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Abstract

Minimax optimization has served as the backbone of many machine learning
problems. Although the convergence behavior of optimization algorithms has been
extensively studied in minimax settings, their generalization guarantees in the
stochastic setting, i.e., how the solution trained on empirical data performs on the
unseen testing data, have been relatively underexplored. A fundamental question
remains elusive: What is a good metric to study generalization of minimax learners?
In this paper, we aim to answer this question by first showing that primal risk, a
universal metric to study generalization in minimization, fails in simple examples
of minimax problems. Furthermore, another popular metric, the primal-dual risk,
also fails to characterize the generalization behavior for minimax problems with
nonconvexity, due to non-existence of saddle points. We thus propose a new metric
to study generalization of minimax learners: the primal gap, to circumvent these
issues. Next, we derive generalization bounds for the primal gap in nonconvex-
concave settings. As byproducts of our analysis, we also solve two open questions:
establishing generalization bounds for primal risk and primal-dual risk in the
strong sense, i.e., without strong concavity or assuming that the maximization and
expectation can be interchanged, while either of these assumptions was needed in
the literature. Finally, we leverage this new metric to compare the generalization
behavior of two popular algorithms – gradient descent-ascent (GDA) and gradient
descent-max (GDMax) in stochastic minimax optimization.

1 Introduction

Stochastic minimax optimization, a classical and fundamental problem in operations research and
game theory, involves solving the following problem:

min
w∈W

max
θ∈Θ

Ez∼Pz [f(w, θ; z)].

More recently, such a minimax formulation has received increasing attention in machine learning,
with significant applications in generative adversarial networks (GANs) [Goodfellow et al., 2014],
adversarial learning [Madry et al., 2017], and reinforcement learning [Chen and Wang, 2016, Dai et al.,
2018]. Most existing works have focused on the optimization aspect of the problem, i.e., studying the
rates of convergence, robustness, and optimality of algorithms for solving an empirical version of
the problem where it approximates the expectation by an average over a sampled dataset, in various
minimax settings including convex-concave [Nemirovski et al., 2009, Monteiro and Svaiter, 2010],
nonconvex-concave [Lin et al., 2020, Rafique et al., 2018], and certain special nonconvex-nonconcave
[Nouiehed et al., 2019, Yang et al., 2020] problems.

However, the optimization aspect is not sufficient to achieve the success of stochastic minimax
optimization in machine learning. In particular, as in classical supervised learning, which is usually
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studied as a minimization problem [Hastie et al., 2009], the out-of-sample generalization performance
is a key metric for evaluating the learned models. The study of generalization guarantees in minimax
optimization (and related machine learning problems) has not received significant attention until
recently [Arora et al., 2017, Feizi et al., 2020, Yin et al., 2019, Lei et al., 2021, Farnia and Ozdaglar,
2021, Zhang et al., 2021b]. Specifically, existing works along this line have investigated two types of
generalization guarantees: uniform convergence generalization bounds, and algorithm-dependent
generalization bounds. The former is more general and irrespective of the optimization algorithms
being used, while the latter is usually finer and really explains what happens in practice, when
optimization algorithms play an indispensable role. In fact, the former might not be able to explain
generalization performance in deep learning, e.g., these bounds can increase with the training dataset
size and easily become vacuous in practice [Nagarajan and Kolter, 2019], making the latter a more
favorable metric for understanding the success of minimax optimization in machine learning.

Algorithm-dependent generalization for minimax optimization has been studied recently in [Farnia
and Ozdaglar, 2021, Lei et al., 2021, Xing et al., 2021, Yang et al., 2022]. These papers build on
the algorithmic stability framework developed in [Bousquet and Elisseeff, 2002], which are further
investigated in [Hardt et al., 2016]. In particular, these works have studied primal risk and/or (variants
of) primal-dual risk under different convexity and smoothness assumptions of the objective. Primal
risk (see formal definition in §2) is a natural extension of the definition of risk from minimization
problems. Primal-dual risk, on the other hand, is defined similarly but based on the duality gap of
the solution. It is know that it is well-defined and can be optimized to zero only when the global
saddle-point exists (i.e., min and max can be interchanged). Based on these metrics, [Farnia and
Ozdaglar, 2021, Lei et al., 2021] compare the performance of specific algorithms, e.g., gradient
descent-ascent (GDA) and gradient descent-max (GDMax). We provide a more thorough literature
review in Section A, and a detailed comparison in Table A.

Although these metrics are natural extensions of generalization metrics from the minimization setting,
they might not be the most suitable ones for studying generalization in stochastic minimax optimiza-
tion, especially in the nonconvex settings that is pervasive in machine/deep learning applications,
where the global saddle-point might not exist. In particular, we are interested in the following
fundamental question:

What is a good metric to study generalization of minimax learners2?

