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Abstract

Despite their wide adoption, the underlying training and memorization dynamics
of very large language models is not well understood. We empirically study exact
memorization in causal and masked language modeling, across model sizes and
throughout the training process. We measure the effects of dataset size, learning
rate, and model size on memorization, finding that larger language models memo-
rize training data faster across all settings. Surprisingly, we show that larger models
can memorize a larger portion of the data before over-fitting and tend to forget
less throughout the training process. We also analyze the memorization dynamics
of different parts of speech and find that models memorize nouns and numbers
first; we hypothesize and provide empirical evidence that nouns and numbers act
as a unique identifier for memorizing individual training examples. Together, these
findings present another piece of the broader puzzle of trying to understand what
actually improves as models get bigger.

1 Introduction

The rate and extent to which a model memorizes its training data are key statistics that provide
evidence about how it is likely to generalize to new test instances. Classical frameworks, such as
bias-variance tradeoff [31], argued for fitting a training set without full memorization. However,
recent work has established a more symbiotic relationship between memorization and generalization
in deep learning [13, 26, 28]. This paper empirically studies memorization in causal and masked
language modeling, across model sizes and throughout the training process.

Much of the recent performance gains for language models have come from scale, with the most
recent models reaching up to 1011 parameters [22, 73, 83]. Larger models are also known to memorize
more training data [16], which is a crucial component of their improved generalization. However,
perhaps surprisingly, relatively little work has been done in understanding the impact of scale on
the dynamics of language model memorization over training. Existing work focuses on analyzing
memorization post-training [16, 47, 88, 95]. In this work, we study the memorization and forgetting
dynamics in language models, with a focus on better measuring how they change as we scale up
model size. Our primary contributions include:

1. We measure the dependence of memorization dynamics over training on model size (and
other factors such as dataset size, overfitting, and learning rate). We find that larger language
models memorize training data faster (§ 4).

2. We design controlled experiments that allow us to characterize the forgetting curves in
language models (i.e., how language models naturally forget memories throughout training).
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Our empirical studies show that forgetting curves have lower bounds — we coin this as
the forgetting baseline — and that this baseline increases with model scale, i.e., increasing
model scale mitigates forgetting (§ 5).

3. We analyze the rates of memorization of different parts of speech, finding that nouns
and numbers are memorized much more quickly than other parts of speech (§ 4.4). We
hypothesize this is because the set of nouns and numbers can be seen as a unique identifier
for a particular sample. We provide evidence to this hypothesis by analyzing the rates of
memorization in the setting of an existing unique identifier (§ 4.3).

Together, these findings present another piece of the broader puzzle of trying to understand the unique
training dynamics that emerge as models grow in size.

2 Background and Related Work

Memorization in Language Models: Unintended memorization is a known challenge for language
models [14, 85], which makes them open to extraction attacks [15, 89] and membership inference
attacks [41, 64], although there has been work on mitigating these vulnerabilities [51, 88]. Recent
work has argued that memorization is not exclusively harmful, and can be crucial for certain types of
generalization (e.g., on QA tasks) [11, 46, 87], while also allowing the models to encode significant
amounts of world or factual knowledge [4, 35, 71]. There is also a growing body of work analyzing
fundamental properties of memorization in language models [16, 47, 60, 95]. Most related to our
work Carlini et al. [16] analyzes memorization of fully trained language models and observes a
dependence on model scale, training data duplication, and prompting context length. While we also
study scaling behavior, our focus instead is on the memorization dynamics throughout training.

Language Model Training Dynamics: Previous work has extensively analyzed training dynamics to
understand how neural models acquire information over training [1, 30, 34, 66, 74]. Saphra and Lopez
[80] were the first to analyze training dynamics for language modeling, focusing on the evolution
of internal representations over pre-training. This inspired a line of work analyzing how neural
language models learn linguistic structure/world knowledge [20, 21, 53], individual words [17], and
cross-lingual structure [10] over pre-training. This analysis has been extended to many downstream
tasks, including text summarization [33], machine/speech translation [81, 86, 92], and various NLP
tasks [36, 61].

