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Appendix of “Detecting Abrupt Changes in Sequential
Pairwise Comparison Data”

This is the appendix of the paper “Detecting Abrupt Changes in Sequential Pairwise Comparison
Data” as a supplementary material. It contains two parts:

1. Appendix A for some supplements to numerical results in Sections 4 and 5.
2. Appendix B for the proof of main results and some additional propositions used in the main

text.

A Appendix: supplementary to numerical results

A.1 Wild binary segmentation based on likelihood

Binary segmentation is a classical and popular method for detecting change points that can at least
date back to Scott and Knott (1974). It is based on the so-called CUSUM statistics. In the case where
we are interested in detecting the change point in the mean of univariate random variables {Yt}t∈[T ],
the CUSUM statistic at time t over an interval (s, e) is defined as

CUSUM(t; s, e) := |

√
e− t

(e− s)(t− s)

t∑
i=s+1

Yi −

√
t− s

(e− s)(e− t)

e∑
i=t+1

Yi|. (A.1)

It is known that Binary Segmentation is consistent but not optimal (Venkatraman (1992)). As an
improvement, Fryzlewicz (2014) propose Wild Binary Segmentation and show that it has a better
localization rate.

Algorithm 3: Wild Binary Segmentation. WBS((s, e), {(αm, βm)}m∈[M ], γ)

INPUT: Independent samples {Zi}i∈[n], collection of intervals {(αm, βm)}m∈[M ], tuning
parameters γ > 0.

for m = 1, . . . ,M do
(sm, em)← [s, e] ∩ [αm, βm]

if em − sm > 1 then
bm ← argmaxsm+1≤t≤em−1R(t; sm, em)

am ← R(bm; sm, em)
else

am ← −1
m∗ ← argmaxm∈[M ] am

if am∗ > γ then
add bm∗ to the set of estimated change points
WBS((s, bm∗), {(αm, βm)}m∈[M ], γ)

WBS((bm∗ + 1, e), {(αm, βm)}m∈[M ], γ)

OUTPUT: The set of estimated change points.

Algorithm 3 shows the general framework of WBS algorithm. For univariate mean, we have
R(t; s, e) = CUSUM(t; s, e). While for our problem, the Bradley-Terry model, we setR(t; s, e) to
be the (logarithmic) generalized likelihood ratio given by

R(t; s, e) = GLR(t; s, e) := max
θl∈ΘB

{−L(θl, [s, t))}+ max
θr∈ΘB

{−L(θr, [t, e])} − Ls,e, (A.2)

where Ls,e := maxθ∈ΘB
{−L(θ, [s, e])} and L(θ, I) is the negative log-likelihood function over

interval I, as is defined in Equation (2.6). The use of generalized likelihood ratio in change point
detection has been demonstrated in many previous works (Höhle, 2010; Wang et al., 2020). In fact,
when {Yt}t∈[T ] follows Gaussian distribution with known variance, the GLR statistic at t is the
square of CUSUM(t; s, e).

Similar to the DP approach, WBS also has a tuning parameter γ. By Equation (A.2) and the design
of Algorithm 1 and 3, we know that the γ parameters for both DP and WBS-GLR act as the threshold
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for the GLR statistic. Therefore, one should use the same candidate list of γ for both methods when
tuning parameters by cross-validation for fair comparison, as we do in all experiments.

In addition, the number of intervals M acts as another tuning parameter and makes WBS more tricky
to apply compared to the DP approach. In practice, people usually set intervals {(αm, βm)}m∈[M ] to
be uniformly randomly sampled from [0, T ]. Although it doesn’t affect the theoretical guarantee too
much Wang et al. (2020), numerically the performance of WBS heavily depends on M . Typically,
the larger M is, the more accurate the result is, and the more time it takes to execute WBS. When the
model of the data is simple, e.g., univariate mean model, computation ofR(t; s, e) is cheap and one
can just set M to be large to improve the localization accuracy. However, for more complex models
like the BTL model, a large M may not be computationally affordable, so it can be hard to set an
appropriate value for M .



A APPENDIX: SUPPLEMENTARY TO NUMERICAL RESULTS 14

A.2 Additional simulated experiments

In Section 4, we consider simulation settings where both the signals θ∗(t) and changes of θ∗(t) at
change points are set in a deterministic way. In this section, we consider experiments where entries
of θ∗(t) are randomly sampled and are randomly permuted at each change point. Suppose we have
K change points {ηk}k∈[K] in the sequential pairwise comparison data, with η0 = 1. We use θ∗(ηk)
to represent the value of true parameters after the change point ηk.

To begin, we set {θ∗i (η0)}ni=1
i.i.d.∼ Uniform[0, 1]. We further rescale θ∗(t) by setting θ∗i (η0) ←

ψ−1(0.9)
maxi θ∗i (η0)−mini θ∗i (η0)

θ∗i (η0) and then set θ∗i (η0) ← θ∗i (η0) − avg(θ∗(η0)). Here ψ−1(p) =

log( p
1−p ) is the inverse function of ψ. Recall that Pij = ψ(θi − θj) is the winning probability.

So by rescaling θ∗(t), we guarantee that at time η0, the maximum winning probability is 0.9.