In this paper, we make an initial attempt to answering this question, by identifying the inadequacies of
the existing metric, and proposing a new metric, the primal gap that overcomes these inadequacies. We
then provide generalization error bounds for our new metric, and discuss how it captures information
not included in the other existing metrics, as well as discussing the tightness of the bounds. We
summarize our contributions as follows.
Contributions. First, we introduce an example through which we identify the inadequacies of
primal risk, a well-studied metric for generalization in stochastic minimax optimization, in capturing
the generalization behavior of nonconvex-concave minimax problems. Second, to address the issue,
we propose a new metric – the primal gap, which provably avoids the issue in the example, and derive
its generalization error bounds. Next, we leverage this new metric to compare the generalization
behavior of GDA and GDMax, two popular algorithms for minimax optimization and GAN training,
and answer the question of when does GDA generalize better than GDMax? Moreover, we also
address two open questions in the literature: establishing generalization error bounds for primal risk
and primal-dual risk without strong concavity or assuming that the maximization and expectation
can be interchanged, while at least one of these assumptions was needed in the literature [Farnia and
Ozdaglar, 2021, Lei et al., 2021, Xing et al., 2021, Yang et al., 2022, Xiao et al., 2022]. Finally, under
certain assumptions of the max learner, our results also generalize to the nonconvex-nonconcave
setting.

2 Preliminaries

2.1 Problem formulation

In this paper, we consider the following (stochastic) minimax problem:
min
w∈W

max
θ∈Θ

Ez∼Pzf(w, θ; z). (1)

2Hereafter, we use learner and learning algorithm interchangeably.
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We make the following assumption on the sets W and Θ throughout the paper.
Assumption 1. W and Θ are convex, closed sets, and we further assume that W is compact with
‖w‖ ≤M(W ),∀w ∈W . Here M(W ) is a constant dependent on the set W .

Let r(w, θ) = Ez∼Pzf(w, θ; z). For a training dataset S = {z1, · · · , zn} with n i.i.d. variables
drawn from Pz , we define rS(w, θ) = 1

n

∑n
i=1 f(w, θ; zi). Next, we define the following quantity:

Definition 1 (Primal risk (empirical/population)). Primal population risk is given by3

r(w) = maxθ∈ΘEz∼Pzf(w, θ; z), and the primal empirical risk is given by: rS(w) =
maxθ∈Θ

1
n

∑n
i=1 f(w, θ; zi).

Throughout this paper, we use (wS , θS) to denote a solution of the minimax problem:
minw∈W maxθ∈Θ rS(w, θ). Notice that (wS , θS) need not be a global saddle-point of rS . Fur-
thermore, we use (w∗, θ∗) to denote a solution of minw∈W maxθ∈Θ r(w, θ). Once again, notice that
(w∗, θ∗) may not be a saddle point of r.

The goal in Problem (1) is to minimize the primal population risk r(w). Note that this function can
be decomposed as

r(w) = rS(w) + (r(w)− rS(w)). (2)

In practice, we only have access to rS(w, θ), and our goal is to design algorithms for minimizing
r(w) using dataset S. Suppose A is a learning algorithm initialized at (w, θ) = (0, 0). We define
(wAS , θ

A
S ) to be the output of Algorithm A using dataset S.

From Equation (2), it is clear if we ensure rS(wAS ) as well as r(wAS )− rS(wAS ) are small, this would
guarantee that r(wAS ) is small, which is the goal of Problem (1). Note that we can always ensure that
rS(wAS ) is small by using a good optimization Algorithm A (if the problem is tractable). The main
goal in the study of generalization is therefore to estimate the generalization error of the primal risk,
as defined below.
Definition 2. The generalization error for the primal risk is defined as: ζPgen(A) = ESEA[r(wAS )−
rS(wAS )]. Here the expectations are taken over the randomness in the dataset S, as well as any
randomness used in the Algorithm A.

This metric has been used to study generalization in stochastic minimization problems, i.e., when the
maximization set Θ is a singleton, as well as several recent works in stochastic minimax optimization
(see [Hardt et al., 2016, Farnia and Ozdaglar, 2021, Lei et al., 2021]).

We are interested in the question of when the solution to the empirical problem wAS has good
generalization behavior, i.e., when E[r(wAS ) − minw∈W r(w)] is small – wAS is an approximate
minimizer of the primal population risk r. In the next subsection, we briefly describe why the
generalization error of the primal risk ζPgen(A) is a good measure to study the generalization behavior
in minimization problems.

2.1.1 ζPgen(A) for minimization problems

Consider a stochastic optimization problem of the form

min
w∈W

Ez∼Pz [g(w; z)]. (3)

We define the (minimization) primal risk (population and empirical version respectively) as:
r(w) = Ez∼Pzg(w; z), and rS(w) = 1

n

∑n
i=1 g(w; zi). The generalization error ζP,mingen (A) for

the (minimization) primal risk is the same as in Definition 2 using the (minimization) primal risk.

Assume that the generalization error of the primal risk for an AlgorithmA is small, say ζP,mingen (A) ≤ ε.
This implies that (from Definition 2): E[r(wAS )] ≤ E[rS(wAS )] + ε. Note that the expectation is with
respect to S and A. Now, in order to show that wAS has good generalization behavior, we first see that:

E[r(wAS )− min
w∈W

r(w)] ≤ E[rS(wAS )] + ε− min
w∈W

r(w). (4)

3Note that we slightly abuse the notation here by allowing r and rS to have inputs that can be both w and
(w, θ). The distinction will be clear from context.
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However, note that for minimization problems, since E[rS ] = r, we have that4 minw∈W r(w) ≥
E[minw∈W rS(w)], which gives us:

E[r(wAS )− min
w∈W

r(w)] ≤ E[rS(wAS )] + ε− E[ min
w∈W

rS(w)] = E[rS(wAS )− min
w∈W

rS(w)] + ε = ε.

