
Algorithm 1 Learning the external stimulus s̄
Require: (x1,t, . . . , xd,t) is fixed to (s1, . . . , sd).
1: for t = 0 to T do

2: for each vertex i do

3: update xi,t to minimize Et via Eq. (3)
4: end for

5: if t = T then

6: update every ✓i,j to minimize Et via Eq. (4).
7: end if

8: end for;

D
endritic

l

Error Nodes

Interneurons

Synaptic Weights

Standard

Figure 8: Standard and dendritic neural implementation of predictive coding. The dendritic imple-
mentation makes use of interneurons il = Wlxl (according to the notation used in the figure). Both
implementations have the same equations for all the updates, and are hence equivalent; however,
dendrites allow a neural implementation that does not take error nodes into account, improving the
biological plausibility of the model. Figure taken and adapted from [38].

A A Discussion on Biological Plausibility

In the literature, there is often a disagreement on when a specific algorithm can be considered
biologically plausible. This follows, as every computer simulation fails to be completely equivalent
to every aspect on how the brain works, as there will always be some details that make the simulation
implausible. Hence, it is normally assumed that an algorithm is biologically plausible when it satisfies
a list of properties that are also satisfied in the brain. Different works consider different properties.
In our case, we consider as list of minimal properties that a learning rule should satisfy, the ones
that allow to have a possible neural implementation, such as local computations and lack of a global
control signal to trigger the operations. However, the neural implementation proposed in Fig. 2 takes
error nodes into account, often considered implausible from the biological perspective [58]. Even so,
the biological plausibility of our model is not affected by this: it is in fact possible to map PCNs on
a different neural architecture, in which errors are encoded in apical dendrites rather than separate
neurons [58, 38]. Graphical representations of the differences between the two implementations is
given in Fig. 8, taken (and adapted) from [38].

14

B Methodology and Further Experiments

Compared to backpropagation (BP), predictive coding (PC) allows for more flexibility in the def-
inition, training, and evaluation of the model. The experiments reported in this paper show the
best results achieved on each specific task and, as a consequence, only the effects of a specific set
of hyperparameters. Therefore, the complete range of possibilities that exist in PC has not been
displayed, however, those alternative configurations may be helpful in other scenarios. A pseudocode
that describes the learning process of PC graphs is given in Algorithm 1.

B.1 Architectures and Hyperparameters

In this section, we provide a detailed description of the models and parameters used to obtain the
results in the various generation tasks presented in this work, to guarantee their reproducibility. Note
that our goal was to compare the performance of different models, hence we compare networks that
have a similar number of parameters. We now briefly summarize the PC graphs used in this work:

• Fully connected networks: The experiments in the paper body are obtained by using a fully
connected graph with 2000 vertices, trained with 794 sensory vertices for classification and
generation tasks (784 pixels plus a 1-hot vector for the 10 labels), and 784 sensory vertices
for reconstruction and denoising. For colored images, we used a network with 5000 vertices.
We trained every model for 20 epochs, and reported the best results using early stopping.
As learning rates, we used ↵2 {1, 0.5} for the value nodes, and ⌘ 2 {0.0001, 0.00005} for
the weights, and a weight decay � = {0.01, 0.001, 0.0001, 0}. To conclude, we computed
each query using T =2000, making sure that the energy had converged before reaching
that value.

• Feedforward network: A network composed by a sequence of L fully connected layers of
dimension H . The best results were achieved with L 2 {3, 4} and H = 512 for MNIST and
H = 1024 on FashionMNIST. We did not experience any benefits in adding extra layers,
as it only resulted in higher convergence times. The width, instead, directly determines the
quality of the images produced: as expected, very narrow networks fail to store enough
information to accurately reconstruct (or denoise) the input images. However, wide networks
manifest sub-optimal performance as well. This follows, as having more parameters allows
the network to easily overfit. As a consequence, the generation process is less stable, and the
images can appear noisier and composed by strokes belonging to different classes. Using a
strong weight decay alleviates these problems, as we will later discuss.

• Recurrent network: A recurrent layer consists of a layer whose output is transformed by
a non-linear transformation and fed in input to the layer. The recurrent networks used in
this paper consist of two recurrent layers (for a total of four non-linear transformations)
with hidden dimension H = 512 when trained on MNIST, and H = 1024 when trained
on FashionMNIST. The behaviour, given the choice of width and depth, seems similar to
feedforward networks. The performance, however, seems to be less impacted by the usage
of wide layers. This is due to the recurrent connections that establish more constraints, and
thus stability.