For each change point ηk, k ≥ 1, we randomly sample a permutation π : [n] 7→ [n] from the
collection of all n-permutations and set θ∗i (ηk) = θ∗π(i)(ηk−1) for i ∈ [n]. We consider the same
settings for (n,K,∆) with the same tuning parameters as in Section 4, and summarize our new
simulation results in Table 3

H(η̂, η) Time K̂ < K K̂ = K K̂ > K
Setting (i) n = 10,K = 3,∆ = 500, Random change

DPLR 12.1 (13.3) 62.4s (2.1) 0 100 0
WBS-GLR 94.9 (174.8) 33.6s (5.4) 0 100 0

Setting (ii) n = 20,K = 3,∆ = 800, Random change
DPLR 23.9 (27.6) 105.8s (4.2) 0 100 0
WBS-GLR 251.7 (219.9) 133.7s (14.7) 0 40 60

Setting (iii) n = 100,K = 2,∆ = 1000, Random change
DPLR 43.1 (103.4) 196.9s (3.9) 1 99 0
WBS-GLR 133.0 (194.9) 210.0s (16.6) 0 76 24

Setting (iv) n = 100,K = 3,∆ = 2000, Random change
DPLR 28.3 (26.5) 453.6s (9.2) 0 100 0
WBS-GLR 459.4 (512.8) 410.5s (48.7) 0 53 47

Table 3: Comparison between DPLR and WBS-GLR under four different simulation settings with
random signals. For the localization error and running time (in seconds), the averages over 100 trials
are reported with standard errors in the brackets. The last three columns on the right record the
number of trials in which K̂ < K, K̂ = K, and K̂ > K respectively.

In what follows, we further investigate the effect of signal strength by restricting the random permu-
tation at each change point to a subset of [n], and analyze the performance of both methods while
varying the size of permuted subsets. The results are summarized in Table 4, where 50% random
permutation means at each change point ηk, only 50% of the entries of θ∗(ηk−1) are randomly
selected and permuted to form θ∗(ηk). Note that as the proportion of the randomly permuted entries
increases, the random perturbation strength raises at the change points. As shown in Table 4, our
algorithm DPLR is able to provide more accurate change point estimations as the random perturbation
strength increases.

n = 20,K = 3,∆ = 800
Random
permutation Method H(η̂, η) Time K̂ < K K̂ = K K̂ > K

50% DPLR 362.8 (502.2) 97.1s (10.4) 27 67 6
WBS 407.5 (336.8) 137.2s (21.7) 10 21 69

75% DPLR 114.4 (251.3) 120.4s (4.4) 8 91 1
WBS 349.6 (261.8) 141.8s (17.2) 13 28 59

100% DPLR 23.9 (27.6) 105.8s (4.2) 0 100 0
WBS 251.7 (219.9) 133.7s (14.7) 0 40 60

Table 4: Performance of DPLR and WBS-GLR under different signal strength. For the localization
error and running time (in seconds), the average over 100 trials is shown with standard error in the
bracket.
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A.3 Additional results for real data applications

A.3.1 Exploratory analysis

We start our analysis by fitting the BTL model on each season and drawing the path of fitted θ̂(Is),
where Is is the index interval for games in the s-th season in our range of interest, i.e., from
season 1980-1981 to season 2015-2016. The resulting paths shown in Figure 1 are fairly noisy for
interpretation and inference, and this is a strong evidence that the data is unstationary. In addition,
these unstructured paths explain why we need some principled framework like change point models
to analyze such unstationary data.
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Figure 1: Path of θ̂(Is) for Is being each season of the NBA data.

To get a rough sense of the number and locations of change points, we check the paths of the logarithm
of generalized likelihood ratio statistics, which are shown in Figure 2. It should be noted that although
the GLR paths suggest the existence and locations of two change points, we cannot rely on these
observation. This is because when multiple change points exist, there will be cancellations effects
and the GLR paths may not give consistent estimates of change points (Venkatraman, 1992). We can
also see that splitting the data by odd and even indices does not affect the shape of the GLR path.

With all the information in the exploratory analysis, we apply our method DPLR to the dataset and
summarize results in Section 5.
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Figure 2: Path of (logarithmic) generalized loglikelihood ratio on NBA data. Left: GLR path on all
samples; mid: GLR path on samples with odd indices; right: GLR path on samples with even indices.

A.3.2 Comparison with WBS-GLR

In this subsection, we apply the potential competitor, the likelihood-based WBS method (i.e. WBS-
GLR), to the NBA data. For a fair comparison, we set the regularization tuning parameter γ in the
penalized logistic regression to be 0.1, as we did in Section 5 for DPLR. However, as mentioned in
Appendix A.1, WBS has another tuning parameter M , the number of random intervals to perform
binary segmentation. So we apply WBS-GLR with M ∈ {50, 100, 150, 200, 250}, and the estimated
change points with corresponding test errors (negative log-likelihoods) are summarized in Table 5.
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Here, we use samples with odd time indices as training data and even time indices as test data. It
can be seen from Table 5 that the choice of M does not have a significant impact on change point
estimation in this real data example. Therefore in what follows, we only discuss the results of
WBS-GLR with M = 200.

M Change point index Change point season Test errors
50 [7728, 14628, 20700, 24564] [S1990m, S1999, S2007, S2012] 1796.9
100 [7728, 14628, 20700, 24564] [S1990m, S1999, S2007, S2012] 1796.9
150 [7728, 14628, 20700, 24564] [S1990m, S1999, S2007, S2012] 1796.9
200 [7728, 14352, 20700, 24564] [S1990m, S1998m, S2007, S2012] 1793.2
250 [7728, 14628, 20700, 24564] [S1990m, S1999, S2007, S2012] 1796.9

Table 5: The estimated change points with testing loss of WBS-GLR on the NBA data. S1980 means
season 1980-1981, and S1990m means the middle of season 1990-1991

Then similar to Section 5, we fit a BTL model to each interval segmented by WBS-GLR, and
summarize the results in Table 6. As we can see, WBS-GLR is able to detect several important
change points in the NBA history, e.g., the dominance of Celtics and Lakers in 1980s, the Bulls
dynasty in 1990s, and the rise of Spurs afterwards. However, compared with DPLR, WBS-GLR fails
to detect the rise of Heat and Warriors. Therefore, the outcome of DPLR is more informative in this
real application, which again confirms our findings in the simulation study in Section 4.