Forgetting in Language Models: There has also been work studying memory degradation (forgetting)
in language models. Catastrophic forgetting or catastrophic interference, first reported in [59, 77],
studies how neural networks tend to forget the information from previous trained tasks or training
batches, when trained on new data. This provides a key challenge for continual learning (or life-long
learning) [19], where the goal is to gradually learn from a single pass over a, typically very large,
stream of data. A number of mechanisms have been proposed for increasing robustness against
catastrophic forgetting [2, 18, 24, 49, 58, 82]. There is also a growing body of work demonstrating
that both model and dataset scale can make models more resistant to forgetting [65, 75], as well as
work characterizing how forgetting naturally occurs in image classifiers [90] and how forgetting can
improve training efficiency [5]. Machine unlearning is a technique that forces a trained model to
forget a previously learned sample [12, 54], which is primarily motivated by data protection and
privacy regulations [37, 57, 78, 91]. Our work is unique in its focus on measuring forgetting during
training, and quantifying how it varies with scale.

Scaling Laws: We have consistently seen performance gains by scaling model size [3, 22, 73, 76, 83],
and scale itself has been known to push internal model behavior away from classical bias-variance
regimes [67]. Recent efforts have focused on trying to model the scaling laws for language models,
including data and model size [44, 79], applications to transfer learning [40], routing networks [23],
and various autoregressive generative tasks [39]. While the bulk of work in scaling laws has been
empirical, an interesting line of work focuses on theoretically explaining neural scaling laws [8].
Most scaling laws focus only on cross-entropy loss, while we study memorization (defined in § 3).
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3 Experimental Setup

In order to perform a large-scale study of the dynamics of memorization over training, our mem-
orization metric must be reasonably easy to compute but also precise enough to tell us how much
the model will actually remember from the training data. Label memorization [72, 94] 2 is an ideal
candidate, because it has consistently provided theoretical insight into underlying properties of neural
networks, remains applicable in empirical settings, and is relatively cheap to compute. We formulate
our metric as an analog of label memorization for self-supervised settings.

Definition 1 Let V denote the vocabulary size. Let C denote a set of contexts, which can be thought
of as a list of tuples (s, y) where s is an input context (incomplete block of text) and y is the index of
the ground truth token in the vocabulary that completes the block of text. Let S denote the set of input
contexts, and let f : S ! RV denote a language model. A context c = (s, y) 2 C is memorized if
argmax(f(s)) = y.

Note that a single word can appear as the ground-truth token for multiple contexts. For a given set of
contexts C (i.e a given training dataset), we can then analyze the proportion of memorized contexts

M(f) =

P
(s,y)2C 1{argmax(f(s)) = y}

|C|

We refer to this as exact memorization, although it can also be seen as accuracy since we measure
how often the argmax of the language model matches the ground truth token. Throughout this work,
when we refer to memorization, we will be referring to Definition 1 unless we specify otherwise.

We define ⌧ to be a threshold value for M(f), and denote T (N, ⌧) as the minimal number of
times a language model f with N parameter needs to see each training datapoint in order to satisfy
M(f) � ⌧ . When leveraging bigger datasets, models are unable to train for multiple epochs,
so we instead consider memorization on a per-update basis. We introduce Mupdate(f, U) as the
memorization on the batch of data on which the model performs the U ’th gradient descent update,
and define Tupdate(N, ⌧) as the minimal number of gradient descent updates a language model with
N parameters needs to perform, to satisfy Mupdate(f, U) � ⌧ .

Previous work analyzing language modeling memorization defines memorization differently. Moti-
vated by privacy concerns, both [15] and [16] define memorization from a training data extraction
standpoint, in which a string s is extractable if it can be produced by interacting with the language
model. More specifically, [15] defines a string s as being k-eidetic memorized if it is extractable
and appears in at most k training examples. [16] defines a string s as k-memorized if the language
model can produce it via prompting with k tokens of context from training data. This definition
only works for causal language modeling because of the dependence on prompting with training
data; for masked language modeling [16] uses Definition 1 above. Note that if an example is exactly
memorized, it is extractable by definition. In other words, both the set of k-eidetic memorized tokens
and the set of k-memorized tokens contain the set of exactly memorized tokens (formally, different
exactly memorized tokens may be contained in different sets, depending on k). Therefore, analyzing
exact memorization gives a type of lower bound on the k-eidetic memorization and k-memorization.
In a different line of work motivated by estimating the influence of individual training examples,
[95] defines a training example x as memorized if the difference in expected model performance
(where model performance is defined as M(f) above) over subsets of data including x and subsets of
data not including x, is sufficiently large. This definition pulls from previous work in theoretically
analyzing label memorization in classification settings [27].

