
Exposing and Exploiting Fine-Grained Block
Structures for Fast and Accurate Sparse Training

Peng Jiang
The University of Iowa

Iowa City, USA
peng-jiang@uiowa.edu

Lihan Hu
The University of Iowa

Iowa City, USA
lihan-hu@uiowa.edu

Shihui Song
The University of Iowa

Iowa City, USA
shihui-song@uiowa.edu

Abstract

Sparse training is a popular technique to reduce the overhead of training large
models. Although previous work has shown promising results for nonstructured
sparse models, it is still unclear whether a sparse model with structural constraints
can be trained from scratch to high accuracy. In this work, we study the dy-
namic sparse training for a class of sparse models with shuffled block structures.
Compared to nonstructured models, such fine-grained structured models are more
hardware-friendly and can effectively accelerate the training process. We propose
an algorithm that keeps adapting the sparse model while maintaining the active
parameters in shuffled blocks. We conduct experiments on a variety of networks
and datasets and obtain positive results. In particular, on ImageNet, we achieve
dense accuracy for ResNet50 and ResNet18 at 0.5 sparsity. On CIFAR10/100, we
show that dense accuracy can be recovered at 0.6 sparsity for various models. At
higher sparsity, our algorithm can still match the accuracy of nonstructured sparse
training in most cases, while reducing the training time by up to 5x due to the
fine-grained block structures in the models.

1 Introduction

As large neural networks keep advancing the state-of-the-art in many machine learning tasks, training
the models has become increasingly expensive. It is reported that training GPT-3 costs an estimated
$12 million in computational resources [41]. To reduce the cost, there is a growing interest in
developing sparse training algorithms [30, 2, 8, 18, 26, 27]. By computing on a small subset of
parameters throughout the training process, these algorithms aim to reduce the memory and computing
power consumption for large-scale neural network training.

The existing sparse training methods can be categorized as either static or dynamic. While training a
static sparse model from scratch is appealing, it usually requires nontrivial initialization to achieve
good accuracy [9, 23, 22]. In contrast, dynamic sparse training uses simple random initialization. In
every few iterations, it drops a small number of ‘unimportant’ weights and replaces them with some
new parameters. By exploring a larger set of parameters than the sparse model itself, dynamic sparse
training, in general, achieves higher accuracy than static sparse training [14].

Most of the existing dynamic sparse training methods focus on nonstructured models. That is, the
active parameters are scattered in the model without any constraints. Although they can retain
high accuracy with much fewer parameters, the nonstructured sparse models do not necessarily
accelerate the training process because the irregular computation suffers from poor data locality and
low parallelism [13, 39]. A common way to improve the efficiency of sparse models is by imposing
structures on model parameters. However, current structured models have only been shown attainable
by pruning and mostly beneficial to inference [13, 39, 28, 1]. Whether structured models can be
obtained by sparse training and in turn accelerate the training process is still an open problem.
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Figure 1: Model adaptation in shuffled-block dynamic sparse training: The active weights are
organized in shuffled blocks before adaptation. Any weight can be dropped but new weights must be
added in blocks. The new model is reorganized to ensure that all active weights are in shuffled blocks
after adaptation.

Some recent work has explored fine-grained structures in sparse models for efficient training. For
example, Hubara et al. [17] propose a method to find N:M transposable sparsity that can benefit both
the forward and backward pass. However, their method relies on specialized hardware (sparse tensor
cores). Chen et al. [3] test the lottery ticket hypothesis [9] for sparse models with shuffled block
structures. Although they show promising results that such semi-structured models can be trained to
high accuracy from scratch, how to generate a winning ticket without dense training remains unclear.

In this work, we take a step forward and investigate the existence of fine-grained block structures
in sparse models with dynamic sparse training. Our idea is illustrated in Fig. 1. We first initialize
a sparse model and group the parameters in shuffled blocks. Since the shuffled blocks and their
transposes can be efficiently processed by hardware, our method accelerates both the forward and
backward pass. In every few iterations, we adapt the model by dropping the smallest weights and
adding back the same number of new parameters. Different from previous work which selects new
parameters based on dense gradients [8] or dense weights [18], we select blocks of new parameters
directly based on the input value and output gradient of each layer, making our algorithm purely
sparse. The adapted model is shuffled and blocked again to ensure that the active weights are always
organized in shuffled blocks.