S1980-S1990m S1990m-S1998m S1998m-S2006 S2007-S2011 S2012-S2015
Celtics 1.1137 Bulls 0.9435 Spurs 0.904 Lakers 0.7579 Spurs 1.1659
Lakers 1.084 Jazz 0.7996 Mavericks 0.665 Spurs 0.701 Clippers 0.9448
76ers 0.8049 Suns 0.5405 Lakers 0.5904 Celtics 0.6406 Warriors 0.9106
Bucks 0.7336 Knicks 0.5178 Kings 0.5103 Magic 0.6084 Heat 0.5149
Pistons 0.5074 Rockets 0.508 Suns 0.3677 Mavericks 0.605 Rockets 0.4703
Trail Blazers 0.4466 Trail Blazers 0.4931 Timberwolves 0.2767 Nuggets 0.458 Mavericks 0.3402
Suns 0.284 Spurs 0.4638 Pistons 0.2464 Bulls 0.2974 Pacers 0.3368
Nuggets 0.2294 Cavaliers 0.3415 Jazz 0.2266 Suns 0.28 Trail Blazers 0.2782
Bulls 0.1782 Lakers 0.3338 Pacers 0.1902 Rockets 0.2724 Bulls 0.2639
Jazz 0.1774 Pacers 0.241 Rockets 0.0024 Jazz 0.2499 Nuggets 0.0401
Spurs 0.1394 Magic 0.1824 Trail Blazers -0.0049 Trail Blazers 0.1843 Jazz -0.0495
Rockets 0.1252 Hornets 0.0923 Heat -0.0433 Cavaliers 0.1628 Cavaliers -0.0752
Mavericks 0.1004 Heat 0.0572 76ers -0.0673 Hornets 0.0931 Celtics -0.1486
Knicks 0.0744 Pistons -0.1381 Nets -0.0807 Heat 0.081 Hornets -0.1522
Warriors -0.1406 Warriors -0.2101 Hornets -0.113 76ers -0.157 Nets -0.2055
Nets -0.1751 Celtics -0.2326 Bucks -0.2183 Pistons -0.2651 Knicks -0.2865
Pacers -0.1857 Nets -0.3088 Nuggets -0.2676 Warriors -0.3028 Suns -0.296
Cavaliers -0.2179 Bucks -0.473 Magic -0.2993 Pacers -0.3475 Bucks -0.354
Kings -0.3197 Clippers -0.5024 Knicks -0.3218 Bucks -0.4778 Pistons -0.3591
Clippers -0.6276 Kings -0.5103 Celtics -0.3293 Knicks -0.6236 Kings -0.4707
Timberwolves -0.9485 Nuggets -0.6578 Clippers -0.4028 Clippers -0.6919 Lakers -0.5136
Hornets -1.0599 Timberwolves -0.6859 Cavaliers -0.4321 Kings -0.7288 Timberwolves -0.5649
Magic -1.1178 76ers -0.7395 Warriors -0.5857 Timberwolves -0.8974 Magic -0.697
Heat -1.206 Mavericks -1.056 Bulls -0.8137 Nets -0.8998 76ers -1.093

Table 6: Fitted θ̂ (rounded to the fourth decimal) for 24 selected teams in seasons 1980-2016 of the
National Basketball Association. Teams are ranked by the MLE θ̂ on subsets splitted at the estimated
change points given by the WBS-GLR method. S1980 means season 1980-1981, and S1990m means
the middle of season 1990-1991.
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A.4 Other potential competitors

As we emphasized in Section 1 and Section 4, localizing potential change points in pairwise compari-
son data is an unsolved problem. Given the good performance of our proposed method DPLR in this
paper, one might wonder if there exist other methods that perform well, or even better than DPLR,
in some aspects. This section intends to present some of our explorations on two potential efficient
methods, WBS-SST and WBS-Mean.

In what follows, we will demonstrate that both of them have crucial drawbacks. Specifically, WBS-
Mean is not guaranteed to work for general comparison graphs, and works for general ranking models
only under some constraints. WBS-SST works for general comparison graphs and ranking models,
but requires relatively large sample size (i.e., ∆) to work. Precise quantification of their performance
can be an interesting direction for future works.

A.4.1 Based on the test statistic for SST class

Rastogi et al. (2020) consider the two sample testing problem for general pairwise comparison data.
Suppose we observe pairwise comparison outcome matrices X and Y generated from two winning
probability matrices P,Q ∈ Rn×n, respectively. They propose the following test statistic:

RSST =

d∑
i=1

d∑
j=1

Iij
kqij
(
kqij − 1

) (
X2
ij −Xij

)
+ kpij

(
kpij − 1

) (
Y 2
ij − Yij

)
− 2

(
kpij − 1

) (
kqij − 1

)
XijYij(

kpij − 1
) (
kqij − 1

) (
kpij + kqij

) ,

(A.3)
where Iij = I

(
kpij > 1

)
× I

(
kqij > 1

)
, kpij = Xij + Xji and kqij = Yij + Yji are the number of

comparisons between pairs.

We can use this test statistic to construct the lossR(t; s, e) in WBS (Algorithm 3), i.e.,

R(t; s, e) = RSST (X([s, t)),Y([t, e))), (A.4)

and call this method WBS-SST (SST stands for strong stochastic transitive). When ∆ is sufficiently
large, WBS-SST performs fairly well with small computational cost, as is shown in Table 7.

