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Abstract

We introduce new planning and reinforcement learning algorithms for discounted
MDPs that utilize an approximate model of the environment to accelerate the
convergence of the value function. Inspired by the splitting approach in numerical
linear algebra, we introduce Operator Splitting Value Iteration (OS-VI) for both
Policy Evaluation and Control problems. OS-VI achieves a much faster conver-
gence rate when the model is accurate enough. We also introduce a sample-based
version of the algorithm called OS-Dyna. Unlike the traditional Dyna architec-
ture, OS-Dyna still converges to the correct value function in presence of model
approximation error.

1 Introduction

Consider a planning problem for a discounted MDP with dynamics P . Suppose that we have
access to an approximate model P̂ ≈ P as well. For example, P might be a high-fidelity, but
slow, simulator, and P̂ is a lower-fidelity, but fast, simulator. Or in the context of model-based
reinforcement learning (MBRL), P is the unknown dynamics of a real-world system, from which we
can only acquire expensive samples, and P̂ is a learned model, from which samples can be cheaply
acquired. Can we use this approximate model P̂ to accelerate the computation of the value function
of a policy π (Policy Evaluation (PE) problem) or the optimal value function (Control problem)?

The Value Iteration (VI) algorithm and its approximate variant are fundamental algorithms in Dy-
namic Programming that can find the (approximate) value of a policy or the optimal value function.
They are also the backbone of many reinforcement learning (RL) algorithms such as Temporal
Difference Learning [Sutton, 1988], Fitted Value Iteration [Gordon, 1995, Ernst et al., 2005, Munos
and Szepesvári, 2008], and Deep Q Network [Mnih et al., 2015]. Value Iteration, however, can be
slow when the discount factor is close to 1, as its convergence rate is O(γk). Moreover, even though
we could use VI using P̂ instead of P to avoid expensive queries to P , the obtained value function
would converge to a solution different from the value function of the original MDP.

This paper proposes an algorithm called Operator Splitting Value Iteration (OS-VI) that benefits from
an approximate model P̂ to potentially accelerate the convergence of the value function sequence to
the value function with respect to (w.r.t.) the true model P (Section 3). This algorithm is for both
PE (Section 3.1) and Control (Section 3.2) problems. The acceleration is not uniform though, and
depends on how close P̂ is to P (Section 4).

A key inspiration behind OS-VI is the (matrix) splitting approach in the numerical linear algebra,
which is used to iteratively solve large linear systems of equations [Varga, 2000, Saad, 2003, Golub
and Van Loan, 2013]. With a proper choice of splitting, one may change the convergence rate of
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linear systems solvers. We show that the conventional VI for PE can be seen as a particular choice
of splitting. This observation suggests that one may choose other forms of splitting as well in order
to change the convergence rate. It turns out that we can choose a splitting that benefits from having
access to P̂ (Section 2). The new splitting leads to OS-VI for PE. For the Control problem, the
connection between solving linear system of equations and VI is not as straightforward anymore, as
the former is linear, while the latter is not, but we can still get inspired from the splitting approach to
design OS-VI for Control. The key step of such an algorithm is a new policy improvement step.

The form of the OS-VI algorithm opens up a connection to MBRL where the approximate model
P̂ is learned using data. This leads to the OS-Dyna algorithm, inspired by a generic Dyna architec-
ture [Sutton, 1990]. OS-Dyna is a hybrid of model-free and model-based algorithms. It uses the
learned model in its inner planning loop, alike Dyna, but uses samples from the true model P in
order to correct the effect of errors in the model. Existing MBRL algorithms would converge to an
incorrect solution if the approximate model P̂ does not converge to the true model P . This would be
the case whenever model approximation error exists. On the other hand, OS-Dyna can still converge
to the correct value function even when P̂ does not converge to P . As far as we know, this is the first
model-based RL algorithm with such property.

2 From value iteration to splitting-based linear system of equations solvers
and back

We briefly describe the VI algorithm and the splitting methods for solving linear system of equa-
tions, and explain their connections. We consider a discounted Markov Decision Process (MDP)
(X ,A,R,P, γ) [Bertsekas and Tsitsiklis, 1996, Szepesvári, 2010, Sutton and Barto, 2019]. We
defer formal definitions to the supplementary material. We only mention that for a policy π, we
denote by Pπ its transition kernel, by rπ : X → R the expected value of its reward distribu-
tion, and by V π = V π(R,P) its state-value function. We also represent the optimal state-value
function by V ∗ = V ∗(R,P) and the optimal policy by π∗ = π∗(R,P). The Bellman operator
Tπ : B(X )→ B(X ) for policy π and the Bellman optimality operator T ∗ : B(X )→ B(X ) are1

(TπV )(x) ≜ rπ(x) + γ

∫
Pπ(dy|x)V (y); (T ∗V )(x) ≜ max

a∈A

{
r(x, a) + γ

∫
P(dy|x, a)V (y)

}
.