We test our algorithm on a variety of networks and datasets and answer the following questions:

1. Can a randomly initialized sparse model with fine-grained block structures be trained to high

accuracy? We train a ResNet18 and a ResNet50 of 0.5 sparsity with parameters constrained in
shuffled blocks of size 16⇥ 16 on the ImageNet dataset, and we recover the accuracy of dense
models. When the sparsity increases to 0.75, the accuracy drops slightly but still matches the
accuracy of nonstructured models with dynamic sparse training. The result is further validated
with various models on the CIFAR10/100 dataset.

2. Does the model adaptation of dynamic sparse training help improve the accuracy of sparse models

with fined-grained block structures? We train sparse models with parameters in shuffled blocks
with and without model adaptation. For ResNet18 and ResNet50 on ImageNet, the dynamic
approach achieves more than 1% higher accuracy than static training. For different models
on CIFAR10/100, dynamic training also achieves higher accuracy than static training, and the
improvement is more noticeable when the sparsity is higher.

3. What is the tradeoff between accuracy and hardware efficiency with different block sizes? We
train sparse models with different block sizes on CIFAR10/100. As expected, models with smaller
block structures achieve higher accuracy. We find that the accuracy difference is small for block
size 4, 8, 16 and is more noticeable for block size 32. The sparse operations on blocks of size
16⇥ 16 can be more than 3x faster than on blocks of size 4⇥ 4, but the performance improvement
is small when the block size increases to 32. This suggests that block size 16 can achieve a good
tradeoff between accuracy and efficiency.

To the best of our knowledge, our work is the first to apply shuffled blocking of model parameters
to dynamic sparse training. We believe that our findings can inspire future research on designing
hardware-efficient sparse training algorithms.
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2 Related Work

Neural network pruning. The conflict between the ever-increasing size of neural networks and the
limited computing capacity of hardware has inspired a lot of research on neural network pruning.
Early works include [11, 10, 42, 35], in which iterative and heuristic pruning methods with limited
and nonstructured sparsity were proposed. These works focus on reducing the size of neural networks
but do not consider their performance carefully. The performance issue with nonstructured pruning
is later identified in [40], where the authors propose to prune the entire input or output channels
so that they can be easily accelerated on CPU and GPU. The downside of these structured pruning
methods is that they suffer from notable accuracy loss when sparsity increases. To combine the
benefits of structured and nonstructured pruning, hybrid pruning strategies have been proposed. Ma
et al. propose pattern-based kernel pruning [29] for convolutional neural networks. The convolution
kernels can only be pruned to one of several pre-defined patterns so that the pruned model contains
some regular structures. Zhu et al. propose vector-wise pruning [45]. They divide the weight
matrix into fixed-size vectors and keep the top-K elements in each vector. In addition to vector-wise
pruning, the authors also adapt the tensor core architecture on GPUs to sparse tensor core in order
to support the efficient execution of their vector-wise pruned models. Rumi et al. propose the
first fine-grained block-structured pruning method for convolutional neural networks [36]. They
reorder the convolution kernel matrix with a hypergraph partitioning procedure and group the nonzero
weights into a number of shuffled blocks. The authors also provide a CUDA implementation of the
shuffled-block-based convolution operation, and show its performance advantage over nonstructured
sparse models and dense models on GPU. Recently, the shuffled blocking technique is extended for
exploiting dense tensor cores on GPU to further accelerate the computation [16]. Some structured
pruning methods can also reduce the computation in each iteration of the training process. However,
these methods usually require much more training iterations to recover accuracy. For example,
Hrank [24] prunes the convolution layers one-by-one and needs to fine-tune the model for 30 epochs
after every layer is pruned. ABCPruner [25] performs end-to-end fine-tuning, but it needs to run the
entire training process for multiple cycles. ResRep [7] avoids fine-tuning, but it needs to add extra
"compactor" parameters for selecting the channels, resulting in extra computation in each iteration.
Moreover, these structured pruning methods require a pre-trained model as input.