Issue with this approach. However, When ∆ is small, then many pairs in sampled intervals in WBS
will have kij ≤ 1, and the statistic would not be very powerful. See Figure 3 and Table 7.

Figure 3: Loss path for WBS-SST when the sample size is not large enough. n = 100 with a single
change point at the middle. ∆ = 1000 (left), ∆ = 2000 (right).

To see that reason, notice that

E[RSST |kp,kq] =
d∑
i=1

d∑
j=1

Iij
kqij
(
kqij − 1

)
kpij
(
kpij − 1

)
(P 2
ij +Q2

ij − 2PijQij)(
kpij − 1

) (
kqij − 1

) (
kpij + kqij

)
=

d∑
i=1

d∑
j=1

Iij
kqijk

p
ij

kpij + kqij
(Pij −Qij)2.

(A.5)

When the comparison graph is a complete graph and compared pairs {(it, jt)}t∈[T ] are i.i.d. samples
from the edge set Efull := {(i, j) : 1 ≤ i < j ≤ n}, the expectation of R is (without the loss of
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generality, assume that (1, 2) ∈ Efull)

E[RSST ] = ∥P −Q∥2FE[I1,2
kq1,2k

p
1,2

kp1,2 + kq1,2
]. (A.6)

The two equations above illustrate why WBS-SST does nor perform well in small-SNR cases.

A.4.2 Based on the Borda count

Borda count is a popular method in practice for ranking, due to its efficiency and generality (Shah
and Wainwright, 2018). Given an interval I, the normalized Borda count vector is defined as

β(I)i =
1

|I|
[Nw(i; I)−Nl(i; I)],∀i ∈ [n], (A.7)

where Nw(i; I) and Nl(i; I) are the number of wining and loss of item i in comparisons over the
interval I.

Since it is well-known in ranking literature that Borda count is not guaranteed to give consistent
ranking for general comparison graphs, we only consider the complete graph here. When the
comparison graph is a complete graph and compared pairs are i.i.d. samples from the edge set, and
there is no change point in I, the expectation of β(I)i is

E[β(I)i] =
2

n(n− 1)

∑
j ̸=i

(Pij − Pji) =
2

n(n− 1)

∑
j ̸=i

(2Pij − 1), (A.8)

where Pij = P[i beats j].

If we treat β(I) as a sample mean of a random variable, we can construct the CUSUM statistic at
t ∈ I = [s, e) as

RBorda(t; [s, e)) =
(t− s)(e− t)

e− s
∥β([s, t))− β([t, e))∥22. (A.9)

To compared this statistic with Equation (A.3), we assume there is a single change point η ∈ [s, e)
and check the statistic at η. By Equation (A.8), the population version of the statistic is

R̃Borda(η; [s, e)) =
(η − s)(e− η)

e− s
∥Eβ([s, η))− Eβ([η, e))∥22

=
(η − s)(e− η)

e− s
· 2

n(n− 1)

∑
i∈[n]

[
∑
j ̸=i

(Pij −Qij)]2
(A.10)

where P,Q are the winning probability matrices before and after the change point η.

Issue with this approach. With Equation (A.10), we can construct examples such that the pop-
ulation version of the CUSUM statistic is very small or even zero at the true change point η. For
instance, let n = 3 and

P =

[
0.5 0.6 0.8
0.4 0.5 0.7
0.2 0.3 0.5

]
, Q =

[
0.5 0.55 0.85
0.45 0.5 0.65
0.15 0.35 0.5

]
, (A.11)

then both P,Q are strong-stochastic-transitive matrices (see Shah and Wainwright (2018) for details)
and the population CUSUM R̃Borda(η; [s, e)) = 0 at η. Figure 4 compares paths of the loss for
WBS-Mean and WBS-SST under the choice of P,Q above, where there is a single change point at
η = 1000.
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Figure 4: Loss path for WBS-Mean (left) and WBS-SST (right).

A.4.3 Numerical performance

Table 7 compares the performance of WBS-SST and WBS-Mean with the two methods presented in
the main text, under the identical setting in Section 4. The setting is sketched below for convenience.

H(η̂, η) Time K̂ < K K̂ = K K̂ > K
Setting (i) n = 10,K = 3,∆ = 500, Change (I, II, III)

DPLR 9.2 (9.1) 49.7s (0.7) 0 100 0
WBS-Mean 15.4 (8.4) 0.2s (0.05) 0 100 0
WBS-SST 16.2 (11.4) 0.4s (0.2) 0 100 0
WBS-GLR 15.2 (7.9) 31.9s (3.9) 0 100 0

Setting (ii) n = 20,K = 3,∆ = 800, Change (I, II, III)
DPLR 9.0 (9.9) 118.5s (2.2) 0 100 0
WBS-Mean 5.8 (11.4) 0.5s (0.1) 0 100 0
WBS-SST 19.4 (22.3) 1.7s (0.5) 0 100 0
WBS-GLR 240.5 (220.3) 144.2s (12.5) 0 40 60

Setting (iii) n = 100,K = 2,∆ = 1000, Change (I, II)
DPLR 13.4 (14.4) 167.4s (3.3) 0 100 0
WBS-Mean 22.9 (98.4) 0.6s (0.04) 1 99 0
WBS-SST ∞ (NA) 3.9s (0.4) 100 0 0
WBS-GLR 111.9 (195.6) 215.9s (17.0) 0 79 21

Setting (iv) n = 100,K = 3,∆ = 2000, Change (I, II, III)
DPLR 12.4 (12.1) 402.4s (7.4) 0 100 0
WBS-Mean 17.9 (6.1) 0.9s (0.06) 0 100 0

WBS-SST 1116.3
(694.8) 19.3s (1.9) 57 42 1

WBS-GLR 412.3 (495.5) 400.0s (40.9) 0 57 43
Table 7: Comparison of DPLR and three WBS-based methods under four different simulation settings.
100 trials are conducted in each setting. For the localization error and running time (in seconds), the
average over 100 trials is shown with standard error in the bracket. The three columns on the right
record the number of trials in which K̂ < K, K̂ = K, and K̂ > K respectively.