These operators can be written more compactly as Tπ : V 7→ rπ + γPπV and T ∗ : V 7→
maxπ{rπ + γPπV }. The greedy policy at state x ∈ X is

πg(x;V )← argmax
a∈A

{
r(x, a) + γ

∫
P(dy|x, a)V (y)

}
, (2.1)

or more compactly, πg(V ) ← argmaxπ T
πV . We have T ∗V = Tπg(V )V , that is, the effect of the

Bellman optimality operator T ∗ applied to a value function V is the same as applying the Bellman
operator of the greedy policy w.r.t. V to V .

2.1 Value Iteration

The value function V π and the optimal value function V ∗ are the fixed points of the operators Tπ

and T ∗, respectively, and satisfy the Bellman equation. For the PE problem, this means that

V π = rπ + γPπV π ⇒ (I− γPπ)V π = rπ. (2.2)

There are several ways to compute the value function of a policy π or the optimal value function V ∗,
including the iterative methods such as VI and Policy Iteration (PI) algorithms, or solving a linear
system of equations (for PE) or linear programming (for Control). We focus on the VI algorithm in
this work. VI repeatedly applies the Bellman operator to the most recent approximation of the value
function: Given an initial value function V0, it generates a sequence (Vk)k≥0 as follows:

Vk ←
{
TπVk−1, (Policy Evaluation)
T ∗Vk−1. (Control)

(2.3)

1For countable state and action spaces, the integrals are replaced by summations. We present OS-VI and its
theoretical analysis for general state/action spaces, but limit our experiments to finite state/action problems.
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VI for Control can be written in an equivalent form: At iteration k, we first compute the greedy
policy πk ← πg(Vk−1) (policy improvement step), and then Vk ← TπkVk−1. Therefore, the policy
improvement step is obtained through finding a policy that is greedy w.r.t. the last value function
Vk−1, that is, the best policy if we only look one step ahead. This form will be conductive for our later
developments. As the Bellman operator is a γ-contraction w.r.t. the supremum norm, the convergence
rate of Vk to V π (or V ∗) would be O(γk). This rate can be slow when γ is close to 1.

2.2 Matrix splitting for solving linear system of equations

The VI for PE can be seen as a (matrix) splitting-based iterative method to solve the linear system of
equations (2.2). Consider the linear system Az = b, with A ∈ Rd×d and z, b ∈ Rd. Suppose that A
is decomposed to A = M −N for some choices of M,N ∈ Rd×d (more generally, A, M , and N
can be linear operators). Therefore, z satisfies Mz = Nz + b. The splitting-based iterative approach
defines the new approximation zk given the current zk−1 by solving

Mzk = Nzk−1 + b,

or equivalently,

zk = M−1(Nzk−1 + b). (2.4)

To analyze the convergence of this iterative method, consider the error ek ≜ zk − z. As z =
M−1(Nz + b), we have ek = M−1(Nzk−1 + b) −M−1(Nz + b) = M−1N(zk−1 − z), so the
dynamics of the error is

ek = M−1Nek−1 = (M−1N)2ek−2 = · · · = (M−1N)ke0. (2.5)

Let G ≜ M−1N . The norm of the sequence (ek)k≥1 can be upper bounded as

∥ek∥ =
∥∥Gke0

∥∥ ≤ ∥∥Gk
∥∥∥e0∥ ≤ ∥G∥k∥e0∥. (2.6)

The errors are (norm-) convergent if ∥G∥ = ∥M−1N∥ < 1, for some choice of norm. More generally,
the necessary and sufficient condition for convergence is that the spectral radius ρ(G), the maximum
absolute value of eigenvalues of G, is smaller than one, see e.g., Theorem 4.1 of Saad [2003] or
Theorem 11.2.1 of Golub and Van Loan [2013].2 The convergence is faster if the spectral radius (or
norm) is closer to zero.

The success of this iterative procedure depends on how we choose M and N such that the norm (or
spectral radius) is as small as possible. Also we want to choose an M such that solving Mzk =
Nzk−1 + b is not very expensive. For example, if M is an identity matrix I, we get that N = I−A,
and the iteration becomes zk = (I − A)zk−1 + b. This iteration is convergent if ρ(I − A) < 1.
Other commonly used choices lead to the Jacobi and Gauss-Seidel methods that are described in the
supplementary material.

We are now ready to make the connection between splitting-based iterative methods and VI for PE.
If we choose A = I − γPπ, we see that equation AV π = rπ is indeed the Bellman equation for
policy π (2.2). The VI for PE, which is Vk = γPπVk−1 + rπ = (I−A)Vk−1 + rπ , corresponds to
the choice of M = I and N = γPπ. This brings up the question of whether it is possible to split A
differently so that the resulting VI-like procedure has better convergence properties. We next suggest
a particular choice.