Sparse training. Pruning generates sparse models that are fast for inference; however, it does not
accelerate the training process. In fact, pruning often needs to be conducted iteratively and increases
the training overhead. As neural networks keep growing larger and training becomes prohibitively
expensive, people start to be interested in exploiting sparsity to reduce the training cost. Mocanu et

al. propose the first dynamic sparse training algorithm, Sparse Evolutionary Training (SET), which
starts training with a randomly initialized sparse model, prunes weights with small magnitude and
adds back weights at random periodically [30]. Following SET, Bellec et al. propose Deep Rewiring
which augments traditional stochastic gradient descent with a random walk in parameter space [2].
Mostafa et al. propose Dynamic Sparse Reparameterization (DSR) which allows the parameter
budget to shift between different layers [31]. Dettmers et al. propose Sparse Networks from Scratch
(SNFS) which uses the momentum of each parameter as the criterion for growing weights [5]. Evci
et al. point out that all these algorithms can be expressed with a drop-and-grow framework and
propose RigL which uses the gradient magnitude as the grow criterion [8]. An issue with RigL is
that it needs to compute the full gradient every few iterations, which may not be affordable for large
models. Top-kast addresses this issue by maintaining all the weights but computing gradients on a
small subset of weights in each iteration. Although these sparse training algorithms show promising
results, they still have an accuracy gap with pruning methods. Recently, researchers show that this
gap can be closed by using a small batchsize and training for more iterations [26] or by interleaving
sparse training with dense training phases [34]. Besides dynamic sparse training, there has been a line
of research on static sparse training. Lee et al. propose Single-Shot Network Pruning (SNIP) which
finds an initial mask with one-shot pruning and keeps the sparse model fixed during training [23]. In
a follow-up paper, they refine their initialization method from a signal propagation perspective [22].
Frankle et al. propose the Lottery Ticket Hypothesis (LTH) which states that a sparse model can
be trained to match the accuracy of the dense model if a good initialization is provided [9]. While
appealing, the effectiveness of LTH in reducing the training cost is still unclear as obtaining the
"winning ticket" is usually nontrivial [44, 9].

Most of the existing sparse training algorithms (either static or dynamic) focus on nonstructured
sparse models. Although they reduce the number of floating-point operations, these models cannot
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run efficiently on hardware due to their irregular memory access patterns and limited parallelism. This
puts the practicality of sparse training algorithms into doubt. Inspired by the hybrid pruning methods,
researchers have worked on extracting fine-grained structures in sparse models to accelerate training.
Hubara et al. propose a method to find N:M transposable sparsity [17]. Their method accelerates
both the forward and backward pass in training and can be used in either a static or dynamic fashion.
However, the N:M sparsity relies on specialized hardware (sparse tensor cores on GPU) to deliver
good performance and thus is not generally applicable to other hardware or even older GPUs. Chen
et al. [3] adopt the shuffled blocking technique from [36] and show that a sparse model with shuffled
block structures can be trained to dense accuracy at a nontrivial sparsity ratio. However, they need to
pre-train a dense model to obtain an initialization for the sparse training. Dietrich et al. [6] propose a
dynamic sparse training algorithm with block sparsity. However, as we show in §5 and experiments,
block sparsity without row/column shuffling has a very low mask diversity and achieves low model
accuracy.

3 Preliminaries

Notation. Throughout the paper, we use W 2 RR⇥C to denote the parameters in a layer. Here, R is
the output channel size; C is the input channel size (if it is a linear layer), or the input channel size
times the convolution kernel size (if it is a convolutional layer). We use In 2 RC⇥B to denote the
input and Out 2 RR⇥B to denote the output, where B is the batch size. The gradient w.r.t. W is dW
and has the same dimension as W . The element at row i and column j of dW is denoted as dWij .
The gradient w.r.t the output is dOut, and the gradient w.r.t. the input is dIn. We use || · || to denote
the `1 norm of a matrix and use | · | to denote the absolute value of each element in a matrix or vector.

drop

grow

Before

After

Model adaptation

Algorithm 1: Dynamic sparse training
Input :Network: fW , Dataset: D, Sparsity distribution:

S = {s1, . . . , sl}, Update schedule: �T , Tend

W  Randomly sparsify model parameters using S;
for each training step t do

Sample a batch Bt ⇠ D;
Lt =

P
i2Bt

L(fW (xi), yi);
if t mod �T == 0 and t < Tend then

for each layer l do
k  Decide drop number;
Idrop  Select k weights to drop;
Igrow  Select k new weights to grow;
W  Update active weights using Idrop and
Igrow;

else W = W � ↵rWLt;

Figure 3: Dynamic sparse training with drop-and-grow-based model adaptation.