Model Architectures: We replicate publicly available references for Transformer language model
architectures [7, 96]. We use the 125M, 355M, 1.3B, 2.7B, 6.7B, and 13B model configurations (see
§ A.4 for more architectural and training details). We study both causal and masked language models.
We train using the FairSeq framework [69] with PyTorch [70] as the underlying framework. For our
larger models, we use the fully sharded data-parallel implementation available in FairScale [9] and
use Aim experiment tracking [6].

Datasets: We use two existing datasets across all our experiments: the WIKITEXT-103 benchmark
containing around 103 million tokens [62], and the RoBERTa corpus [55] used to train the original

2Label memorization in these prior works usually refers to perfectly fitting a given set of labels
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RoBERTa model, containing around 39 billion tokens (we refer to this as the ROBERTA dataset). We
use both datasets in section 4, and primarily use WIKITEXT-103 in other sections due to computational
restrictions.

4 Larger Language Models Memorize Faster

Larger neural language models are known to be more sample efficient and require fewer optimization
steps to reach the same performance [44] while also converging faster [52], where performance is
usually defined as test perplexity. In this section, we study T (N, ⌧) on the training set as a function
of N to answer this question.

Figure 1: We show T (N, ⌧), which is the number of times a language model needs to see each
training example before memorizing ⌧ fraction of the training data, as a function of model size N .
Result are for causal language modeling on WIKITEXT103, right plot is on log-log scale. Note that
generally larger models memorize faster, regardless of ⌧ .

In the left plot of Figure 1, we fix a memorization threshold ⌧ = 0.9 and examine T (N, ⌧) as we
increase N . The larger language models need to see each training datapoint fewer times to achieve
90% exact memorization of the training set; in other words, T (N, 0.9) is monotonically decreasing in
N . When we vary ⌧ between 0.4 and 0.95 in the right plot of Figure 1, we still observe that T (N, ⌧)
is generally decreasing with N .3 For fixed N , T (N, ⌧) is increasing in ⌧ , which is expected since
memorizing more of the training set requires training the model for more epochs. More interestingly,
increasing ⌧ smoothly transitions T (N, ⌧) from constant in N , to exponentially decreasing in N (the
axes are on a log-log scale).

Figure 2: T (N, ⌧) as a function of N (shown on log-log scale), for various values of ⌧ in masked
language modeling on WIKITEXT103. We show that larger models initially memorize training data
slower, but reach high proportions of training data memorization faster.

3We fix 0.4 as the lower bound for the range because any lower value for the memorization threshold is
achieved within the first few epochs across all model scales (the line in Figure 1 is essentially flat), and 0.95 as
the upper bound because higher values require unreasonably long training time for smaller models.
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4.1 Dependence on Language Modeling Task and Dataset Size

To investigate the dependence of our observations on the particular language modeling task, we repeat
this analysis for the masked language modeling task on WIKITEXT103 with mask probability 0.15.
Unlike in causal language modeling, Figure 2 shows that T (N, ⌧) is not monotonically decreasing
in N for lower values of ⌧ , and is monotonically decreasing in N for higher values of ⌧ , where the
phase transition4 between these two regimes occurs between ⌧ = 0.6 and ⌧ = 0.7. Smaller models
memorize the training data quicker initially and slower in the long run (e.g., right plot of Figure 11).

Figure 3: We show Tupdate(N, ⌧), which is the number of gradient descent updates U a language
model needs to perform before memorizing ⌧ fraction of the data given on the U ’th update, as a
function of model size N . Result are for causal (Left) and masked (Right) language modeling on the
ROBERTA dataset, on a log-log scale. We show that larger models memorize faster, regardless of ⌧ .