3 Operator splitting value iteration algorithm

We introduce the Operator Splitting Value Iteration (OS-VI) algorithm. We start from the PE problem
and develop the Control version based on that. We also present a visualization of how OS-VI works.

3.1 OS-VI for policy evaluation

Given a policy π, true model P , and approximate model P̂ , we split I− γPπ to Mπ and Nπ as

Mπ = I− γP̂π , Nπ = γ(Pπ − P̂π).

2For any matrix norm, we have ρ(G) ≤ ∥G∥, so the condition on the norm is sufficient, but not necessary.
Our analysis will be norm-based.
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Following the recipe of (2.4), the OS-VI algorithm for PE would be

Vk ← (I− γP̂π)−1
[
rπ + γ(Pπ − P̂π)Vk−1

]
, (3.1)

starting from an initial V0.3 To gain more intuition and prepare for further developments, we define
a few notations. We define the Varga operator Sπ : B(X )→ B(X ), named after Richard S Varga
(1928 – 2022) who has made significant contributions to matrix analysis, as the mapping between the
space of all bounded functions over X to the same space as

Sπ : V 7→ (I− γP̂π)−1
[
rπ + γ(Pπ − P̂π)V

]
.

Observe that (3.1) can be compactly written as

Vk ← SπVk−1. (3.2)

It is not difficult to see that SπV π = V π , i.e., the value function of a policy π is a fixed-point of the
Varga operator Sπ. This and other properties of the Varga operator are shown in the supplementary
material.

Given any value function V , define an auxiliary reward function r̄V : X ×A → R as

r̄V (x, a) ≜ r(x, a) + γ

∫ (
P(dy|x, a)− P̂(dy|x, a)

)
V (y). (3.3)

Similar to rπ , we define the notation r̄πV : X → R as r̄πV (x) = r̄V (x, π(x)) for a deterministic policy
π (and similarly for a stochastic policy). With this notation, the effect of applying Sπ to V is

SπV = (I− γP̂π)−1r̄πV .

This is the value function of following π in an MDP with dynamics P̂ and reward r̄V . Therefore,
at each iteration of OS-VI (PE), we evaluate the policy π according to the approximate dynamics,
and a reward function that consists of the original reward r and the correction term γ(P − P̂)Vk−1.
The computation of this value function is a standard PE problem with the approximate model. For
instance, we may use another VI (PE) with dynamics P̂ to solve it: We initialize U0 ← V , and then
for i ≥ 1, we set Ui ← r̄πV + γP̂πUi−1. This converges to SπV = (I− γP̂π)−1r̄πV with the usual
rate of O(γi). Note that aside from the computation of r̄πV , which requires querying P in order to
compute the PπV term, this iterative process only uses the approximate model P̂ , which is assumed
to be cheap to access.

What is the benefit of this OS-VI procedure? If the approximate model P̂ is close to the true dynamics
P , this leads to a faster convergence of Vk to V π , as shall be quantified soon. The faster convergence
is in terms of the number of queries to P , which is assumed to be expensive. To see this, consider
the hypothetical case that P̂ is exactly the same as P , for example, if the cheap simulator happens
to perfectly match the reality. Then, SπV = (I− γPπ)−1(rπ + 0V ) = V π , and the value function
for the original MDP is obtained in one iteration of OS-VI. Of course, we often can only hope for
P̂ ≈ P . In Section 4, we study the impact of error in P̂ on the convergence rate of OS-VI in more
details, and show that the convergence of OS-VI can be much faster than classic algorithms even if P̂
is only a close approximation of P .

3.2 OS-VI for control

The VI for Control can be seen as an iterative procedure that computes the greedy policy πk ←
πg(Vk−1) = argmaxπ T

πVk−1 in its policy improvement step, and then uses one step of the Bellman
operator w.r.t. the obtained policy πk to compute the new estimate of the value function Vk ←
TπkVk−1, as described after (2.3). The OS-VI algorithm for Control follows a similar structure with
the difference that 1) the improved policy is the optimizer of the Varga operator, and not the Bellman

3Although splitting is originally studied mostly in the context of linear algebra and matrices, we are applying
the idea more generally. We are not assuming that the state space X is finite, and we allow it to be more general,
such as a subset of Rd. Consequently, Mπ , Nπ , Pπ , etc. are operators rather than matrices.
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operator, and 2) the new value function is obtained by applying the Varga operator of the newly
obtained policy. To be concrete, given a value function V , define the S-improved policy

πV (V ) ≜ argmax
π

SπV [= (I− γP̂π)−1r̄πV ]. (3.4)

This policy is the optimal policy for the auxiliary MDP (X ,A, r̄V , P̂, γ). We also define the Varga
optimality operator S∗ : B(X )→ B(X ) as

S∗ : V 7→ max
π

SπV.