Therefore, for minimization problems, if the generalization error for primal risk is small, the solution
to the empirical risk minimization problem has good generalization behavior. Next, we highlight
some results in the literature which discusses generalization error bounds of the primal risk. These
results depend on the concept of algorithmic stability we use later.

2.2 Stability of algorithms

Stability analysis is a powerful tool to analyze the generalization behavior of algorithms (see [Bous-
quet and Elisseeff, 2002]). In this section, we will review some definitions and theoretical results
about stability bounds existing in the current literature. More specifically, in this paper, we adopt the
following definition of stability:
Definition 3 (ε-stable Algorithm). Suppose thatA is a randomized algorithm for solving the stochastic
minimax problem. We define (wAS , θ

A
S ) as the output of Algorithm A using dataset S. We say S and

S′ are neighboring dataset if they defer only in one sample. An Algorithm A is defined to be ε-stable
if EA‖wAS − wAS′‖ ≤ ε and EA‖θAS − θAS′‖ ≤ ε for any neighboring datasets S and S′.

[Hardt et al., 2016] gives the following basic result for the generalization error of rS(w).
Theorem 1 ([Hardt et al., 2016]). Consider the (stochastic) minimization problem defined in 3.
Suppose g(·; z) is L̄-Lipschitz continuous, i.e., ∀z, it holds that ‖g(w1; z) − g(w2; z)‖ ≤ L̄‖w1 −
w2‖,∀w1, w2 ∈W . Then, for an ε-stable Algorithm A, we have |ESEA[r(wAS )− rS(wAS )]| ≤ L̄ε.

Unfortunately, Theorem 1 cannot be directly extended to analyze the generalization behavior of
minimax learners, because we have an additional maximization step before taking expectation. Under
certain additional conditions, primal risk can be a valid metric for minimax learners. We provide
theoretical justifications in Section B, instantiated by an adversarial training example. We deal with
the more general cases next.

3 Primal Gap: A New Metric to Study Generalization

The main idea which leads to the success of ζPgen(A) as a metric to study generalization for minimiza-
tion learners is that E[minw∈W rS(w)] ≤ minw∈W r(w), which is no longer the case in the minimax
case. In fact, in this section, we show that a good bound for the generalization error of primal risk
does not imply good generalization behavior in minimax problems. We then propose a new metric,
the primal gap, which circumvents these issues and provides insights into the generalization behavior
in minimax problems.

3.1 Primal risk can fail for minimax learners

We provide an example where the generalization error of the primal risk is small, but the final solution
to the empirical problem has poor generalization behavior. In this example, the minimizer of rS(w)
is suboptimal for r(w) with high probability, and ES [r(wS)− r(w∗)] is large.
Example 1 (Analytical example). Let y ∼ N(0, 1/

√
n) be a Gaussian random variable in R. Define

the truncated Gaussian variable z ∼ Pz as follows: z = y if |y| < λ log n/
√
n and z = λ log n/

√
n

if y ≥ λ log n/
√
n. Let f(w, θ; z) = 1

2w
2 −

(
1

2n2 θ
2 − zθ + 1

)
w, where w ∈W = [0, 1], θ ∈ Θ =

[−λn, λn] with a sufficiently large λ > 0, and zi ∼ Pz be i.i.d truncated Gaussian variables. Then,

we have rS(w, θ) = 1
2w

2 −
(

1
2n2 θ

2 −
∑n
i=1 zi
n θ + 1

)
w, and

r(w, θ) =
1

2
w2 −

(
1

2n2
θ2 + 1

)
w. (5)

Note that this leads to the primal population risk function: r(w) = 1
2w

2 − w.

4Here we use the fact that Ez[minx f(x, z)] ≤ minxEz[f(x, z)].
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It is not hard to see that we always have rS(w) ≥ r(w). Note that this means ζPgen(A) ≤ 0, and thus
we have a small generalization error for primal risk. However, we can prove that for large enough λ,

ES [r(wS)− r(w∗)] ≥ 0.02. (6)

This means that wS has a constant error compared to w∗ in terms of the population risk, despite that
its generalization error is small. This phenomenon is due to that minw∈W rS(w)−minw∈W r(w) > c
for some c > 0, and hence minimizing rS(w) is very different from minimizing r(w).

This example shows that the generalization error of primal risk is not a good measure to study
generalization in minimax learners. The main drawback is that minw rS(w) and minw r(w) can be
very different. We now introduce another more practical example, from GAN training, to further
illustrate this point.