• Assembly of neurons: As stated in the paper body, we used models with 4 clusters with
3000 vertices each, connected in a feedforward way. As sparsity and top-k constants, we
used p = 0.1 and k = 0.2, and performed the same generative experiments. Again, we
trained each model for 20 epochs, and reported the best results using early stopping. As
learning rates, we used ↵ 2 {1, 0.5} for the value nodes, and ⌘ 2 {0.0001, 0.00005} for
the weights. To conclude, we computed each query using T = 2000, making sure that the
energy had converged before reaching that value.

• Autoencoders: The autoencoder was defined using the same shape as the feedforward
networks: it is as a fully connected network with L 2 {3, 4} hidden layers of width
H 2 {256, 512, 1024}. In this way, the structure and the number of parameters directly
correspond to the feedforward network trained using predictive coding. It was trained
through BP using the Adam optimizer, with learning rate ↵ = 1e�4 and weight decay of
parameter � 2 {1e�2

, 1e�4
, 1e�6

, 0} (the best results were achieved with the lowest value).

15

Figure 9: Reconstruction using query by conditioning on the whole output layer. The performance
of feedforward networks (left) is noticeably improved by using recurrent connections (right), as the
reconstructed images do not overfit the noise, but resemble plausible, albeit noisy, digits.

Figure 10: Reconstruction using query by conditioning using FashionMNIST samples after training
on MNIST. Feedforward networks (left) simply overfit (i.e., reproduce without performing any
modification) the input samples, despite being unrelated to the training data. Recurrent networks,
instead, reproduce an unrecognisable and shady image, showing that they do not recognize the input
samples, as they are not stable data points.

As predictive coding requires two sets of updatable parameters, the value nodes xi,t and the weights
✓i,j , we defined two separate optimizers. The learning rate for the weights was set to ↵ = 1e�4, and
the optimizer algorithm chosen was Adam (as for the autoencoder). We experimented with different
values of weight decays, noticing how the final performance is highly affected by this value. For the
given tasks, the best results were achieved with weight decay = 1e�2. Instead, the learning rate for
the value nodes was set to � = 1.0, and optimized using SGD. To conclude, we have tested different
activation functions; the most promising seems to be HardTanh.

B.2 Feedforward vs. Recursive Networks

In this work, we highlighted how in different situations, one may prefer to query by conditioning or
by initialization. As a rule of thumb, conditioning means that we expect the partial data given to the
network to be correct and be recognized as a memory, by being reconstructed by the network without
modifications. Therefore, it makes sense to use it in the reconstruction generative task. Instead, when
performing image denoising, we do not want the network to recall the noisy image from its memory,
instead, we are asking it to retrieve the memory (or to generate a realistic sample), representing a
plausible image, that is the closest to the noisy input. It makes therefore sense to only initialize the
output layer, giving the network a direction to follow and let it evolve unconstrained. However, it
may not always be clear which querying technique is most preferable. A desirable behavior may be
using the network to identify which querying data are realistic (i.e., similar to the training samples)
and which not. Ideally, we would like the network to perfectly fit previously seen data points, while
struggling to reconstruct unfamiliar shapes. We tested both the feedforward and recursive networks
by training them on the MNIST dataset and querying them by conditioning the output layer with a
full-size image composed by half uniform noise and half digit. The results are reported in Fig. 9. We
can see how feedforward networks easily fit the noise, reconstructing the two halves independently.
On the other hand, employing recurrent connections (and thus imposing stricter constraints) forces
the network to reconstruct the image as a whole. We can see a similar behavior in Fig. 10, where
networks trained on MNIST are use to denoise FashionMNIST images. Feedforward networks easily
overfit the input samples. Recurrent networks, instead, correctly do not recognize the given images
and reconstruct an unrelated and confused blob. In this last case, it would therefore be possible to
distinguish between familiar and unfamiliar images by computing the distance between the input
and output images.

16

Figure 11: Reconstructed images given the label and by conditioning the bottom half. Using low
weight decay values (left) causes the two halves of the images to be uncorrelated. As a result, each
digit is composed by almost unrelated lines. Contrarily, with higher values (right), each image is
correctly generated.

Incomplete Datapoint (Bottom Half Missing) Corrupted Datapoint (Gaussian Variance of 0.2)

Figure 12: Number of correctly retrieved data points when presented with incomplete or corrupted
variations. We used datasets of {50, 100, 200} images of the CIFAR10 and SVHN datasets, and
trained on fully connected PC graphs of size {3500, 7000} vertices.