Dynamic sparse training. Fig. 3 illustrates the idea of dynamic sparse training. The algorithm starts
with a randomly initialized sparse model. It adapts the model in every �T iterations until iteration
Tend. The model adaptation involves two operations: drop and grow. The drop operation discards
some weights in the model, and the grow operation adds some new weights back. Different sparse
training algorithms use different criteria for the two operations. For example, RigL [8] drops the
weights with the smallest magnitudes and grows the same amount of weights with the largest gradients.
Top-kast [18] maintains a superset of active weights and drops and grows active weights according
to their magnitudes. With the periodic model adaptation, dynamic sparse training algorithms can
explore more parameters and achieve higher accuracy than static sparse training [27, 26].

Computations in sparse neural networks. Many operations in a dense neural network can be
expressed as general matrix multiplications (GEMM). In a sparse model, the computations are
sparse matrix multiplications. For example, the training of a linear layer involves three matrix
multiplications: 1) in the forward pass, the input is multiplied with the sparse weight matrix to
get the output (i.e., Out = W · In); 2) in the backward pass, the gradient of loss w.r.t. the input
is computed by multiplying the transpose of the sparse weight matrix with the gradient w.r.t. the
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Algorithm 2: Forward pass: Out = W ·
In for a shuffled block of parameters
Input :W [S1][S2], rowidx[S1],

colidx[S2], In[C][B]
Output :Out[R][B]
In

0[S2][B] = In[colidx][B];
Out

0[S1][B] = 0;
for i = 0 to S1 � 1 do

for j = 0 to S2 � 1 do
for k = 0 to B � 1 do

Out
0[i][k] +=

W [i][j] ⇤ In0[j][k];

Out[rowidx][B] = Out
0;

Algorithm 3: Backward pass: dW = dOut ·
In

T for a shuffled block of parameters
input :rowidx[S1], colidx[S2], dOut[R][B],

In[C][B]
output :dW [S1][S2]
In

0[S2][B] = In[colidx][B];
dOut

0[S1][B] = dOut[rowidx][B];
dW

0[S1][S2] = 0;
for i = 0 to S1 � 1 do

for j = 0 to S2 � 1 do
for k = 0 to B � 1 do

dW
0[i][j] += dOut

0[i][k] ⇤ In0[j][k];

dW [rowidx][colidx] = dW
0;

output (i.e., dIn = W
T · dOut); 3) the gradient of loss w.r.t. the weight is computed by multiplying

the gradient w.r.t. the output with the transpose of input (i.e., dW = dOut · InT ). The first two
operations are sparse-matrix dense-matrix multiplication (SpMM). The last operation is a sampled
dense-dense matrix multiplication (SDDMM) because only the gradients for the active weights need
to be computed.

Sparse matrix multiplication with shuffled blocks. SpMM and SDDMM were first studied for effi-
cient execution on GPU in the scientific computing domain [15, 19]. They show that the performance
bottleneck of the two operations is the irregular access to the input dense matrix, and they propose
adaptive tiling and reordering techniques to improve the memory access efficiency. While they target
large matrices with high sparsity, the reordering and tiling ideas have inspired shuffled blocking tech-
niques to accelerate SpMM and SDDMM for smaller matrices with relatively lower sparsity in sparse
neural networks [36, 16, 3]. The idea is illustrated in Fig. 4. The nonzeros in the sparse matrix are
organized into small blocks. Algorithm 2 shows the implementation of the forward pass for a shuffled
block of parameters. Suppose the row indices of the block are rowidx and column indices are colidx.
The program first loads In[colidx][B] into cache In0 and allocates a cache Out

0 for Out[rowidx][B].

0
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Figure 4: Shuffled blocking a sparse matrix.

Since the values of In[colidx][B] and
Out[rowidx][B] are repeatedly accessed
in the computation and accessing cache is
much faster than main memory, the mem-
ory access overhead is reduced. Simi-
larly, Algorithm 3 shows the computation
of the gradients for a block of parameters.
The program first loads In[colidx][B] and
dOut[rowidx][B] into cache and reuses the
data in cache throughout the computation.
The larger the block size, the more data
reuse the program has. The computation can be further accelerated by exploiting the matrix-multiply
units in emerging hardware (e.g., tensor cores on Nvidia GPU) [16]. This is why structured sparse
models can deliver better performance than nonstructured models that have even fewer parameters.

4 Proposed Algorithm

As explained in the previous section, for sparse models to run efficiently, it is important to have all
the active weights in blocks. Previous work ensures this through pruning [36, 16] or initialization [3].
We now show that sparse models with such fine-grained block structures can also be obtained by
dynamic sparse training. Fig. 1 illustrates the model adaptation steps in our algorithm. This section
details each of the steps.