Example 2 (GAN-training example). Suppose that we have a real distribution Pr in Rd which can be
represented as G∗(y) with y ∈ Rk drawn from a standard Gaussian distribution P0 and a mapping
G∗ : Rk → Rd. For an arbitrary generator G, we define PG to be the distribution of the random
variable G(y) with y ∼ P0. So our goal is to find a generator G such that PG = Pr. GAN is a
popular tool for solving this problem. Consider a GAN with generator G, parametrized by w and
discriminator D parametrized by θ. The goal of GAN training is to find a pair of a generator G and
a discriminator D that solves the minimax problem:

min
G

max
D

{Ex∼Prφ(D(x)) + Ex∼PG [φ(1−D(x))]}

= min
w

max
θ

{Ex∼Prφ(Dθ(x)) + Ey∼P0 [φ(1−Dθ(Gw(y)))]},

where φ : R→ R is concave, monotonically increasing and φ(u) = −∞ for u ≤ 0. To connect to
the minimax formulation in (1), we note that z = (x, y), and Pz = Pr × P0. Also, we denote

r(w, θ) = Ex∼Prφ(Dθ(x)) + Ey∼P0
[φ(1−Dθ(Gw(y)))]

to be the population risk. We now give the empirical version of this problem. Let
S1 = {x1, · · · , xn} and S2 = {y1, · · · , yn}. Let S = S1 ∪ S2 and rS(w, θ) =
1
n (
∑n
i=1 φ(Dθ(xi) + φ(1−Dθ(Gw(yi)))). We assume that PGw has the same support set as

Pr. Moreover, we assume that ‖w−w∗‖ ≤ 0.5 and Gw(y) is 1-Lipschitz w.r.t. w for any y. Here w∗
denotes the parameter for which Gw∗ = G∗. Then, combining Theorem B.1 in [Arora et al., 2017]
and the Lipschitz continuity of Gw(y) as well as ‖w−w∗‖ ≤ 0.5, we have that the distance between
the sets S1 and {Gw(y1), Gw(y2), · · · , Gw(yn)} will be larger than 0.6 with probability greater
than 1−O(n2/ed). Now, if n is only of polynomial size of d, the optimal discriminator for disjoint
datasets outputs 1 on one dataset, and 0 on the other. On the other hand, when w = w∗, the optimal
discriminator for the population problem outputs 1/2 for any sample it receives. Combining these
two results, we have: ES [minw∈W rS(w)−minw∈W r(w)] ≥ (1− δ) (2φ(1)− 2φ(1/2)), which is
bounded away from 0.

Note that in this example, we also have ES [minw rS(w) − minw r(w)] > 0, implying that using
ζPgen(A) might not be a good way to characterize the generalization behavior in GAN training. To
address this issue, we next define a new metric, the primal gap, and use its generalization error to
study the generalization of minimax learners.

3.2 Primal gap to the rescue

The population and empirical versions of the primal gap are defined as follows:

Definition 4 (Primal gap (empirical/population)). The population primal gap is defined as
∆(w) = r(w) − minw∈W r(w), and the empirical primal gap is defined as ∆S(w) = rS(w) −
minw∈W rS(w).

Notice that these two primal gaps can always take 0 at wS ∈ arg minw∈W rS(w) and w∗ ∈
arg minw∈W r(w) respectively even if the saddle point of problem (2) does not exist. Next, we
define the expected generalization error of this primal gap as follows:

Definition 5. The generalization error for the primal gap is ζPGgen(A) = ESEA[∆(wAS )−∆S(wAS )].
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Notice the fact that

ESEA[r(wAS )− min
w∈W

r(w)] = ESEA[rS(wAS )− min
w∈W

rS(w)] + ζPGgen(A).

If ESEA[rS(wAS )−minw∈W rS(w)] is small and ζPGgen(A) is small (or large), then ESEA[r(wAS )−
minw∈W r(w)] is small (or large).

Now we provide bounds on ζPGgen(A) for a stable algorithm A, and show that in Example 1, ζPGgen(A)

cannot be small (unlike ζPgen(A)).

3.3 Relationship between generalization and stability

We provide bounds for the generalization error of the primal gap (Definition 5) for an ε-stable
Algorithm A. We will focus on the nonconvex-concave case where the following assumptions are
made throughout the rest of the paper.
Assumption 2. The function f in Problem (1) is nonconvex-concave, i.e., f(w, ·; z) is a concave
function for all w ∈W and for all z.

Next we define the notion of capacity, which will play a key role in the bounds we derive for ζPGgen(A).
Definition 6 (Capacity). For any w ∈W and any constraint set Θ, we define

Θ(w) = arg max
θ∈Θ

r(w, θ) ΘS(w) = arg max
θ∈Θ

rS(w, θ).

We define the capacities Cp and Ce as:

Cp(Θ) = max
w∈W

dist(0,Θ(w)), Ce(Θ) = max
S

max
w∈W

dist(0,ΘS(w)),

where dist(p,S) denotes the distance between a point p to a set S in Euclidean space, i.e.,
dist(p,S) := infq∈S ‖p − q‖2. For the constraint set in Problem (1), we succinctly denote the
capacities as Cp and Ce, respectively.

The norm of the model parameter (its distance to 0) is usually viewed as the metric for the complexity
of the model. In fact, the norm of the optimal solution determines the Rademacher complexity of the
function class in statistical learning theory [Vapnik, 1999]. Moreover, in deep learning, minimum-
norm solution of overparameterized neural networks is well-known to enjoy better generalization
performance [Zhang et al., 2021a]. Hence, we view the capacity constant Ce and Cp as natural
metrics to capture the model complexity for the best response of the max learner, i.e., the power of
the maximizer, when using the empirical data set and population data respectively.

