differences. 1) DAN performs SR in low-dimensional pixel space, while ours performs
denoising in high-dimensional LS; 2) DAN only considers degradation estimation and reconstruction.
In addition to degradation estimation (u-Net) and reconstruction (z-Net), we introduce guidance
representation (GR, G-Module) to improve performance; 3) Traditional alternating optimization is
used in DAN. But we propose a novel self-correction (SC) alternating optimization method.

Network Differences. 1) By using SC, our degradation estimation and reconstruction networks can
better exploit the last estimates z(i) and u(i) for higher performance than DAN that is without SC;
2) We introduce G-Module to guide denoising, which is not considered in DAN; 3) We propose the
FM2A module with FSM and DEM, which is different from DAN; 4) For u-Net, we propose a novel
parameter-free NFAE layer, which is not used in DAN.

S13.3. Differences from Noise Basis Network (NBNet) [4]

Mapping noise image to space that better distinguish noise has also been proposed in NBNet. The
differences between our method and NBNet are given in the following:
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Difference Between Using Distinguishable Space. 1) The space projection in NBNet is achieved
by the subspace attention (SSA) module, which needs to construct the basis vector for obtaining
the projection matrix. It is essentially an attention module. Our method directly using E to project
the input image to the distinguishable space without using attention mechanism; 2) NBNet uses
SSA to project the output of each decoder module separately in a UNet-based architecture, and thus
multiple SSA modules are exploited. However, our method only needs to introduce the latent space
(LS) at the beginning of the whole network to ensure the whole reconstruction process is carried
out in the high-dimensional LS; 3) SSA in NBNet requires two inputs, i.e., the low-level feature
from skip-connection and the upsampled high-level feature. Specifically, the low-level feature from
skip-connection is projected into the signal subspace guided by the upsampled high-level feature.
However, our method only needs one single input, i.e., the input noisy image.

Superiority of Our Usage. 1) To obtain the projection in NBNet, a lot of matrix operations are
required. But the projection of our method can be more easily obtained by the E module, avoiding
matrix operations; 2) NBNet requires two inputs, where one is used as the guidance for the other one.
Thus, it cannot be directly used in our work since only one noisy input is available at the beginning
of our network. However, since LS only needs a single input, it can directly perform projection on
the noisy input image at the beginning of the network.

S14. Extension to Other Image Restoration Application

Our method can be potentially applied to other image restoration (IR) problems. We take image
deblurring problem as an example. Image deblurring can be expressed as:

y = x ∗ k + n (2)

where y is the degraded image, x is the ground-truth image, k is the blur kernel, n is the noise, and ∗
denotes the convolutional operation. Then, Eq. (3) in the main body of the paper becomes:{

ẑ, û, k̂
}
= arg min

z,u,k
H(z,u,k,y) + τG(z,g) + η1ψ(u) + η2φ(k), s.t., x̂ = D(ẑ) (3)

where τ, η1, η2 are the weights for the regularizers G(z,g) (guidance constraint, GC), ψ(u) (noise
map prior), and φ(k) (blur kernel prior). By using our self-correction (SC) alternative optimization,
we can obtain 

g(i) = G(u(i),k(i)),

z(i+1) = argminzH(z,u(i),k(i),y) + τ G̃(z,g(i), z(i)),

u(i+1) = argminuH(z(i+1),u,k(i),y) + η1ψ̃(u,u
(i)),

k(i+1) = argminkH(z(i+1),u(i+1),k,y) + η2φ̃(k,k
(i)),

(4)

where G(·) is the guidance information generator, G̃(·) becomes the joint constraint of GC and SC
for z, ψ̃(·) becomes the joint constraint of noise information and SC for u, and φ̃(·) becomes the
joint constraint of blur kernel and SC for k.

By comparing this equation with Eq. (5) in the main body of the paper, we can find the difference
between the denoising and deblurring using our method is: in addition to the estimation of z, u, we
have to estimate the blur kernel information k and construct the new guidance information g for
deblurring. How to construct the k estimation module and the guidance information generator for
deblurring is very important. Other image restoration problems can be solved similarly.

S15. Limitations and Future Works

In this section, we analyze the limitations and the future works of the proposed method. First,
the self-attention module is very promising in image restoration, but the parameter number and
complexity will be much larger than those of our current method. How to use self-attention more
efficiently in ScaoedNet is one of our future works. Since the proposed ScaoedNet is derived from
the enhanced model-based real image denoising method, it is limited to the real image denoising
task. In fact, this work can be naturally transferred to other image restoration tasks, such as real
image deblurring, real image super-resolution, and so on. In these cases, a key and challenging
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problem is how to design a degradation estimator that can estimate the blurring degradation and noise
degradation of the low-quality input image synchronously, and this is one of our future works. In
addition, the real noise model used in the proposed method is based on CBDNet. Other powerful
real noise models can be introduced for further improving the generalization and performance of
ScaoedNet. Therefore, another future work is to extend the generalization by more powerful real
noise model, so as to increase its future application potential.
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