Initialization. The algorithm starts with a randomly initialized nonstructured model. We adopt the
ERK sparsity distribution [30] to determine the sparsity for each layer. Then, a shuffled blocking
procedure is invoked to reshape the sparse model into shuffled blocks.
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Shuffled blocking. Suppose N is the number of active weights in a layer and the block size is set
to S1 ⇥ S2. The shuffled blocking procedure aims to put as many active weights into dN/(S1S2)e
blocks. As shown in Fig. 4, it first reorders the rows of the sparse matrix so that similar rows are close
to each other. The similarity between two rows is defined as the Jaccard similarity of the nonzero
columns in the two rows (i.e., the number of common columns divided by the total number of distinct
columns). Intuitively, two rows with more common columns have a larger similarity and should
be put close to each other. With the definition of similarity between rows, the shuffling of rows
can be achieved by a simple clustering procedure. We use the AgglomerativeClustering from
sklearn [33] for this task. Since row reordering is performed repeatedly during the training process,
we want to keep its overhead as small as possible. We observe that most rows have small similarities
with other rows, and reordering them does not improve much of the block density. Therefore, we
only cluster the rows that have more than q nonzeros in common columns with other rows, where q

(0.2 in our experiments) is a hyperparameter that controls the clustering overhead. After the rows
are reordered, we divide them into groups of size S1. In Fig. 4, S1 is set to 2, and thus the four rows
are divided into two groups: {0,2} and {1,3}. Within each row group, we select S2 columns to form
a block of size S1 ⇥ S2. To ensure large weights are preserved, we always select the column with
the largest `1 norm in each row group and return the block with the largest `1 norm among all row
groups. This procedure continues until we find enough blocks.

Small weights that 
are dropped

Small weights that 
are not dropped

Large weights

Figure 5: Avoid dropping isolated
small weights.

Block-aware drop criterion. The sparse model is adapted in
every �T iterations. For each layer, we compute the number
of weights to be dropped in iteration t with a cosine decaying
function:

k =
↵N

2

✓
1 + cos

✓
t⇡

Tend

◆◆
(1)

where ↵ is the initial drop ratio and N is the number of active
weights in the layer. Following previous dynamic sparse
training algorithms [8, 26, 27, 18], we select the k weights
with the smallest magnitudes (i.e. ArgTopK(�|W |, k)) for
removal. Before removing them, we check if these weights make up at least half of the elements
in either a row or a column of a block. More specifically, in each shuffled block B, we have the
weights to be dropped as B \ ArgTopK(�|W |, k). For a weight w 2 B \ ArgTopK(�|W |, k),
the elements in the same row of B is B[rowidx(w), :], and the elements in the same column of B
is B[:, colidx(w)]. We remove w if and only if B[rowidx(w), :] \ArgTopK(�|W |, k) has at least
S1/2 elements or B[:, colidx(w)] \ArgTopK(�|W |, k) has at least S2/2 elements. If a weight in
ArgTopK(�|W |, k) does not have enough other weights to be dropped in the same row/column of
a block, the weight will not be dropped. This is because even if we drop it, the weight is very likely
to be added back after the blocking procedure. However, because the number of weights to be added
in the grow phase is determined by the number of dropped weights, this ineffective dropping of some
small weights will result in more new weights being added in the grow phase and may cause more
important weights to be discarded by the following shuffled blocking procedure. Our block-aware
drop criterion reduces the negative impact of such ineffective drops. Intuitively, when the small
weights are concentrated in a few rows or columns, we perform more model adaptation. When the
small weights are scattered in many rows and columns, we perform less aggressive adaptation. Fig. 5
shows an example of the block-aware drop criterion. Suppose there are five small weights (marked
with diagonal stripes) in a block. Instead of dropping all the five weights, we only drop three of them
that are in a row or column with at least two small weights (marked in blue). The two weights with
only themselves to be dropped in their rows and columns (marked in orange) will remain active. In
our experiments, we find that this block-aware drop criterion is critical for achieving good accuracy
for shuffled-block dynamic sparse training (See Appendix A.2).