Now, we are ready to discuss the relationship between the stability bound and the generalization
error of algorithms in nonconvex-concave minimax problems. All proofs have been deferred to the
appendix. We make the following assumptions throughout the paper:
Assumption 3. The gradient of f is `-Lipschitz-continuous for all z, i.e., for all z

‖∇f(w1, θ1; z)−∇f(w2, θ2; z)‖ ≤ `(‖w1 − w2‖+ ‖θ1 − θ2‖), ∀w1, w2 ∈W, ∀θ1, θ2 ∈ Θ.

Moreover, fixing w ∈W , the partial gradient ∇θf(w, ·; z) is `θθ-Lipschitz continuous with respect
to θ for all z, i.e., ‖∇θf(w, θ1; z)−∇θf(w, θ2; z)‖ ≤ `θθ‖θ1 − θ2‖,∀w ∈W, ∀θ1, θ2 ∈ Θ.
Assumption 4. For any Θ1 ⊆ Θ, we assume that f is L(Θ1)-Lipschitz-continuous with respect
to w ∈ W, θ ∈ Θ1 for all z, i.e., ‖f(w1, θ1; z) − f(w2, θ2; z)‖ ≤ L(Θ1)(‖w1 − w2‖ + ‖θ1 −
θ2‖), ∀w1, w2 ∈ W, ∀θ1, θ2 ∈ Θ1, and the gradient ∇f(w, θ; z) is uniformly bounded as
‖∇w,θf(w, θ; z)‖ ≤ L(Θ1) for all z and w ∈W, θ ∈ Θ1. Moreover, f(w∗, ·; z) is L∗θ-Lipschitz con-
tinuous with respect to θ where w∗ ∈ arg minw∈W r(w). We also define L := L(B(0, 2Cp+ 1)∩Θ)
and Lr := L(B(0, r) ∩Θ), where B(v, r) denotes the l2-ball with radius r centered at v.

Note that we can decompose the generalization error of the primal gap as follows:

ζPGgen(A) := ESEA[∆(wAS )−∆S(wAS )] = ζPgen(A) + ES
[

min
w∈W

rS(w)− min
w∈W

r(w)
]
.

We now provide a generalization error bound for the primal risk ζPgen(A). To the best of our
knowledge, it is the first bound for ζPgen(A) in the nonconvex-concave (not strongly concave) setting.
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Lemma 1. The generalization error of the primal risk of an ε-stable Algorithm A for a minimax
problem with concave maximization problem can be bounded by ζPgen(A) ≤

√
4L`C2

p ·
√
ε+ εL.

We show that this dependence on ε is tight in Section D.2. Since we already have the generalization
error for the primal risk ESEA[r(wAS )− rS(wAS )] from Lemma 1, we only need to estimate

ESEA
[

min
w∈W

rS(w)− min
w∈W

r(w)
]

= ES
[

min
w∈W

rS(w)− min
w∈W

r(w)
]

[Primal Min Error]. (7)

The following theorem gives the generalization bound of the primal gap using the upper bound from
Lemma 1 and bounding the Primal Min Error in Equation (7).
Theorem 2. Suppose Algorithm A is ε-stable. The generalization error bound of the primal gap is
given by ζPGgen(A) ≤

√
4L`C2

p ·
√
ε+ εL+ 4L∗θCe/

√
n.

The first term in the bound above is from the generalization bound of the primal risk, as shown
in Lemma 1. Note that the bound in Lemma 1 only involves Cp, as the key in the analysis is to
upper-bound the population risk r(wAS ), which requires bounding the power of the maximizer using
the population capacity Cp. This reflects the intuition that the power of the maximizer should affect
the generalization behavior of minimax learners, and the stronger the maximizer is, the harder for
the learner to generalize. On the other hand, the bound in Theorem 2 additionally involve Ce, the
empirical capacity. Technically, Ce (instead of Cp) appears since we need to bound minw rS(w)
(defined on the empirical dataset) in the Primal Min Error term in (7). We show the tightness of
this bound in Section D.4. The appearance of Ce reflects the intuition that the difference between
the maximizers of the empirical and population risks should make a difference in characterizing the
generalization of minimax learners. This intuition cannot be captured by the generalization error
of the primal risk, as in Lemma 1. Note that in the minimization case, the Primal Min Error can be
upper-bounded directly by zero, and such a distinction disappears, making primal risk a valid metric.