The function S∗V is equal to SπV (V )V , i.e., the Varga operator of the S-improved policy w.r.t. V
applied to a value function V (compare it with T ∗V = Tπg(V )V ).

The OS-VI (Control) is then simply

Vk ← S∗Vk−1, (3.5)

which in its expanded form, consists of the following two steps:

πk ← πV (Vk−1), (policy improvement). (3.6)

Vk ← SπkVk−1 [= (I− P̂πk)−1(rπk + γ(Pπk − P̂πk)Vk−1)], (partial policy evaluation). (3.7)

Comparing the S-improved policy (3.4) used in the policy improvement step (3.6) of OS-VI with
the conventional greedy policy (2.1) is insightful. The greedy policy is argmaxπ T

πV . Expanding
TπV , we see that the greedy policy is the maximizer of rπ + γPπV . The function rπ + γPπV is
a single-step bootstrapped estimate of the value of V π, and its maximizer, the greedy policy, is in
general different from the optimal policy, which maximizes V π . On the other hand, the S-improved
policy πV (V ) solves a full MDP with an approximate model P̂ and a reward function that has both
the original reward r and the correction term γ(P − P̂)V . In the special case that P̂ = P , the
correction term is zero, and πV (V ) would be the optimal policy π∗ for the original MDP. As often
P̂ ≈ P , the value function of policy πV (V ) is not exactly the optimal value. The partial policy
evaluation step (3.7) updates the value function to a value that is closer to the optimal value function.

Remark. The use of matrix splitting-based ideas, either explicitly or implicitly, in the context of
dynamic programming is not completely novel to this work. Kushner and Kleinman [1971] is one
of the earliest paper that mentions the Jacobi and Gauss-Seidel procedures for computing the value
function. Porteus [1975] proposes several transformations to the reward and probability transition
matrix with the goal of improving the computational cost of solving the transformed MDP. One of
the transformations, called pre-inverse transform, has some similarities with the operator splitting of
this work. The end result, however, is different. Bacon and Precup [2016] offer a matrix splitting
perspective on planning with options. The connection between multi-step models and matrix splitting
is developed in Chapter 4 of Bacon [2018]. Refer to the supplementary material for more discussion.

3.3 Visualizing how OS-VI works

To present some intuition on how OS-VI works, we visualize the value function trajectories of several
algorithms, including OS-VI, on a 2-state MDP, in Figure 1. We consider the policy evaluation for the
dynamics Pπ = [ 0.9 0.1

0.1 0.9 ] with the reward rπ =
(

1
−0.5

)
and γ = 0.9. We consider two approximate

models: a relatively accurate P̂π
accurate = [ 0.85 0.15

0.05 0.95 ], and an inaccurate P̂π
inaccurate = [ 0.6 0.4

0.3 0.7 ].

In addition to OS-VI (PE), the first algorithm is the conventional VI (PE), which repeatedly applies
the Bellman operator according to the true model Pπ to the most recent approximation of the value
function. We use Tπ

P to refer to its Bellman operator and to label the corresponding trajectory in the
value space. This algorithm converges to the true value function V π . The second algorithm is VI (PE)
that uses P̂π as the model. This procedure is the basis of the Dyna architecture. We use Tπ

P̂ to refer to
its Bellman operator and to label the corresponding trajectory in the value space. Due to the error of
Tπ
P̂ compared to Tπ

P , the algorithm converges to a wrong value function V̂ π , as both figures show. We
observe that even when the model is relatively accurate as in Figure 1a, the converged value function
is quite wrong. This illustrates one limitation of the conventional model-based RL algorithms where
an inaccurate model may lead to significantly inaccurate estimate of the value function.
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Figure 1: The value function trajectories of VI (PE) with the true model (Tπ
P ), VI (PE) with

approximate model Tπ
P̂ , and OS-VI (PE) (Sπ; and T̄k for its inner loop) for a 2-state problem.

The OS-VI algorithm repeatedly applies the Varga operator Sπ to the most recent approximation
of the value function. As discussed earlier, each computation of SπVk−1 corresponds to solving an
auxiliary MDP (X ,A, r̄Vk−1

, P̂, γ). We denote the Bellman operator of this auxiliary MDP by T̄π
k .

The figures show the trajectory generated by the iterative application of Sπ on the most recent value
function as well as the trajectory for solving each auxiliary MDP, indicated by T̄π

k . We observe that
the OS-VI algorithm converges to the correct value function despite using an incorrect model. When
the model is more accurate, very few iterations of OS-VI gets a value close to V π (two iterations in
Figure 1a); when the model is less accurate, a few more iterations are needed. Compared to VI, at
least in these examples, the total number of iterations of OS-VI is significantly smaller.