Simulation settings. For 1 < i ≤ n, we set θ∗i (η0) = θ∗1(η0) + (i− 1)δ with some constant δ. In
each experiment, we set δ first and then set θ∗1(η0) to make 1⊤

n θ
∗(η0) = 0. The value of δ guarantees

that the maximum winning probability is 0.9. We consider three types of changes:

Type I (reverse): θ∗i (ηk) = θ∗n+1−i(η0).

Type II (block-reverse): θ∗i (ηk) = θ∗[n2 ]+1−i(η0) for i ≤ [n2 ]; θ
∗
i (ηk) = θ∗[n2 ]+n+1−i(η0) for i > [n2 ].

Type III (block exchange): θ∗i (ηk) = θ∗i+[n2 ](η0) for i ≤ [n2 ]; θ
∗
i (ηk) = θ∗i−[n2 ](η0) for i > [n2 ].

We consider four simulation settings. For each setting, we have T = (K + 1)∆ and the change
points locate at ηi = i∆ for i ∈ [K]. To describe the true parameter at each change point, we use an
ordered tuple. For instance, (I, II, III, I) means that K = 4 and the true parameters at η1, η2, η3, η4
are determined based on θ∗(η0) and the change type I, II, III, and I, respectively.
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B Appendix: Proof

This section has three parts:

1. Appendix B.1 contains the proof of two theorems in Section 3.
2. Appendix B.2 contains propositions used throughout the paper with proof.
3. Appendix B.3 contains all technical lemmas with proof.

B.1 Proof of main theorems

Proof of Theorem 3.2. The theorem is a straightforward conclusion of Proposition B.2 and Proposi-
tion B.1. More specifically, conclusion 3 and 4 of Proposition B.2 guarantee that K ≤ |P̂| ≤ 3K

with probability at least 1− (Tn)−2 and Proposition B.1 further confirms the consistency of K̂. Then
conclusion 1 and 2 of Proposition B.2 control the localization error.

Proof of Theorem 3.3. The theorem is a straightforward conclusion of Theorem 3.2 that quantifies
the localization error of outputs of dynamic programming and Proposition B.3 that shows the
improvement of local refinement.

B.2 Main propositions

Proposition B.1 (Consistency of K̂). Let P̂ be the estimator of change points in Equation (3.1).
Assume K ≤ |P̂| ≤ 3K. Under all assumptions above, it holds with probability at least 1− (Tn)−2

that |P̂| = K.

Proof. For a sequence of strictly increasing integer time points {η′j}j∈[J+1] with η′0 = 1 and
η′J+1 = T + 1, let Ij = [η′j−1, η

′
j) and

L({η′j}j∈[J+1]) =
∑

j∈[J+1]

L(θ̂(Ij), Ij),

where θ̂(Ij) := argminθ∈ΘB
L(θ, Ij). Furthermore, when {ηk}k∈[K] ⊂ {η′j}j∈[J+1] so that θ∗(t)

remains unchanged in each interval Ij , we can define the risk of true parameters

L∗({η′j}j∈[J+1]) =
∑

j∈[J+1]

L(θ∗(Ij), Ij).

Let {η̂k}k∈[K̂] be the change points given by the estimator P̂ and Sort(·) be an operator on finite
ordered tuple of scalars such that Sort((a1, . . . , am)) = (a(1), . . . , a(m)) where a(i) ≤ a(j) for
i < j and {a(i)}i∈[m] = {ai}i∈[m]. Then a sufficient condition for |P̂| = K is

L∗(η1, · · · , ηK) +Kγ

≥L(η1, · · · , ηK) +Kγ (B.1)

≥L(η̂1, · · · , η̂K̂) + K̂γ (B.2)

≥L∗(Sort(η̂1, · · · , η̂K̂ , η1, · · · , ηK)) + K̂γ − CKp−2
lb

ndmax

λ2(LG)
log(Tn), (B.3)

and

L∗(η1, · · · , ηK) ≤ L∗(Sort(η̂1, · · · , η̂K̂ , η1, · · · , ηK)) + C1Kp
−2
lb

ndmax

λ2(LG)
log(Tn). (B.4)

In fact, if K̂ ≥ K + 1, under the conditions above and the assumption that |P̂| ≤ 3K, we have

γ ≤ (K̂ −K)γ ≤ C2Kp
−2
lb

ndmax

λ2(LG)
log(Tn),

which is contradictory to the definition γ = Cγ(K + 1)p−2
lb

ndmax

λ2(LG) log(Tn) for sufficiently large Cγ .
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Now we prove that the sufficient condition holds with probability at least 1− (Tn)−2. Equation (B.1)
is a straightforward conclusion of the definition θ̂(Ij) := argminθ∈ΘB

L(θ, Ij) and Equation (B.2)
is implied by the definition of P̂ in Equation (3.1).

Equation (B.4) is guaranteed by Lemma B.9 because for any interval I determined by endpoints that
are two consecutive points in Sort(η̂1, · · · , η̂K̂ , η1, · · · , ηK), there will not be any true change point
in the interior of I.