Language model training is heavily dependent on the dataset size [44], and therefore we expect
M(f) to be similarly impacted. In Figure 3, we analyze training set memorization on the much
bigger ROBERTA dataset for both masked and causal language modeling. With large datasets such as
ROBERTA dataset, it becomes infeasible to perform multiple epochs and evaluate memorization on the
entire training set, especially when training larger models. Consequently, we focus on smaller values
of ⌧ and investigate the number of gradient descent updates it takes to reach memorization thresholds,
i.e., Tupdate(N, ⌧). In Figure 3 we observe a similar trend as Figure 1, where Tupdate(N, ⌧) is
monotonically decreasing with N for various ⌧ , in both masked and causal language modeling.
Unlike with WIKITEXT103, masked language modeling does not have a phase transition for ⌧ .

4.2 Why Do Larger Models Memorize Faster?

A natural question at this point is to ask why larger models memorize faster? Typically, memorization
is associated with overfitting, which offers a potentially simple explanation. In order to disentangle
memorization from overfitting, we examine memorization before overfitting occurs, where we define
overfitting occurring as the first epoch when the perplexity of the language model on a validation set
increases. Surprisingly, we see in Figure 4 that as we increase the number of parameters, memorization
before overfitting generally increases, indicating that overfitting by itself cannot completely explain
the properties of memorization dynamics as model scale increases.

The learning rate is not constant across our training configurations. Intuitively, larger learning rates
should lead to quicker memorization. To investigate to what extent our results can be explained by
learning rate, we take a subset of the architectures available above and train on the WIKITEXT103
dataset across a standard range of learning rates while measuring memorization, in Figure 5. Even if
we fix a learning rate, larger models reach 0.9 memorization faster, suggesting that our results are
not caused solely by differences in learning rates. Interestingly, sensitivity to learning rate generally
decreases as we increase the model size. We also notice in Figure 5 that T (N, ⌧) goes down initially
(for low LRs) and eventually rises (for high LRs), and as the long as the chosen learning rate places us
near the lowest point on the curve, the memorization dynamics do not change significantly (note that
axes are on log-scale). This result is consistent with the growing intuition that for neural language
models past a particular scale, the learning rate is not a significant hyperparameter [44].

4"Phase transition" is used in physics to describe significant changes in system behavior that occurs due to
varying a parameter, such as temperature. In this case, the parameter is ⌧
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Figure 4: Proportion of training data memorized M(f) before overfitting, as a function of model size
N (plotted on a log scale). Results are for causal (left) and masked (right) language modeling on
WIKITEXT103. Note that larger models memorize more before overfitting.

Figure 5: Examining the effect of learning rate (LR) on number of times model needs to see each
training example in order to reach 0.9 proportion of training data memorization T (N, 0.9). Each line
corresponds to a different model size performing causal language modeling on WIKITEXT103. We
demonstrate that larger models memorize faster for a fixed learning rate.

Exhaustively searching all such possible factors is intractable, and providing a complete explanation
for why larger models memorize faster is outside the scope of this work. Instead, in the following
sections, we present studies that we hope will expand the toolkit for answering such questions.

4.3 Memorization via. Unique Identifiers

Recent work studies how to use external memory to improve performance [11, 35, 46, 87]. In this
subsection, we question whether such architecture changes are necessary. Motivated by information
retrieval systems, we take a simple approach — we prepend a unique identifier to every example in
the training set and examine whether memorization speed increases. Specifically, we fix the language
modeling task as causal language modeling on WIKITEXT103 with the 125M parameter model,
and in front of every training example, we insert the string document ID <unique_id> where
unique_id is a unique integer, one for each training context. In order to utilize all these unique
integers, we must add them to the dictionary of tokens, which causes a significant increase in the
model size since the last layer in the language model must have an output dimension equal to the
size of the dictionary. Therefore, any change in M(f) dynamics could be attributed to the extra
parameters we add from increasing dictionary size. To control for this, we first examine the effect of
just increasing dictionary size (without using any of the added tokens). Then, we utilize those added
tokens to prepend every training example and observe the change in M(f) dynamics. In Figure 6,
we see that increasing the dictionary size does improve the speed of memorization. Even though
we previously demonstrated that larger models memorize faster, this is still surprising considering
that we do not increase parameter size in a significant way — we are effectively adding fake tokens
to the dictionary. Moreover, when we leverage those added tokens to identify training examples
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Figure 6: The impact of adding unique identifiers to training examples on memorization M(f)
training dynamics for causal language modeling (125M) on WIKITEXT103. The green line is the
original 125M model. The orange line is the model after adding unique identifiers to the dictionary
(which increases model size). The blue line prepends these unique identifiers for each training
example. Note that adding unique identifiers leads to faster memorization of training data.