When the initial value function is V0 = 0, the result of the first iteration of OS-VI is the same
value function computed by the VI with the wrong model P̂π. This is because V1 ← SπV0 =

(I − γP̂π)−1r̄πV0
and r̄πV0

= rπ, so V1 = (I − γP̂π)−1rπ, the same solution as the value function
obtained using the approximate model P̂ . In these figures, this shows itself by the overlapping of the
red arrows followed by Tπ

P̂ and the first segment of the orange arrows, which are generated by the
repeated application of T̄π

1 . In further iterations of OS-VI, the auxiliary MDPs change and the path
followed by T̄π

k (k ≥ 2) deviates from the solution of the VI with the wrong model.

4 Convergence analysis of operator splitting value iteration

In this section, we present the convergence analysis of OS-VI. Our results show that OS-VI has an
O(γ′k) convergence rate for an effective discount factor γ′ that depends on the error between P̂ and
P . For small enough error, γ′ < γ and OS-VI has a faster convergence rate compared to the classic
VI, Policy Iteration (PI), and Modified Policy Iteration (MPI), which all have O(γk) behaviour. We
provide results for both the L∞ and Lp norms.

4.1 Convergence of OS-VI for policy evaluation

We study the convergence behaviour of OS-VI (PE) in presence of error in value updates. Specifically,
we consider that at each iteration k, the update (3.2) has an error, i.e.,

Vk = SπVk−1 + ϵvalue
k (4.1)

The error ϵvalue
k encompasses various sources of errors that might occur in solving the auxiliary

MDP (X ,A, r̄Vk−1
, P̂, γ). One source is the function approximation error due to using a function

approximator to represent Vk, which is often required in large state spaces. Another is the estimation
(i.e., statistical) error caused due to having a finite number of samples, instead of direct access to P , in
the RL setting. Refer to Munos and Szepesvári [2008], Antos et al. [2008], Farahmand et al. [2016],
Chen and Jiang [2019], Fan et al. [2019] for the discussion of function approximation and estimation
errors in the RL context. In this work, we do not analyze how the number of samples, the function
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approximator, etc. affect the errors ϵvalue
k . We offer error propagation results similar to Munos [2007]

(approximate VI), Munos [2003] (approximate PI), and Scherrer et al. [2015] (approximate modified
PI) for approximate OS-VI.

To study the convergence behaviour of OS-VI (PE), let Gπ = (I− γP̂π)−1γ(Pπ − P̂π). We use the
fact that SπV π = V π and write

∥V π − Vk∥∞ =
∥∥SπV π − SπVk−1 − ϵvalue

k

∥∥
∞ =

∥∥Gπ(V π − Vk−1)− ϵvalue
k

∥∥
∞

≤ ∥Gπ∥∞∥V
π − Vk−1∥∞ +

∥∥ϵvalue
k

∥∥
∞. (4.2)

Now, we have that

∥Gπ∥∞ =
∥∥∥(I− γP̂π)−1γ(Pπ − P̂π)

∥∥∥
∞
≤ γ

1− γ

∥∥∥Pπ − P̂π
∥∥∥
∞
, (4.3)

where we used the fact that for any square matrix F with a matrix norm ∥F∥p < 1, it holds
that ∥(I − F )−1∥p ≤ 1

1−∥F∥p
(see Lemma 2.3.3 of Golub and Van Loan 2013), and that the

supremum norm of a stochastic matrix P̂π is 1. Assuming that ∥ϵvalue
k ∥∞ ≤ ϵvalue for all k ≥ 1 and

defining effective discount factor γ′ = γ
1−γ ∥P

π − P̂π∥∞, the upper bounds (4.2) and (4.3) lead to

∥V π − Vk∥∞ ≤ γ′k∥V π − V0∥∞ + 1−γ′k

1−γ′ ϵ
value.

A few remarks are in order. First, whenever γ′ < γ, this is guaranteed to be faster than the convergence
rate of the conventional VI, which is O(γk). This happens if ∥Pπ − P̂π∥∞ < 1− γ. If the model is
very accurate, we obtain much faster rate than VI’s. Since each iteration k corresponds to a query
to the true model P , a faster rate entails that the algorithm requires fewer number of queries to the
expensive model to reach the same level of accuracy.

Second, although the model error ∥Pπ − P̂π∥∞ is a reasonable choice to measure the distances
between distributions (it is the maximum of the Total Variation distance between Pπ(·|x) and P̂π(·|x)
over x, which itself can be upper bounded by their KL divergence; see the supplementary material), it
is somewhat conservative as it takes the supremum over the state space. Likewise, requiring ∥ϵvalue

k ∥∞
to be small is also conservative, as approximating SπVk−1 using a function approximator given
samples (RL setting) often leads to an Lp-norm type of guarantee. We now provide a different
analysis to address these issues.