B.3 Importance of Weight Decay

As previously mentioned, weight decay plays a fundamental role in determining the properties of
the reconstructed images. Compared to other tasks (e.g., classification) or models (e.g., autoencoder
trained by BP), a higher value of weight decay seems to be necessary when training with PC. From
our experiments, weight decay prevents the networks from overlearning the task that they are trained
on (i.e., reproduce any image that they are given in input), and instead allows them to “understand”
the several concept classes of each dataset. This behaviour makes it possible to generalize their
knowledge to new and unseen tasks, such as the denoising and reconstructing tasks seen in this work.
It is worth noticing how, when optimizing for a single specific problem (e.g., image recognition),
lower values of weight decay seem to be more effective.

To show this, we trained a recurrent network to reconstruct images by conditioning the bottom half
of the output layer and giving the target class label in input. The result is that, with low weight
decay, the network treats each half of the image independently, reconstructing the bottom part by
fitting the conditioning data and the top half using the given label. It can be observed that there
is no relation between the two halves. With higher weight decay, instead, we can see that the
image is reconstructed as a whole, incorporating both the information provided via the label and the
conditioning data (Fig. 11).

C Associative Memory Experiments

In the paper body, we claimed that a fully connected PC graph is able to perform associative memory
(AM) experiments. To show this, we trained fully connected PC graphs with {3500, 7000} vertices on
different subsets of cardinality {50, 100, 200} of CIFAR10 and FashionMNIST. Then, we used query
by initialization and conditioning to retrieve the original memories. In this setting, we considered
a memory to be retrieved if the mean squared error between the original training point and its

17

Model PC RBM DAM BP
MNIST 98.47 ± 0.12 94.12 ± 0.59 98.58 98.41 ± 0.18
FashionMNIST 89.92 ± 0.23 86.98 ± 0.49 90.22 ± 0.27 90.29 ± 0.33
SVHN 88.99 ± 0.26 85.09 ± 0.87 86.77 ± 0.22 89.31 ± 0.09
CIFAR10 56.23 ± 3.36 41.12 ± 3.88 46.06 ± 2.77 59.11 ± 2.47

Table 2: Test accuracy of multilayer PCNs (i.e., feedforward PC graphs) on MNIST, FasionMNIST,
SVHN, and CIFAR10. The results are compared against popular models in the literature: restricted
Boltzmann machines (RBMs) [41], dense associative memories (DAMs) [59], and multilayer percep-
trons (MLPs) trained with BP [1]. Classification on MNIST using DAM does not report variance, as
it is taken from the original work, and the authors only report the average.

Figure 13: Reconstructed and denoised images using RBMs.

reconstruction is less than 0.001. As corruption, we either removed the top half of the image, or
corrupted it with Gaussian noise of mean zero and variance 0.2. The results are shown in Fig. 12.

Results: The experiments show that our model is able to well store and retrieve memories, even
when tested on colored images. The reconstruction quality, as expected, decreases when adding more
memories, and improves when adding more parameters to the model. As hyperparameters, we used
⌘ = 0.0001, ↵ = 0.5, and T = 5.

D Classification Results

In the paper body, we stated that multilayer PCNs are known to perform similarly to BP on classifica-
tion. Here, we tested this, and compared against popular models in the literature, such as restricted
Boltzmann machines (RBMs) [41] and dense associative memories (DAMs) [59]. Overall, PCNs
are the only models able to perform similarly to BP on the test set. We performed experiments on 4
datasets: MNIST, FashionMNIST, SVHN, and CIFAR10, and the results are in Table 2.

Setup: The networks trained using PC and BP have L = {2, 3} and 256 hidden neurons each. They
are trained using Adam optimization, a weight decay � 2 {0.001, 0.0001, 0}, and the learning rate
for the weights ↵ 2 {0.001, 0.0001}. We report the best average results in Table 2. For the RBM,
we used a model with 512 hidden nodes, and for the DAM, we copied the official implementation
provided by the authors, with the same hyperparameters.

E Restricted Boltzmann Machines

To provide a full comparison between the generation capabilities of our model and existing ones
in the literature, we trained a different RBM, and performed both reconstructions and denoising
tasks. The results are in Fig. 13. Particularly, they show that RBMs sometimes fail to retrieve the
correct image, returning a blurry cloud of points in denoising, and tend to often return the same image
even when presented with different inputs in reconstruction ones. This problem was consistent in
different batches and parametrizations of RBMs, and never happened in any of the models that we
have proposed.