For Equation (B.3), notice that by Proposition B.2, with probability 1− (Tn)−4, there are at most
two change points in I. Therefore, Lemma B.7 ensures that

L(η̂1, · · · , η̂K̂) ≥ L∗(Sort(η̂1, · · · , η̂K̂ , η1, · · · , ηK))− CKp−2
lb

ndmax

λ2(LG)
log(Tn).

Proposition B.2 (Four cases). Let P̂ be the estimator of change points in Equation (3.1). Under
Assumption 3.1 and Assumption B.14, with probability at least 1− (Tn)−2 the following four events
hold uniformly for all I = (s, e) ∈ P̂:

1. If I contains only one change point η, then for some universal constant C > 0,

min{η − s, e− η} ≤ Cp−2
lb

|E|
λ2(LG)

[γ +
ndmax

λ2(LG)
log(Tn)].

2. If I contains exactly two change points ηk and ηk+1, then for some universal constant
C > 0,

min{ηk − s, e− ηk+1} ≤ Cp−2
lb

|E|
λ2(LG)

[γ +
ndmax

λ2(LG)
log(Tn)].

3. If |P̂| > 1, then for any two consecutive intervals I and J in P̂ , the joint interval I ∪ J
contains at least one change point.

4. Interval I does not contain more than two change points.

Proof. Conclusion 1 is implied by Lemma B.11 and conclusion 2 is guaranteed by Lemma B.12.
Conclusion 4 is a direct consequence of Lemma B.13 and the definition of P̂ .

To prove conclusion 3, assume instead that there is no true change point in I ∪ J . Then by
Lemma B.10 we have

L(θ̂(I), I) + L(θ̂(J ),J ) + γ ≥ L(θ∗(I ∪ J ), I ∪ J ) ≥ L(θ̂(I ∪ J ), I ∪ J ),

which is contradictory to the definition of P̂ .

Proposition B.3 (Local refinement). Consider the local refinement procedure given in Algorithm 2,
that is, (

η̂k, θ̂
(1), θ̂(2)

)
= argmin
η∈{sk+1,...,ek−1}

θ(1),θ(2)∈ΘB

{
η∑

t=sk+1

ℓt(θ
(1)) +

ek∑
t=η+1

ℓt(θ
(2))

}
, (B.5)

where sk = 2η̃k−1/3 + η̃k/3 and ek = η̃k/3 + 2η̃k+1/3 and ℓt(θ) is the negative log-likelihood
given in Equation (2.6). Suppose the input {η̃k}k∈[K̃] satisfies K̃ = K and

max
k∈[K]

|η̃k − ηk| ≤ ∆/5.

Let {η̂k}k∈[K] be the output. Then it holds with probability at least 1− (Tn)−2 that

max
k∈[K]

|η̂k − ηk| ≤ C
|E|ndmax

p2lbκ
2λ22(LG)

log(Tn). (B.6)
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Proof. For each k ∈ [K], let θ̂(t) = θ̂(1) if sk < t ≤ η̂k and θ̂(t) = θ̂(2) otherwise, and
θ∗(t) be the true parameter at time point t. First we show that under conditions K̃ = K and
maxk∈[K] |η̃k − ηk| ≤ ∆/5, there is only one true change point ηk in (sk, ek). It suffices to show
that

|η̃k − ηk| ≤
2

3
(η̃k+1 − η̃k), and |η̃k+1 − ηk+1| ≤

1

3
(η̃k+1 − η̃k). (B.7)

Denote R = maxk∈[K] |η̃k − ηk|, then

η̃k+1 − η̃k = η̃k+1 − ηk+1 + ηk+1 − ηk + ηk − η̃k
= (ηk+1 − ηk) + (η̃k+1 − ηk+1) + (ηk − η̃k) ∈ [ηk+1 − ηk − 2R, ηk+1 − ηk + 2R].

Therefore, Equation (B.7) is guaranteed as long as

R ≤ 1

3
(∆− 2R),

which is equivalent to R ≤ ∆/5.

Now without loss of generality, assume that sk < ηk < η̂k < ek. Denote Ik = {sk + 1, · · · , ek}.
Consider two cases:

Case 1 If

η̂k − ηk < max{Cp−2
lb

|E|ndmax

λ22(LG)
log(Tn), Cp−2

lb log(Tn)/κ2},

then the proof is done.

Case 2 If

η̂k − ηk ≥ max{Cp−2
lb

|E|ndmax

λ22(LG)
log(Tn), Cp−2

lb log(Tn)/κ2},

then we proceed to prove that |η̂k−ηk| ≤ C1
|E|ndmax

p2lbκ
2λ2

2(LG)
log(Tn) with probability at least 1−(Tn)−3.

Then we either prove the result or get an contradiction, and complete the proof in either case.

By the definition of η̂k, θ̂(1), and θ̂(2), we have∑
t∈Ik

ℓt(θ̂(t)) ≤
∑
t∈Ik

ℓt(θ
∗(t)).