uniquely, we see yet another gain in memorization, although prompting using a document ID shifts
memorization dynamics away from being monotonically increasing over time.

4.4 Memorization Through the Lens of Parts of Speech

Figure 7: The ratios R(p) (Left) and Rmem(p) (Right) over training. R(p) represents proportion
of POS correctly memorized (the language model outputs the right POS, but not necessarily the
correct word). Rmem(p) represents the proportion of exactly memorized tokens for a particular POS
p. Results are for causal language modeling (355M) on WIKITEXT103. In both plots, we consider
numerals, proper nouns, verbs, nouns, and adjectives as potential parts of speech (i.e., values for p).
We show that nouns and numerals are memorized faster than other parts of speech.

In the previous section, we showed that a unique identifier enhances memorization. Regular text also
contains strong proxies to unique identifiers in the form of numerals and proper nouns. Motivated by
this, we study syntactic features of memories using part-of-speech (POS) tagging.5 We track the ratio
R(p) of the number of positions for which the part of speech p was correctly predicted to the total
number of tokens in the ground truth tagged with that part-of-speech p (left plot in Figure 7). In the
right plot of Figure 7 we show a similar ratio, denoted Rmem(p), but the numerator only considers the
tokens that are also exactly memorized. The correctly predicted part of speech does not necessarily
imply exact memorization, which is clearly illustrated by Figure 7 where we see the language model
memorizing parts of speech faster than the exact value of the token. While all parts of speech are
eventually memorized, some parts of speech are memorized faster, which aligns with previous work
[20]. However, unlike previous work6, we find that nouns, proper nouns, and numerals are memorized
noticeably faster than verbs and adjectives, both in terms of R(p) and Rmem(p). This has potential
implications for privacy, since sensitive information is likely to be a noun/proper noun/numeral. Our
findings also very loosely align with work studying child language acquisition [29].

5We use spaCy [42] to identify parts of speech in a text.
6This difference could be due to model family (we use causal LMs while previous work uses masked LMs)
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5 Forgetting Curves in Language Models

This section studies the dual of memorization — forgetting in language models. Inspired by the
forgetting curve hypothesis, according to which human memory declines over time when there is no
attempt to retain it [56], we are interested in understanding the dynamics of memory degradation in
language models.

We first choose a batch of data not available in the training set, i.e. a batch of data from a validation
set. We refer to this batch of data as the special batch. We then take a checkpoint from model training,
plug in the special batch so that the model can train on it, and resume standard training on the training
set. We then evaluate how memorization degrades on the special batch and analyze the various factors
the forgetting curve may depend on. We use the entire validation set as the special batch throughout
this section. The special batch is only seen once when it is immediately introduced.7

Figure 8: Left: forgetting curve for causal language modeling (2.7B) on WIKITEXT103. The dashed
horizontal line indicates the lowest proportion of special batch data memorized throughout training,
i.e., the forgetting baseline. Right: forgetting baseline as a function of model size N (plotted on log
scale). We show that as model scale increases, the forgetting baseline value increases.

In the left plot of Figure 8, we show the forgetting curve for the 2.7B model. Exact memorization on
the special batch degrades quickly at first, but slows down exponentially as we continue training 8

(see Figure 15 in § A.2.2). In other words, the forgetting curve on the special batch seems to approach
a baseline — we refer to this trend as the forgetting baseline. We approximate the forgetting baseline
by looking at the lowest memorization value on the special batch throughout training.