Block-wise grow criterion. The main novelty of our method lies in how we grow the weights.
Different from previous work that computes the gradients for all weights and adds the weights
with the largest gradients[8, 26, 27], we use dOut and In to estimate the importance of weights.
Specifically, since dW = dOut · InT , dWij = hdOuti, Inji, we have ||dWij ||  ||dOuti|| · ||Inj ||
where dOuti represents row i of dOut and Inj represents row j of the input. This suggests that
the weights connecting the input channels of larger magnitudes to the output channels of larger
gradients are of greater importance. Our grow criterion is designed based on this intuition. Suppose
X represents a group of Sx rows in dOut and Y represents a group of Sy rows in In. It is easy to see
that XY

T is a shuffled block of size Sx ⇥ Sy in dW . Our goal is to find the blocks of weights with
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Table 1: Mask diversity for different sparsity constraints.
Matrix Size (R ⇥ C) 8 ⇥ 8 16 ⇥ 16

Sparsity 1:2 2:4 4:8 1:2 2:4 4:8
Nonstructured 1.8e+18 5.8e+75

N:M 4.3e+9 2.8e+12 5.8e+14 3.4e+38 6.3e+49 1.1e+59
N:M Transposable 6.6e+4 4.3e+8 1.8e+13 1.8e+19 3.4e+34 9.5e+52

Nonshuffled Block (S1 = S2 = R/4) 12870
Nonshuffled Block (S1 = S2 = R/2) 6

Shuffled Block (S1 = S2 = R/4) 1.2e+18 3.7e+48
Shuffled Block (S1 = S2 = R/2) 3.1e+11 1.3e+29

the largest ||XY
T ||. Without computing the actual gradients, we use ||X|| · ||Y T || as an estimate of

gradient magnitude. We first sort rows of dOut and In according to their norms in descending order
and divide sorted dOut into groups of Sx rows and sorted In into groups of Sy . Then, we compute
||X|| · ||Y T || for the shuffled blocks and select the blocks with largest ||X|| · ||Y T ||. For a dOut of
size x⇥ n and an input In of size y ⇥ n, the FLOPS for computing the norms of rows of dOut and
In is xn+ yn, and the FLOPS for computing the sparse gradients is no more than kn where k is the
number of dropped weights in Formula (1). So the total FLOPS with our proposed grow criterion is
xn+ yn+ kn. In comparison, the FLOPS for computing dense gradient is xyn. Since k is small,
our block-wise grow criterion has a much smaller time complexity than dense gradient computation.

2 1 0 3

0
2
3
1

b0

b4

b1

b5

b2

b6

b3

b7

current frontier

!"#$
%&!

Figure 6: Select new parame-
ters in blocks.

Fig. 6 shows an example of the selection procedure with Sx = 2
and Sy = 1. Suppose the sorted rows of input are 2, 1, 0, 3, and the
sorted rows of dOut are 0, 2, 3, 1. The selection starts from the block
in the top left corner (b0) as it has the largest ||X|| · ||Y T ||. With b0

selected, the two blocks (b1 and b4) adjacent to b0 are added to the
frontier, and the larger one between the two will be selected in the
next step. The selected block may overlap with the existing active
blocks. Only the non-overlapping parameters are considered new
parameters. We keep selecting new blocks and updating the frontier
until new parameters exceed the drop number. In the example of
Fig. 1, a block of new parameters ([0,2] and [2,2]) are added. Finally,
we reorganize the new model into shuffled blocks. To prevent the
new parameters from being discarded by the blocking procedure, we
set their value to the maximum value of the active weights. After the
new blocks are formed, we reset the value of the new parameters to zero so that they will not affect
the output of the network.

5 Comparison with Transposable N:M Sparsity

Our work is closely related to the line of research that explores fine-grained N:M sparsity in neural
networks [43, 17, 38]. While most work focuses on accelerating inference, a recent paper shows that
transposable N:M sparsity can be found in sparse models to accelerate both the forward and backward
pass in training [17]. This section compares transposable N:M sparsity with shuffled block sparsity.

In [17], the authors propose a measure called mask diversity to quantify how much a specific structure
constrains the model. Specifically, mask diversity is the total number of distinct sparse masks that
satisfy certain sparsity and dimension constraints. They show a positive correlation between the mask
diversity and accuracy. We follow their arguments and compute the mask diversity of shuffled block
sparsity. For a matrix of size R⇥ C, suppose R and C are divisible by the block size S1 and S2, and
the sparsity is s. Since the rows are reordered and divided into disjoint groups, the number of ways
to choose row groups is R!/(S1!)R/S1 . Once the row groups are fixed, we need to select a total of
RC(1� s)/S2 columns from all row groups to form the desired number of blocks. This leads to the
following formula for the mask diversity of shuffled block sparsity:

MDsh_block =
R!