Setup: We trained several RBMs with h2 {256, 512, 1024} hidden nodes, and performed
{1, 2, 5, 10} Gibbs samplings. We always picked the best result.

18

(a) Predictive Coding Networks with Gaussian noise of variance 0.7 (left) and 1.0 (right).

(b) Autoencoders with Gaussian noise of variance 0.7 (left) and 1.0 (right).

Figure 14: Denoising tasks when presented with high levels of noise.

F High Levels of Noise

Here, we push the limits of the model in denoising tasks, where the variance of the Gaussian noise
is high enough such that it is often hard for a human evaluator to distinguish different numbers.
Particularly, we use a 3 layer PCN with 256 hidden neurons, and we test it against an autoencoder with
the same parametrization. The results, provided in Fig. 14 show that both models fail to reconstruct
some examples, and the reconstructed ones are noisy. However, we note that PCNs are able to
distinguish more numbers than autoencoders, and hence have a better overall performance in this
task.

G Efficiency of the Model

Training a deep PC network is almost as fast as training deep neural networks with backpropagation.
This is despite the fact that every hardware and library is highly optimized for the latter. However,
while not faster today, efficiency is an interesting property of PC graphs, and many other neuroscience-
inspired learning methods, such as equilibrium and target propagation: all these algorithms are slower
than backpropagation; however, they are extremely promising with respect to future developments
on the hardware side. In fact, they would allow to train deep neural networks in an end-to-end
fashion on physical chips, such as analog circuits [60]. This is something that is not possible to
do with backpropagation: in [61], the authors implement exact backpropagation on physical chips.
However, the process is quite slow, as there is the need of a digital control signal at every layer of
the network. This is due to the sequential structure of deep models, where every operation of a layer
has to (1) wait for the information of all the previous (following during the backward pass) layers,
and (2) be saved in memory via a von-Neumann digital device. The situation would be completely
different if using methods that would allow to train neural networks end-to-end, i.e., without any
digital component, on the same chip: in this case, the learning process would be much faster, and
would not need any external control to be performed. This is possible by using PC. However, despite
potential applications on physical chips, PC is also fast on current GPUs, and hence this is not an
obstacle towards applications. We now show multiple plots that shot the training and inference times
of multiple PC models. Note that these results are obtained by using an implementation that does
not make use of the full parallelization capabilities of PC, as this is not supported by standard deep
learning frameworks (in our case, Pytorch). Hence, the proposed plots largely overestimate the actual
efficiency of PCNs that can be obtained via a correct implementation.

19

T = 16

T = 24

T = 32

p_lr = 0.001 p_lr = 0.0001p_lr = 0.0005

Figure 15: Energy as a function of time (in seconds s) for different hyperparameters during training.

Figure 16: Total energy (blue) and loss (orange) of retrieval (left) and denoising (centre) tasks on
a 3-generative model with 512 hidden neurons per layer. On the right, retrieval of the same model,
with added recurrent connections.

Experiments: Here, we provide multiple plots that show that PC graphs quickly converge to a
stationary point. Particularly, we show that the provided experiments are fast: training a recurrent
3-layer PCN takes about 1 minute on an RTX Titan, as shown in the plots in Fig. 15. Same for testing:
reconstructing/denoising an image takes 0.1/0.3 secs, as shown by the plots provided in Fig. 16. Hence,
the proposed models are robust to hyperparameter changes and converge rapidly. All the proposed
plots are generated via training and testing on a multilayer generative PCN with 3 layers and 512
hidden neurons per layer. We also provide the convergence plot of 48 different PC graphs, of different
parametrizations (N 2 {1500, 2000, 2500, 3000}), learning rates (↵ 2 {0.0001, 0.00005, 0.00001})
and integration steps (� 2 {1.0, 0.5}), on both MNIST and FashionMNIST. As shown in Fig. 17, PC
graphs always and quickly converge.

20

MNIST

FashionMNIST

Figure 17: Energy as a function of time (in seconds) for different hyperparameters during training of
a PC graph.

21

	Introduction
	PC Graphs
	Proof-of-concept: Experiments on Fully Connected PC Graphs
	Extension to Different PC Graph Topologies
	Conditioning on Labels
	Assembly of Neurons
	Related Work
	Discussion
	A Discussion on Biological Plausibility
	Methodology and Further Experiments
	Architectures and Hyperparameters
	Feedforward vs. Recursive Networks
	Importance of Weight Decay

	Associative Memory Experiments
	Classification Results
	Restricted Boltzmann Machines
	High Levels of Noise
	Efficiency of the Model