To present the Lp-norm result, we need to define some notations. First, we define the conditional
discounted future-state distribution of policy π under P̂ as the following probability distribution:
Given a measurable set B, we have η̂π(B|x) = (1− γ)

∑∞
t=0 γ

tP
(
Xt ∈ B|X0 = x, π, P̂

)
, where

the chain (Xt)t≥0 starts from state x and evolves by following policy π under transitions P̂ . For
an arbitrary distribution ρ over the state space, we define the discounted future-state distribution
concentration coefficient of the approximate model as

Ĉπ(ρ)2 =
1

γ2

∫
ρ(dx)

∥∥∥∥dη̂π(·|x)dρ

∥∥∥∥3
∞
. (4.4)

Here dη̂π(·|x)
dρ is the Radon–Nikodym derivative of the distribution η̂π(·|x) w.r.t. the distribution

ρ. It is assumed that for any x ∈ X , η̂π(·|x) ≪ ρ, i.e., η̂π(·|x) is absolutely continuous w.r.t. ρ
(otherwise, the coefficient would be set to infinity). This coefficient measures how concentrated
the distribution η̂π(·|x) is compared to ρ. This is weighted according to the state distribution ρ.
Similar concentrability coefficients, but not exactly this one, have appeared in the error propagation
results [Kakade and Langford, 2002, Munos, 2003, 2007, Farahmand et al., 2010, Scherrer et al.,
2015]. Finally, we define the weighted χ2-divergence of P̂π and Pπ as

χ2
ρ(Pπ || P̂π) ≜

∫
ρ(dx)χ2

(
Pπ(·|x) || P̂π(·|x)

)
=

∫
ρ(dx)

∫ ∣∣∣P̂π(dy|x)− Pπ(dy|x)
∣∣∣2

P̂π(dy|x)
.

This notion of model error is less strict in requiring accurate approximation P in all states. Usually
only a subset of the state space is important or even reachable in a problem. The above model error
can focus on only specific areas of the state space through the choice of distribution ρ.

We are now ready to present the main theorem for the approximate OS-VI (PE).
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Theorem 1. Consider the approximate OS-VI algorithm for PE (4.1). Let ∥·∥⋆ be either the supremum
norm ∥·∥∞ (⋆ =∞) or ∥·∥4,ρ for ρ being an arbitrary distribution over the state space (⋆ = 4, ρ).
Assume that ∥ϵvalue

k ∥⋆ ≤ ϵvalue for all k ≥ 1. Furthermore, define the effective discount factor as

γ′ =
γ

1− γ


∥∥∥Pπ − P̂π

∥∥∥
∞

(⋆ =∞),√
Ĉπ(ρ)χ2

ρ(Pπ || P̂π) (⋆ = 4, ρ).

For any k ≥ 0, we have ∥V π − Vk∥⋆ ≤ γ′k∥V π − V0∥⋆ +
1−γ′k

1−γ′ · ϵvalue.

4.2 Convergence of OS-VI for control

We turn to analyzing OS-VI for Control. We consider two types of errors: The first is the error
between the computed value function and the true optimal value function of the auxiliary MDP, i.e.,
Vk − S∗Vk−1. The second is the suboptimality of obtained policy compared to the optimal policy of
the auxiliary MDP, i.e., SπkVk−1 − S∗Vk−1. Concretely, we have

Vk = S∗Vk−1 + ϵvalue
k , (4.5)

SπkVk−1 = S∗Vk−1 + ϵpolicy
k . (4.6)

We have the following result for the approximate OS-VI (Control).
Theorem 2. Consider the approximate OS-VI algorithm for control (4.5)-(4.6). Let ∥·∥⋆ be either
the supremum norm ∥·∥∞ (⋆ = ∞) or ∥·∥4,ρ for ρ being an arbitrary distribution over the state
space (⋆ = 4, ρ). For any k ≥ 1, let Πk = {π∗, πk} ∪ {πV (Vi−1) : 1 ≤ i < k}. Assume that
∥ϵvalue

k ∥⋆ ≤ ϵvalue for all k ≥ 1. Furthermore, define the effective discount factor as

γ′ =
γ

1− γ

maxπ∈Πk

∥∥∥Pπ − P̂π
∥∥∥
∞

(⋆ =∞),

maxπ∈Πk

√√
2 Ĉπ(ρ)χ2

ρ(Pπ || P̂π) (⋆ = 4, ρ).