We show the forgetting baseline as a function of the model scale in the right plot of Figure 8. We
see that the numerical value for the baseline is monotonically increasing with the model scale. This
implies that larger models forget less, aligning with recent work studying catastrophic forgetting
on image classification tasks [75]. This is beneficial because larger models can leverage more
information from previous tasks; however, from a privacy perspective, this is not ideal because it
implies larger models may be potentially retaining more sensitive information from training data.

We also investigate the sensitivity of the forgetting baseline on data batch order. In Figure 9, we
perform the same forgetting curve analysis described above but start the analysis at different training
checkpoints (we start at the 14th, 39th, and 63rd epochs). This way, we alter the order of the data
batches given to the model (since the special batch will appear in a different place in the global order
of data batches given to the model) without drastically changing the experimental setup. We observe
that the forgetting baseline is not sensitive to data batch order9.

7This experimental setup is different from catastrophic forgetting, as we fix the data distribution by pulling
the special batch from the same dataset as the training set. Similarly, it differs from machine unlearning since we
are not algorithmically removing information from a language model; instead, we analyze natural forgetting.
It is also different from intrinsic hallucination [43], where there is an assumption that contradicted output is
semantically correct (e.g., the language model outputs a wrong date).

8The average sequential difference in memorization (on the special batch) on the last 3 epochs of training
is at most on the order of 10�3, whereas the average sequential difference in the first 3 epochs of training is
consistently on the order of 10�2

9The max difference between the numerical values for the baseline are on the order of 10�3
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Figure 9: We empirically show that the forgetting baseline does not depend on data batch ordering.
We inject the special batch into the training set at the 14th, 39th, and 63rd epochs, and evaluate
proportion of special batch data memorized as we continue training. Results are for causal language
modeling (125M) on WIKITEXT103.

Motivated by replay methods from continual learning (see [24] for a survey) and work in promoting
retention memories through repetition in both humans [45, 68, 84] and neural models [5], in Figure 10
we study the effect of repetition (left) and spaced repetition (right) on the forgetting baseline. In the
left plot, we inject the special batch into the training set multiple times before continuing training
on the training set alone. We observe that the forgetting baseline is monotonically increasing as a
function of repetition frequency (differences in the baseline value are on the order of 10�2). To study
the spaced repetition, we periodically inject the held-out set into the training set, train on it once, and
then continue training on the training set alone. We see in the right plot of Figure 10 that spaced
repetition incurs minimal effect on the forgetting baseline (on the order of 10�3), independent of the
length of spacing between the repetitions.

Figure 10: Effect of repeated injection (Left) and spaced repetition (Right) on special batch memo-
rization. Results are for causal language modeling (125M) on WIKITEXT103. The solid upper curve
represents the training set memorization. We show that repeated injection increases the forgetting
baseline, whereas spaced repetition has minimal effect.

An exciting direction for future work will be to understand the structure of the baseline — for example,
understanding what types of tokens (parts of speech, synonyms, facts, syntax) are memorized in the
baseline and the overlap of tokens memorized in the baseline with tokens in the training set.

6 Conclusions and Discussion

We study the properties of memorization dynamics over language model training and demonstrate that
larger models memorize faster. We also measure the properties of forgetting curves and surprisingly
find that forgetting reaches a baseline, which again increases with the model scale. Combined with
memorization analyses that expose the unintuitive behavior of language models, we hope to motivate
considering memorization as a critical metric when increasing language model scale.

Most work studying memorization in language modeling is primarily motivated by privacy (see § 2).
While theoretically, there are well-established frameworks to quantify privacy such as differential

9



privacy [25], empirical privacy in language modeling is not well-defined — does memorizing common
knowledge count as information leakage? Does outputting a synonym count as harmful memorization?
As per our Definition 1, we implicitly focus on information that is sensitive if outputted verbatim
(phone numbers, SSNs, addresses, medical diagnoses, etc.), rather than capturing all aspects of
privacy. It is also known that text data used for training language models contain certain biases and
stereotypes (e.g., [32]); therefore, our work has similar implications for how long language models
can train before they definitively memorize these biases from training data.