3.4 Revisiting Example 1

In Example 1, we have that the primal risk generalizes well, but the solution wS does not, thereby
indicating that the generalization error of the primal risk may not be a good metric to study gener-
alization behavior of minimax problem. Note that in Example 1, we have ζPGgen(A) ≥ 0.02 while
ζPgen(A) ≤ 0. We already know that this algorithm can not generalize well. Therefore, ζPGgen(A) can
capture the generalization behavior better than ζPgen(A). This shows that the primal min error ζPMgen
also plays an important role in analysing the generalization for minimax problems. As shown in the
appendix (Proposition 4), we have

ES [ min
w∈W

rS(w)− min
w∈W

r(w)] ≥ 0.005. (8)

On the other hand, it is easy to compute that L∗θ = λ log n/
√
n and Ce = λn log n. Therefore,

by Theorem 2, we have an upper bound for the Primal Min Error (see (7)): ES [minw∈W rS(w)−
minw∈W r(w)] ≤ 4L∗θCe/

√
n = 4 log n,which is tight up to a log factor according to (8). Therefore,

the primal gap has a constant generalization error which is consistent with the observation that the
solution to the empirical problem does not have good generalization behavior.

3.5 Nonconvex-nonconcave case

In this section, we extend our results to the nonconvex-nonconcave setting. We will show that under
certain assumptions on the inner maximization problem, we can derive generalization error bounds for
the primal risk and primal gap in terms of algorithmic stability. We make the following assumptions
on the inner maximization problem:
Assumption 5. For any γ > 0, there exists an algorithm which outputs θγP (w), for the inner maxi-
mization problem maxθ∈Θ r(w, θ), satisfying the following conditions: 1) r(w)− r(w, θγP (w)) ≤ γ;
2) ‖θγP (w)− θγP (w′)‖ ≤ λp

γ ‖w − w
′‖ with some constant λp > 0 for all w,w′ ∈W .

Assumption 6. For any γ > 0, there exists an algorithm which outputs θγE(S), for the inner maximiza-
tion problem maxθ∈Θ rS(w∗, θ), satisfying the following conditions: 1) rS(w∗)− rS(w∗, θγE(S)) ≤
γ. 2) For any neighboring dataset S and S′, ‖θγE(S)− θγE(S′)‖ ≤ λe

nγ for some λe > 0.
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The following lemma gives sufficient conditions for these two assumptions to hold.
Lemma 2. Consider constants De ≥ γ and Dp ≥ γ.

1. Suppose gradient ascent with diminishing stepsizes c0/t for the problem maxθ∈Θ r(w, θ)
has convergence rate r(w) − r(w, θs) ≤ Dp/s. Then we define θγp (w) by performing
s = Dp/γ steps of gradient ascent. Then, θγp (w) satisfies Assumption 5.

2. Suppose gradient ascent with constant stepsize c0 for the problem maxθ∈Θ r(w, θ) has
convergence rate r(w) − r(w, θs) ≤ Dpη

s for some constant 0 < η < 1. Then we
define θγp (w) by s = log(Dp/γ)/ log(1/η) steps of gradient ascent. Then, θγp (w) satisfies
Assumption 5.

3. Suppose gradient ascent with diminishing stepsizes c0/t for the problem maxθ∈Θ rS(w, θ)
has convergence rate rS(w) − rS(w, θs) ≤ Dp/s. Then we define θγe (S) by performing
s = De/γ steps of gradient ascent. Then, θγe (S) satisfies Assumption 6.

4. Suppose gradient ascent with constant stepsize c0 for the problem maxθ∈Θ rS(w, θ) has
convergence rate rS(w) − rS(w, θs) ≤ Deη

s for some constant 0 < η < 1. Then we
define θγe (w) by s = log(De/γ)/ log(1/η) steps of gradient ascent. Then, θγe (S) satisfies
Assumption 6.

Remark 1. Note that for some practical nonconvex optimization problems in machine learning,
gradient descent indeed converges to the global minima at a reasonably fast rate, e.g., in training
deep overparametrized neural networks [Du et al., 2019], robust least squares problems [El Ghaoui
and Lebret, 1997], phase retrieval and matrix completion [Ma et al., 2019]. Our Assumptions 5 and
6 can be viewed as an abstract summary of some benign properties of gradient descent for certain
nonconvex optimization problems.

Furthermore, we assume that f(·, ·; z) is L-Lipschitz5 continuous in W × Θ. This, along with
Assumptions 5 and 6, allows us to derive the generalization error bounds of the primal risk and primal
gap in terms of algorithmic stability.
Lemma 3. Suppose that Assumption 5 holds. If a minimax learner A is an ε-stable algorithm, we
have ζPgen(A) ≤ Lε+

√
Lλp
√
ε.

Similarly, we can derive the generalization bound for the primal gap given the above assumptions.
Theorem 3. Suppose Assumptions 5 and 6 hold. Then we have ζPGgen(A) ≤ ζPgen(A) +

√
Lλe

/√
n.

The proof of this theorem is similar to the proof of Lemma 3 and Theorem 2 and hence omitted.

4 Comparison of GDA and GDMax

In Section 3.3, we provide generalization bounds for the primal gap for any ε-stable algorithm. In
this section, we focus on two algorithms in particular – GDA and GDMax. These two algorithms are
described in Algorithms 1 and 2 in Appendix E.