(S1!)R/S1
·
✓

RC

RC(1� s)/S2

◆
. (2)

In comparison, the mask diversity of nonshuffled block sparsity is simply choosing RC(1�s)/(S1S2)
blocks from the total RC/(S1S2) blocks. Table 1 lists the mask diversity of shuffled block sparsity
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Figure 7: Test accuracy (%) over sparsity on CIFAR10.
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Figure 8: Test accuracy (%) over sparsity on CIFAR100.

along with other sparsity constraints for an 8⇥ 8 matrix and a 16⇥ 16 matrix. The formula for other
sparsity constraints can be found in [17]. We can see that nonstructured sparsity has the highest
diversity, which explains its superior accuracy to structured sparsity. When the block size is small,
shuffled block sparsity has a mask diversity close to nonstructured sparsity. For example, for the
8⇥ 8 matrix, when S1 = S2 = R/4 = 2, the mask diversity is of the same order of magnitude as
nonstructured sparsity. When the block size increases, the mask diversity decreases. This illustrates a
tradeoff between hardware efficiency and model accuracy for shuffled block sparsity. Compared to
N:M sparsity which only benefits the forward pass, shuffled block sparsity benefits both the forward
and backward pass and yet has a higher mask diversity when S1 = S2  4 and M = 2. Compared to
N:M transposable sparsity, shuffled block sparsity has a higher mask diversity when S1 = S2  4
and M  4.

Moreover, N:M sparsity relies on sparse-matrix-multiply units in emerging hardware (sparse tensor
cores on Nvidia Ampere GPU) to deliver good performance, whereas shuffled blocking accelerates
the computation on traditional computing units and can exploit dense-matrix-multiply units which are
more broadly supported by hardware (e.g. dense tensor cores on GPU, AMX on Intel CPU, MMA
on IBM Power10 processor). As the current Nvidia GPU only supports sparse tensor cores with
N = 2,M = 4 and dense tensor cores with S1 = S2 = 4, shuffled blocking is expected to be a
more flexible and more efficient way to accelerate sparse training. We can also see that shuffled
block sparsity has a much higher mask diversity than nonshuffled block sparsity. This is because the
shuffling of rows and columns significantly increases the number of ways to form nonzero blocks.

6 Experiments

We test our algorithm with ResNet18 and ResNet50 [12] on the ImageNet dataset [4], and
WideResNet22-2, ResNet18 and VGG16 [37] on CIFAR10 [20] and CIFAR100 dataset [21]. For

Table 2: Top-1 accuracy on ImageNet. DSB represents our Dynamic Shuffled Block training, and
SSB represents Static Shuffled Block training with random initialization. The number before DSB
and SSB indicates sparsity, and the number after DSB and SSB is the block size. SSLT represents
Structured Sparse Lottery Ticket from [3]. The number before SSLT indicates sparsity. ‘-’ indicates
missing data in literature.

Model Dense 0.5 DSB-16 0.5 SSB-16 0.51 SSLT 0.7 SSLT 0.75 DSB-16 0.75 SSB-16 0.8 RigL
ResNet50 76.13 76.33 75.83 75.65 71.5 74.04 72.76 75.1
ResNet18 69.76 69.84 68.52 - 65.72 64.49 -
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Figure 9: Test accuracy (%) over sparsity on CIFAR-10 with DSB using different block sizes. RigL
corresponds to DSB using block size 1.
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Figure 10: Average speedup of sparse convolution over dense convolution operations on CIFAR10.

ImageNet, the models are trained for 100 epochs with batch size 256. The learning rate schedule
starts with a linear warm up reaching its maximum value of 0.1 at epoch 5 which is then dropped
by a factor of 10 at epochs 30, 70, 90. For CIFAR10/100, the models are trained for 250 epochs
with batch size 128. The learning rate is initialized to 0.1 and is decreased by a factor of 5 every
30,000 iterations. The standard SGD with a momentum of 0.9 is used as the optimizer. For dynamic
sparse training, the initial drop ratio ↵ is set to 0.3, �T is set to 1600 for ImageNet and 100 for
CIFAR10/100, and Tend is set to 400000 for ImageNet and 75000 for CIFAR10/100.