By Lemma B.8, this implies that

ce−2B
∑
t∈Ik

[x(t)⊤∆(t)]2 ≤
∑
t∈Ik

ϵtx(t)
⊤∆(t), (B.8)

where ∆(t) := θ̂(t)− θ∗(t) and ϵt := yt − exp(x(t)⊤θ∗(t))
1+exp(x(t)⊤θ∗(t))

. For the cross term, by Lemma B.19
we have ∑

t∈Ik

ϵtx(t)
⊤∆(t) =

∑
i∈[n]

{

∣∣∣∣∣∣
∑
t∈Ik

ϵtxi(t)∆i(t)√∑
t∈Ik

∆i(t)2

∣∣∣∣∣∣
√∑
t∈Ik

∆i(t)2 }

≤ sup
i∈[n]

∣∣∣∣∣∣
∑
t∈Ik

ϵtxi(t)∆i(t)√∑
t∈Ik

∆i(t)2

∣∣∣∣∣∣
∑
i∈[n]

√∑
t∈Ik

∆i(t)2

≤ C

√
dmax

|E|
log(Tn)

∑
i∈[n]

√∑
t∈Ik

(θ̂i − θ∗i (t))2

≤ C

√
ndmax

|E|
log(Tn)

√∑
t∈Ik

∥∆(t)∥22 . (B.9)

Equation (B.8) and Equation (B.9) together imply that

ce−2B
∑
t∈Ik

[x(t)⊤∆(t)]2 ≤ C

√
ndmax

|E|
log(Tn)

√∑
t∈Ik

∥∆(t)∥22 . (B.10)
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Let
J1 = (sk, ηk], J2 = (ηk, η̂k], J3 = (η̂k, ek].

Under Assumption 3.1 and the condition of the proposition, it holds that min{|J1|, |J3|} ≥
C0

|E| log(Tn)
λ2(LG) . Thus, by Lemma B.17, with probability at leat 1− (Tn)−3, we have∑

t∈Ik

[x(t)⊤∆(t)]2 ≥ c1λ2(LG)

|E|
∑
t∈Ik

∥∆(t)∥22.

The inequality above leads to∑
t∈Ik

∥θ̂(t)− θ∗(t)∥22 ≤ Cp−2
lb

|E|ndmax

λ22(LG)
log(Tn).

Recall that we defined θ(1) = θ∗(ηk − 1) and θ(2) = θ∗(ηk). Then we have∑
t∈Ik

∥θ̂(t)− θ∗(t)∥22 = |J1|∥θ̂(1) − θ(1)∥22 + |J2|∥θ̂(1) − θ(2)∥22 + |J3|∥θ̂(2) − θ(2)∥22.

Since |J1| = ηk − sk ≥ c0∆ with some constant c0 under Assumption 3.1, we have

∆∥θ̂(1) − θ(1)∥22 ≤ c0|J1|∥θ̂(1) − θ(1)∥22 ≤ c1p−2
lb

|E|ndmax

λ22(LG)
log(Tn) ≤ c2∆κ2, (B.11)

with some constant c2 ∈ (0, 1/4), where the last inequality is due to the fact that BT →∞. Thus we
have

∥θ̂(1) − θ(1)∥22 ≤ c2κ2.
Triangle inequality gives

∥θ̂(1) − θ(2)∥2 ≥ ∥θ(1) − θ(2)∥2 − ∥θ̂(1) − θ(1)∥2 ≥ κ/2.

Therefore, κ2|J2|/4 ≤ |J2|∥θ̂(1) − θ(2)∥22 ≤ Cp−2
lb

|E|ndmax

λ2
2(LG)

log(Tn) and

|η̂k − ηk| = |J2| ≤
Cp−2

lb |E|ndmax log(Tn)

λ22(LG)κ2
.

Proposition B.4. Let P(θ) be the winning probability matrix induced by θ. For θ(1),θ(2) ∈ ΘB , it
holds that

np2lb
16
∥θ(1) − θ(2)∥22 ≤ ∥P(θ(1))−P(θ(2))∥2F ≤

n

16
∥θ(1) − θ(2)∥22, (B.12)

where plb = e−2B

1+e−2B .

Proof. This result has been shown in Shah and Wainwright (2018) (In the proof of Theorem 4). We
include it here for completeness.

Denote ψ(t) = 1
1+e−t . For any pair (i, j) ∈ [n]2, by the mean value theorem we have

|Pij(θ(1))− Pij(θ(2))| = |ψ(θ(1)i − θ
(1)
j )− ψ(θ(2)i − θ

(2)
j )|

= |ψ′(ξ)||(θ(1)i − θ
(1)
j )− (θ

(2)
i − θ

(2)
j )|,

where ξ is a scalar between (θ
(1)
i −θ

(1)
j ) and (θ

(2)
i −θ

(2)
j ). Since ψ′(t) = ψ(t)(1−ψ(t)) ∈ ( 1

4e2B
, 14 ]

for t ∈ [−2B, 2B], we have
1

4e2B
|(θ(1)i − θ

(1)
j )− (θ

(2)
i − θ

(2)
j )| ≤ |Pij(θ(1))− Pij(θ(2))| ≤ 1

4
|(θ(1)i − θ

(1)
j )− (θ

(2)
i − θ

(2)
j )|.

By the property of Graph Laplacian and the fact that 1⊤
n θ

(i) = 0, i = 1, 2, we have∑
i,j∈[n]2

[(θ
(1)
i − θ

(1)
j )− (θ

(2)
i − θ

(2)
j )]2 = (θ(1) − θ(2))⊤[nIn − 1n1

⊤
n ](θ

(1) − θ(2)) (B.13)

= n∥θ(1) − θ(2)∥22. (B.14)
Combining the results above gives the conclusion.
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Proposition B.5 (Single change point). Suppose we observe {(x(t), yt)}t∈[T ] following model (2.1)
and (2.5) and there is a single change point η ∈ (1, T ). In addition, assume that

∆ := min{η − 1, T − η} ≥ BT
|E|ndmax

p2lbκ
2λ22(LG)

log(Tn), (B.15)

for a diverging sequence {BT }T∈Z+
. Let the estimator η̂ of the change point be

η̂ = argmin
η∈[T ]

{
min

θ(1)∈ΘB

η∑
t=1

ℓt(θ
(1)) + min

θ(2)∈ΘB

T∑
t=η+1

ℓt(θ
(2))

}
, (B.16)

where ℓt(θ) is the negative log-likelihood given in Equation (2.6). Then it holds with probability at
least 1− (Tn)−2 that

|η̂ − η| ≤
Cp−2

lb |E|ndmax log(Tn)

λ22(LG)κ2
. (B.17)

Proof. The estimator η̂ is the same as the output of the local refinement algorithm. Under the
assumption (B.15), the same arguments in the proof of Proposition B.3 can be applied here to show
the conclusion.