We note that though analyzing the optimization properties of GDA/stochastic GDA for solving
the empirical minimax problem is an important topic, our focus in this paper is on studying the
generalization behavior of these algorithms. We assume that the empirical version of the stochastic
minimax problem can be solved by GDA and GDMax, i.e., we assume that GDA and GDMax satisfy
the following assumption:
Assumption 7. Let A be a minimax learner, such as GDA or GDMax. Then we assume that A has
the following convergence rate: EA[rS(wt)−minw∈W rS(w)] ≤ (φA(M(W )) + φA(Ce))/ψA(t),
where M(W ) is the maximum of the norms of w, and φA(s), ψA(s) are nonnegative, increasing
functions that tend to infinity as s→∞.

For simplicity, throughout this section, we assume that ‖f(w, θ; z)‖ ≤ 1 for all w, θ, and z. The next
theorem provides a bound for the population primal gap ∆(wAS ) := r(wAS )−minw∈W r(w). Note
that the goal of any algorithm is to make this gap as small as possible.

For an Algorithm A and subsets W0 ⊆ W,Θ0 ⊆ Θ, we define A(W0,Θ0) as the algorithm which
restricts A to solve (1) under constraint sets W0 and Θ0. Specifically, A(W,Θ) is just A.

5Note that this is different from the L defined for the nonconvex-concave case. Here L captures the Lipschitz
constant over the whole constraint set. In the nonconvex-concave case, L = L(B(0, 2Cp + 1)).
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Theorem 4. Let wA,tS , θA,tS be the t-th iterate generated by Algorithm A using dataset S. Assume
that {θA,tS } ⊆ Θ0 = ΘA

θ for t ≤ T with probability 1 − δ (due to the randomness in S) and
B(0, Cp) ⊆ ΘA

θ . Here B(v, r) denotes the l2-ball with radius r centered at v. Let A0 = A(W,Θ0).
Then after T iterations of Algorithm A, the population primal gap can be bounded as:

ES [r(wA,TS )−min
w∈W

r(w)] ≤ ζPgen(A0)︸ ︷︷ ︸
I

+ (φA0(M(W )) + φA0(Ce(Θ
A
θ )))/ψA0(T ) + 4L∗θCe(Θ

A
θ )/
√
n︸ ︷︷ ︸

II

+δ,

where ζPgen(A0) = ESEA[r(wA0,T
S )− rS(wA0,T

S )] is the generalization error of the primal risk of
Algorithm A0.
Remark 2. Theorem 4 builds a closer connection between generalization behavior and the dynamics
of the minimax learner A. It shows that suitable restriction to the max learner can lead to better
minimax learner, in terms of generalization. We make this clear in the comparison of GDA and
GDMax by analyzing the three terms in Theorem 4.

4.1 Analyzing the term I

First, we study the generalization error bound of the primal risk, i.e., ζPgen in Theorem 4. For GDA,
we can estimate ζPgen by using Lemma 1. Therefore, it suffices to estimate the stability of GDA. We
do this in the following lemma:
Lemma 4. Let c0 = max{α0, β0}, If we use diminishing stepsizes αt = α0/t and βt = β0/t for
GDA for T iterations, we have the stability bound εGDA ≤ 2LΘGDAθ

T c0`/(n`).

Now, since we have a bound for ζPgen(A) for an ε-stable Algorithm A in Lemma 1, we can substitute
the stability bound for GDA from Lemma 4 in this expression to get a bound on ζPgen(GDA) for
GDA. We do this in the next proposition. We can bound ζPgen(A0) for GDA by substituting the
stability bound in Lemma 4 into Lemma 1 (letting ε = εGDA).
Proposition 1. Let c0 = max{α0, β0} and assume that f(·, ·; z) is LΘGDAθ

-Lipschitz-continuous
inside the set W × ΘGDA

θ . For GDA with diminishing stepsizes α0/t, β0/t run for T iterations
(denoted by GDAT ), the generalization error of the primal risk can be bounded by:

ζPgen(GDAT ) ≤ (LΘGDAθ
)3/2

√
8C2

p/`
√
T c0`/n+ 2L2

ΘGDAθ
T c0`/(n`).

However, for GDMax, we can not compute a uniform stability bound that vanishes as n goes to
infinity. In fact, we can show from the following simple example that ζPgen(GDMax) can be a constant
that is independent of n, which means that for the case where r(w, θ) is nonconvex-concave, the
generalization error of primal risk of GDMax can be undesirable.
Example 3 (Constant generalization error of primal risk for GDMax). Consider a dataset S with
n elements. Define the objective function: f(w, θ; z) =

(
w
n2 − z

)
θ − θ2

2n , where w ∈ W =

[−n
√
n, n
√
n], θ ∈ Θ = R and z is drawn from the uniform distribution over {−1/

√
n, 1/

√
n}. We

have rS(w) = n2

2

(
w
n2 − 1

n

∑n
i=1 zi

)2
, and r(w) = w2

2n2 . Therefore, minw∈W r(w) = 0. From the
definition of the function f and the sets W and Θ, we have ` = 1/n2, L = O(1/

√
n).

One step of GDMax can attain the minimizer of rS(w) (since it is a one dimensional quadratic prob-
lem), i.e., wS = n

∑n
i=1 zi and rS(wS) = 0. Furthermore, we have ESr(wS) = E[

(
∑n
i=1 zi)2

2 ] =

1/2 > 0. Thus, ζPgen(GDMax) = E[r(wS)− rS(wS)] = 1/2 > 0 cannot be made small.