Accuracy compared with other training methods. Table 2 lists the top-1 accuracy of ResNet18
and ResNet50 trained with different methods on ImageNet. Our dynamic shuffled block training
(DSB) recovers the accuracy of the dense models at 0.5 sparsity. In comparison, the structured sparse
lottery ticket (SSLT) [3] has a slight accuracy drop for ResNet50 at 0.51 sparsity while requiring
a dense pre-training for initializing the sparse mask. The accuracy of DSB at sparsity 0.75 is also
higher than that of SSLT at sparsity 0.7. Fig. 7 shows the test accuracy of WideResNet22-2, ResNet18
and VGG16 trained with different methods on CIFAR10. All the experiments are run five times.
The accuracies plotted in the figures are the average values. The difference in accuracy between
different runs is smaller than 0.05%. We can see that our DSB recovers dense accuracy at 0.5 and 0.6
sparsity for all three models. In contrast, SSLT has a noticeable accuracy drop for WideResNet22
and ResNet18 (although they can achieve dense accuracy at lower sparsities [3]). Compared with
nonstructured dynamic sparse training (RigL [8]), our DSB has slightly lower accuracy at 0.5 and 0.6
sparsity, and the accuracy gap widens as the sparsity gets higher. Fig. 8 shows the test accuracy on
CIFAR100. Again, our DSB recovers dense accuracy at 0.5 and 0.6 sparsity. For WideResNet22-2
and ResNet18, our DSB achieves slightly higher accuracy than SSLT at small sparsity ( 0.7) and
almost the same accuracy at higher sparsity (> 0.7). For VGG16, SSLT achieves surprisingly higher
accuracy than both dense training and our DSB, but they require a dense pre-training for initialization.
For all the test cases, nonshuffled block sparsity (DNSB) achieves apparently lower accuracies than
other methods, which is consistent with the mask diversity shown in Table 1.

Importance of model adaptation. The results in Table 2 and Fig. 7 and 8 also show that the model
adaptation is critical to the accuracy of sparse training. For ResNet50 and ResNet18 on ImageNet,
without model adaptation, static shuffled block training (SSB) cannot recover dense accuracy at
0.5 sparsity. Its accuracy at 0.75 sparsity is more than 1% lower than DSB. For WideResNet22-2,
ResNet18, and VGG16 on CIFAR10/100, SSB also has lower accuracy than DSB, and the accuracy
gap is larger at higher sparsity.
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Tradeoff between accuracy and efficiency with different block sizes. To show the effects of block
size on accuracy, we run DSB with different block sizes. The results are shown in Fig. 9. DSB-4,8,16
achieve almost the same accuracy when sparsity  0.8. DSB-4 shows a slight advantage over
DSB-8,16 at 0.9 sparsity. When the block size increases to 32, we observe an apparent accuracy drop,
and the drop is more significant at higher sparsity. To show the effects of block size on performance,
we test the implementation of shuffled block convolution from [36] on an Nvidia RTX3090 GPU.
Fig. 10 shows the average speedups of shuffled block convolution with different block sizes over
dense convolution. We can see that when the block size is small, the sparse convolution has almost no
performance advantage over dense convolution, even at a high sparsity. As the block size increases,
the shuffled block convolution achieves better performance. Notably, when the block size increases
from 8 to 16, the sparse computation achieves the largest marginal speedups. When the block size
increases from 16 to 32, the performance improvement is small. This is because the convolution
operation with 16⇥ 16 blocks already saturates the cache on the GPU platform. The results suggest
that block size 16 achieves a good tradeoff between the accuracy and efficiency of DSB.
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Figure 11: The ratio of shuffled blocking time to dense training time for different models on CIFAR10.

Overhead of shuffled blocking. Although shuffled blocking is an expensive operation, it is performed
only once in every �T iterations. Fig. 11 shows the overhead of shuffled blocking. The execution
time of shuffled blocking accounts for 1% to 45% of total training time. We can see that, as the sparsity
increases, the overhead of shuffled blocking decreases. As the block size increases, the number of
blocks decreases, and the overhead also decreases. When block size is set to 16, the shuffled blocking
procedure takes about 10% of the total training time. According to the speedups in Fig. 10, the
overhead can be justified by the performance improvements brought by sparse computation.

7 Conclusion

We propose a dynamic sparse training algorithm that extracts and exploits fine-grained block structures
in sparse models. Our algorithm is designed based on the drop-and-grow model adaptation framework
and features a block-aware drop criterion and a block-wise grow criterion. We show that a randomly
initialized sparse model with shuffled block structures can be trained to high accuracy, and the training
process can be effectively accelerated.
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