We then have

∥V πk − V ∗∥⋆ ≤
2γ′k

1− γ′ ∥V0 − V ∗∥⋆ +
2γ′(1− γ′k−1)

(1− γ′)2
ϵvalue +

1

1− γ′

∥∥∥ϵpolicy
k

∥∥∥
⋆
.

We can compare this result with the convergence result of VI. For VI with the supremum norm,
following the proof of Equation (2.2) by Munos [2007], we can show that ∥V ∗ − V πk∥∞ ≤
2γk

1−γ ∥V
∗ − V0∥∞ + 2γ(1−γk−1)ϵvalue

(1−γ)2 , with ∥Vi − T ∗Vi−1∥∞ ≤ ϵvalue for all i < k (similar result for
the Lp-norm also holds, see Theorem 5.2 in Munos 2007). For the approximate VI, the initial error
∥V ∗ − V0∥∞ decays with the rate of O(γk). This should be compared with O(γ′k) rate of OS-VI.
The effect of error at each step ϵvalue is also similar: approximate VI has (1− γ)−2 dependence while
approximate OS-VI has (1 − γ′)−2. What is remarkable is that as opposed to γ, which is a fixed
parameter of the problem and can be close to 1, γ′ can be made arbitrary close to zero when the
approximate model P̂ becomes more accurate. The additional information given by P̂ allows us to
get much faster rate than VI. Of course, this requires the model to be accurate. An inaccurate model
might be detrimental to the convergence rate, and may even lead to divergence. Similar conclusions
can be made in comparing OS-VI with Policy Iteration and Modified Policy Iteration, as discussed in
the supplementary material.

5 Operator splitting Dyna

In the RL setting, we only have access to samples from P . MBRL algorithms, such as variants of
the Dyna architecture, learn P̂ from those samples, and use it to find the value function or policy.
The learned model P̂ is generally different from P due to the finiteness of the samples as well as
the possibility of model approximation error: the true dynamics P may not be representable with
the function approximator used to represent P̂ . This is another way to say that the world may be
too big to be represented by our models. A MBRL algorithm that uses P̂ in lieu of P does not find

8



Algorithm 1 OS-Dyna

1: Initialize V0, r̄ = 0, and the approximate model P̂ .
2: for t = 1, 2, . . . do
3: Sample (Xt, At, Rt, X

′
t) from environment.

4: Update the model P̂ with (Xt, At, Rt, X
′
t).

5: r̄(Xt, At)← r̄(Xt, At) + αt

(
Rt + γVt−1(X

′
t)− γEX′∼P̂(·|Xt,At)

[Vt−1(X
′)]− r̄(Xt, At)

)
.

6: Vt ← V π(r̄, P̂) (For PE) or Vt ← V ∗(r̄, P̂) , πt ← π∗(r̄, P̂) (For Control).
7: end for

the true value of the true MDP. Based on OS-VI, we propose OS-Dyna, as a hybrid model-based
and model-free RL algorithm, that takes advantage of both the true environment and the model in its
updates and can converge to the true value function despite using inaccurate P̂ .

Learning P̂ in OS-Dyna is similar to other MBRL algorithms [Moerland et al., 2022]: one can use
various model learning approaches, either based on maximum likelihood estimate or a decision-aware
model learning approach, to learn the model. Given a learned P̂ , we can compute Vk from the
auxiliary reward function r̄k ≜ r̄Vk−1

by solving the PE or the Control problem in the auxiliary MDP
(X ,A, r̄k, P̂), as discussed in Section 3.

As Vk is a function of r̄k, we focus on how r̄k should be estimated. The update rule of r̄k in OS-VI
entails that for every (x, a), we have

r̄k(x, a) = r(x, a) + γ
(
P(·|x, a)− P̂(·|x, a)

)
V π(r̄k−1, P̂), (Policy Evaluation) (5.1)

r̄k(x, a) = r(x, a) + γ
(
P(·|x, a)− P̂(·|x, a)

)
V ∗(r̄k−1, P̂). (Control) (5.2)

We update our estimation of r̄ using samples, as shall be discussed soon, and then the value function
is updated to V π(r̄, P̂) (PE) or V ∗(r̄, P̂) (Control) with most recent estimate of r̄. The challenge
is that the above update rules need access to distribution P(·|x, a) for every (x, a), while we only
have samples from P at some (x, a) pairs. Fortunately, this challenge has been tackled in developing
sample-based algorithms based on the classic VI:

∀(x, a) : Qk(x, a) = r(x, a) + γP(·|x, a)Vk−1, (5.3)

where Vk−1 = Qk−1(x, π(x)) in PE and Vk−1 = maxa′ Qk−1(x, a) in Control. There are multiple
approaches to develop sample-based algorithms based on (5.3) such as Fitted Value Iteration and
Stochastic Approximation (SA) [Borkar, 2008]. In this paper we use SA to develop OS-Dyna, but
we point out that other algorithms and techniques can also be applied to develop other versions of
OS-Dyna. The key step in SA is to use samples to form an unbiased estimate of the intended update
value. For a step in the true environment leading to (Xt, At, Rt, X