We also hope our work highlights the importance of analyzing memorization dynamics as we scale
up language models, instead of only reporting cross entropy. Cross-entropy loss and memorization
capture different behavior — for example, in many of our memory degradation experiments, even
though memorization approaches a baseline, we observe that perplexity is still increasing (see
Figure 14 in § A.2 for an example). This implies that the model is becoming unconfident about
its exact predictions, which we can only conclude because we inspect both loss and memorization.
More importantly, the forgetting baseline behavior would be entirely obscured if we did not inspect
memorization dynamics. Similarly, there are multiple instances where we uncover interesting behavior
because we focus on memorization dynamics (§ 4.4, § 4.3, § A.3), rather than focusing only on
cross-entropy loss.
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The main claims in both the introduction and abstract
are that (1) larger models memorize faster (where memorization is defined as per
Definition 3), (2) larger models memorize more before overfitting, (3) larger models
forget less, and (4) models memorize nouns and numbers quicker than other parts of
speech. (1) and (2) are supported by the beginning subsections in § 4, (3) is supported
by § 5, and (4) is supported by § 4.4. Moreover, as mentioned in the introduction and
abstract of this work the scope of this work includes analyzing large language models
which we accomplish by analyzing language models up to 13B parameters.

(b) Did you describe the limitations of your work? [Yes] In § 4, we discuss that while
we find that larger models memorize faster, we are unable to completely explain why
this is the case (although we rule out certain reasons). In § 5, we discuss how we are
approximate the numerical value for the baseline depending however long a particular
model is trained for i.e. that actual numerical values for the baseline may change
slightly if training for longer; however we provide evidence that the further changes to
the numerical value will be relatively small in § A.2.2. In § A.1.1, below where we
define memorization, we discuss the limitations of the memorization definition.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] This
work does not develop new methods / models / datasets in any way, and therefore
has minimal potential negative societal impacts. However, in section 6 we discuss
the implications of our analysis for privacy and ethical AI. We explain that, since our
work deals with memorization dynamics over training of training data, it implicitly
studies how long it takes language models memorize sensitive information (privacy
perspective) or bias/stereotypes (ethical AI perspective) from training data.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] The authors have read the ethics review guidelines and ensured that this
work conforms to them.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
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(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No] Unfortunately,
the exact code used to produce results is proprietary. However, all model configura-
tions and training details are directly pulled from publicly available references, and
described in detail in section § A.4. Similarly, while for most of our experiments we
use WIKITEXT103 benchmark which is publicly available, some of our experiments
run on the ROBERTA dataset which is not publicly available, and therefore, we are
unable to release the exact data to re-create those experiments.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] For all our of experiments, we use publicly available references to
define model architectures and hyperparameters, which we describe in full detail in
section § A.4.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] Due to the scale of experiments we run (up to 13B
parameter models experiments), many experiments are incredibly computationally
expensive and we are unable to run each experiment for multiple seeds. However, since
we deal with large datasets, random seed most probably has minimal effect on final
model output.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In § A.4, we describe the type of
GPUS and the amount of GPUs used to train different model sizes. We also provide
estimates of the total training time across all our experiments.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Since we use existing

datasets to conduct experiments, we cite the creators in § 3 at in the Datasets section;
similarly, we use the existing Transformer architecture (which we also cite in § 3
in the Model Architecture section); similarly we pull most of our hyperparameter
configurations from existing public resources, which we cite in § 3 in the Model
Architecture section.

(b) Did you mention the license of the assets? [Yes] In § A.4 we mention the licenses of
all assets we use.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
We create no new assets as part of this work.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] Since we do not create or curate any new datasets/assets as part
of this work, we do not discuss whether and how consent was obtained from people
whose data we are using.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] In § A.4 we mention that it is completely
plausible the underlying data we use has sensitive or offensive information. However,
analyzing the extent to which this is the case is outside the scope of the work, since we
just aim to understand memorization dynamics of language models over training rather
than analyze the underlying text in datasets

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] We do not crowdsource or conduct research with human subjects in
this work

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] We do not crowdsource or conduct
research with human subjects in this work

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] We do not crowdsource or conduct research
with human subjects in this work
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