Therefore, from Proposition 1 and Example 3, we see that the bound for the expected population
primal gap contains the term ζPgen which cannot be bounded for GDMax, whereas can be bounded for
GDA which leads us to the conclusion that GDA generalizes better than GDMax for such problems.
However, it is possible to bound ζPgen(GDMax) in certain problems, and in this case the other terms
in Theorem 4 become crucial. We analyze them next.

4.2 Analyzing the term II

As shown in Example 1, sometimes GDMax can have a good generalization bound for the pri-
mal risk. Therefore, we need to analyze the other two terms in Theorem 4, i.e., (φA(Mw) +
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φA(Ce(Θ
A
θ )))/ψA(T ) and L∗θCe(Θ

A
θ )/
√
n. For these two terms, since L∗θ is fixed, the constant

Ce(Θ
A
θ ) is the key term which differentiates the performance of different algorithms.

By definition, the constant Ce(ΘGDMax
θ ) for GDMax is nearly Ce (See Definition 6). Therefore, the

population primal gap after T steps of GDMax is dominated by Ce if Ce is large. However, the set
ΘGDA
θ for GDA can be much smaller than Θ, which implies that Ce(ΘGDA

θ ) can be much smaller
than Ce. This phenomenon can be seen from Example 1: If we perform one step of GDMax with
primal stepsize 1, we can attain w1 = wS . Then ES [r(w1

S)−minw∈W r(w)] ≥ 0.005 from (6). For
GDA, we can see that w1 = 1 after one step of GDA with stepsize 1. Therefore, GDA generalizes
better than GDMax. Generally, we have the following estimate of Ce(ΘGDA

θ ).
Lemma 5. Let L0 = maxz ‖∇f(w0, θ0; z)‖. Let c0 = max{α0, β0}. If we use diminishing stepsizes
αt = α0/t and βt = β0/t for GDA, then after T steps we have ‖θt‖ ≤ T c0`L0/` for t ∈ [T ].

Therefore, if Ce is much larger than Cp, using GDA with Cp ≤ T c0`L0/` ≤ Ce is better than
GDMax. We make this more concrete in the context of GAN training next.

4.3 GAN training

We now study the specific case of GAN training to explore why GDA might generalize better
than GDMax. This is numerically verified in the literature, such as Farnia and Ozdaglar [2021].
Specifically, we revisit Example 2, and consider a special case: D is restricted to be a over-
parametrized linear function with respect to θ. Define the descriminator D(x) = ΦT (x)v + b0,
where Φ(x) = [Φ1(x), · · · ,Φm(x)]

T ∈ Rm is the feature matrix and b0 ∈ R. Also sup-
pose that G is parametrized by w and G∗ = Gw∗ . Then the GAN problem can be written as
minw∈W maxθ∈Θ r(w, θ), where

r(w, θ) = Ex∼Pr [φ(vTΦ(x) + b0)] + Ey∼P0 [φ(1− vTΦ(Gw(y))− b0)].

Here θ = (v, b0). Assume that
√
σmax

(
Ex∼PGwΦ(x)ΦT (x)

)
≤ σ̄max/

√
m, where σmax(·) de-

notes the largest singular value of a matrix and σ̄max > 0 is a constant. Also assume that
Ex∼PGwΦ(x)ΦT (x) is full rank. Also, we assume that |φ′(λ)| ≤ Lφ for any λ ∈ [0, 1]. Therefore,
we have E[‖∇θf(w, θ; z)‖2] ≈ L2

φσ̄
2
max. Then it is reasonable to assume that ‖∇f‖ ≤ O(1).

Lemma 6. Suppose Φ(x) is sub-Gaussian and the matrix

QS = [Φ(x1) Φ(x2) · · · Φ(xn) Φ(Gw(y1)) · · · Φ(Gw(yn))]

is full column rank (m > n) with probability 1. Then with probability at least 1 − Cδ with some
constant C, we have ‖θS(w∗)‖ ≥ Ω(

√
n), where θS(w∗) ∈ arg maxθ∈Θ rS(w∗, θ).

Now, for θ ∈ arg maxθ′∈Θ r(w
∗, θ′), it can be easily seen that v = 0, b0 = 1/2 in this case.

Therefore, Cp ≈ 1/2. Finally, combining the previous discussion on GDA in Lemma 5, and using
the fact that Ce is large from Lemma 6, we see from Theorem 4 that GDA can generalize better than
GDMax. More detailed discussion of the GAN-training and Lemma 6 can be found in Section E.

5 Conclusions

In this paper, we first demonstrate the shortcomings of one popular metric, the primal risk, in terms
of characterizing the generalization behavior of minimax learners. We then propose a new metric, the
primal gap, whose generalization error overcomes these shortcomings and captures the generalization
behavior of algorithms that solve stochastic minimax problems. Finally, we use this newly proposed
metric to study the generalization behavior of two different algorithms – GDA and GDMax, and study
cases where GDA has a better generalization behavior than GDMax. Future directions include further
investigation of the proposed new metric, the primal gap, and deriving its (tighter) generalization
error bounds in other structured stochastic minimax optimization problems in machine learning.
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