′
t) tuple, we can have the estimate

Yt = Rt + γV (X ′
t) − γEX′∼P̂(·|Xt,At)

[V (X ′)], where the expectation can also be estimated by

samples from P̂(·|Xt, At). This estimate Yt of the update rule can then be used to update r̄. As an
example, for a finite state-action problem, the update rule is

r̄(Xt, At)← r̄(Xt, At) + αt(Yt − r̄(Xt, At)), (5.4)

where αt is the learning rate. The final procedure of OS-Dyna is presented in Algorithm 1.

6 Experiments

We evaluate both OS-VI and OS-Dyna in a finite MDP and compare them with existing methods.
Here we present the results for the Control problem on a modified cliffwalk environment in a 6× 6
grid with 4 actions (UP, DOWN, LEFT, RIGHT). We postpone studying the PE problem, the results
for other environments, and other relevant details to the supplementary material. Our convergence
analysis shows that the convergence rates of our algorithms depend on the accuracy of P̂ . To test
OS-VI and OS-Dyna with models of different accuracies, we introduce the smoothed model P̂ of
transitions P with smoothing parameter λ as

P̂(·|x, a;P, λ) = (1− λ)P(·|x, a) + λU
(
{x′|P(x′|x, a) > 0}

)
, (6.1)
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Figure 2: (Left) Normalized error comparisons of OS-VI, VI, and the optimal policy of model P̂ .
(Right) Comparison of OS-Dyna with Dyna and Q-Learning in the RL setting.

where U(A) for some set A is the uniform distribution over A. Here, λ allows making adjustments to
the amount of error introduced in P̂ w.r.t. P . If λ = 0, P̂ = P will be the accurate model, and if
λ = 1, P̂ will be uniform over possible next states in P .

The left plot in Figure 2 shows the convergence of OS-VI compared to VI and the solutions the model
itself would lead to. The plot shows normalized error of V πk w.r.t V ∗, i.e., ∥V πk − V ∗∥1/∥V ∗∥1. It
can be seen that OS-VI has faster convergence with more accurate models and introduces acceleration
compared to VI across different model errors. Note that the convergence of OS-VI has been achieved
despite the error in the model. The dashed lines show how a fully model-based algorithm, which only
uses P̂ , would obtain a suboptimal solution.

We also compare OS-Dyna with Dyna and Q-Learning in the RL setting. At each iteration t, the
algorithms are given a sample (Xt, At, Rt, X

′
t) where Xt, At are selected uniformly at random. For

OS-Dyna and Dyna we use the smoothed Maximum-likelihood Estimation (MLE) model. If PMLE

is the current MLE estimation of the environment transitions, OS-Dyna and Dyna use P̂(PMLE, λ)
defined in (6.1) as their models. The learning rates are constant α for iterations t ≤ N and then decay
in the form of αt = α/(t−N) afterwards. We have fine-tuned the learning rate schedule for each
algorithm separately for the best results.

The right plot in Figure 2 shows the results for the RL setting. We evaluate the expected return of
the policy at iteration t in the initial state of the environment, i.e., V πt(0). Again, OS-Dyna has
converged to the optimal policy much faster than Q-Learning. Unlike OS-Dyna, Dyna has failed to
find the optimal policy in presence of model error. The results show that OS-Dyna can effectively
converge faster than Q-Learning without introducing bias to the final solution due to model error.

7 Conclusion

This paper introduced the Operator Splitting Value Iteration (OS-VI) algorithm, which can benefit
from an approximate model P̂ ≈ P to accelerate the convergence of the approximate value to the
true value function in terms of the number of queries to the true model P . With a small model
error, its convergence rate is exponentially faster compared to well-known dynamical programming
algorithms such as Value Iteration and Policy Iteration. We also proposed OS-Dyna as a hybrid
model-based/model-free algorithm that can bring in the benefits of a model-based RL algorithm
without converging to a biased solution, as Dyna or any other purely model-based RL algorithm
does. This paper opens up several future directions. Empirically studying the algorithms on problems
with large state spaces, for which a function approximator such as a DNN is required, is an obvious
one. This is postponed to a future work as our aim was to build the mathematical foundation and
conducting experiments without worrying about challenges such as the optimization of a DNN. There
are other algorithmic and theoretical directions to be pursued. One is exploring the space of splittings
of I− γPπ. The other is whether we can design Operator Splitting variants of other DP algorithms
such as Policy Iteration and Modified Policy Iteration, and study their convergence behaviour.
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