It should be noted that the estimator η̂ gives consistent localization because as T → ∞, we have
BT →∞ and with high probability,

|η̂ − η|
∆

≤ C

BT
= o(1).

Proposition B.6 (No change point). Suppose we observe {(x(t), yt)}t∈[T ] following model (2.1) and
(2.5) and there is no single change point in [1, T ]. In addition, assume that

T ≥ BT
|E|ndmax

p2lbκ
2λ22(LG)

log(Tn), (B.18)

for a diverging sequence {BT }T∈Z+ . Then it holds with probability at least 1− (Tn)−2 that the DP
procedure in Algorithm 1 with tuning parameter γ = Cγp

−2
lb

ndmax

λ2(LG) log(Tn) will return an empty
set.

Proof. Assume that the output P̂ = {η̂k}k∈[K̂] with K̂ ≥ 1. Let I0 = [1, η̂1) and IK̂ = [η̂K̂ , T ].

When K̂ > 1, let Ik = [η̂k−1, η̂k) for k ∈ [K̂ − 1]. Then by Lemma B.9, with probability at least
1− (Tn)−4, we have

K̂∑
k=0

L(θ̂(Ik), Ik) + K̂Cp−2
lb

ndmax

λ2(LG)
log(Tn) ≥

K̂∑
k=0

L(θ∗(Ik), Ik)

= L(θ∗([1, T ]), [1, T ]) ≥ L(θ̂([1, T ]), [1, T ]),

which is contradictory to the definition of P̂ as long as Cγ > C.

B.3 Technical lemmas

This section has three parts:

1. Lemma B.7 is a summary of three different cases, and is used in the proof of Proposition B.1.
2. Appendix B.3.1 contains results on the excess risk of L(θ(I), I) in four cases.
3. Appendix B.3.2 contains lemmas on some basic concentration properties related to our

problem.
Lemma B.7. Given any interval I = (s, e] ⊂ [1, T ] with integers s, e that contains at most two
change points. Under all assumptions above, we have



B APPENDIX: PROOF 25

1. If I contains no change points, then with probability at leat 1− (Tn)−2 it holds that

L(θ∗(I), I) ≤ L(θ̂(I), I) + Cp−2
lb

ndmax

λ2(LG)
log(Tn).

2. If I contains exactly one change point ηr with partition I1 = (s, ηr] and I2 = (ηr, e], then
with probability at leat 1− (Tn)−2 it holds that

L(θ∗(I1), I1) + L(θ∗(I2), I2) ≤ L(θ̂(I), I) + Cp−2
lb

ndmax

λ2(LG)
log(Tn).

3. If I contains exactly two change points ηr+1 and ηr+2 with partition I1 = (s, ηr+1],
I2 = (ηr+1, ηr+2], and I3 = (ηr+2, e], then with probability at leat 1 − (Tn)−2 it holds
that

3∑
j=1

L(θ∗(Ij), Ij) ≤ L(θ̂(I), I) + Cp−2
lb

ndmax

λ2(LG)
log(Tn).

Proof. Case 1 is guaranteed by Lemma B.9.

For case 3, since |I2| ≥ ∆, by Assumption 3.1, Lemma B.9 and the definition of θ̂, it holds with
probability at least 1− (Tp)−4 that

L(θ∗(I2), I2) ≤ L(θ̂(I2), I2) + Cp−2
lb

ndmax

λ2(LG)
log(Tn) ≤ L(θ̂(I), I2) + Cp−2

lb

ndmax

λ2(LG)
log(Tn),

(B.19)
where the second inequality is implied by the definition of θ̂(I2).

For I1, we need to consider two cases. If |I1| ≥ C0|E|
λ2(LG) log(Tn) where C0 is some fixed absolute

constant in the sample size condition in Assumption B.14, then by Lemma B.9, with probability at
least 1− (Tn)−4 we have

L(θ∗(I1), I1) ≤ L(θ̂(I1), I1) + Cp−2
lb

ndmax

λ2(LG)
log(Tn) ≤ L(θ̂(I), I1) + Cp−2

lb

ndmax

λ2(LG)
log(Tn).

Otherwise when |I1| < C0|E|
λ2(LG) log(Tn), let ϵt := yt − exp(x(t)⊤θ∗(t))

1+exp(x(t)⊤θ∗(t))
and we can get

L(θ∗(I1), I1)−
∑
t∈I1

ℓt(θ̂(I))

=
∑
t∈I1

ℓt(θ
∗(I1))−

∑
t∈I1

ℓt(θ̂(I))

≤
∑
t∈I1

ϵtx(t)
⊤(θ̂(I)− θ∗(I1))− ce−2B [x(t)⊤(θ̂(I)− θ∗(I1))]2

≤e
2B

4c

∑
t∈I1

[ϵt]
2 ≤ e2B

4c
|I1| ≤ C1p

−2
lb

ndmax

λ2(LG)
log(Tn),

where the last inequality holds because |I1| < C0|E|
λ2(LG) log(Tn) and |E| ≤ ndmax. Similarly, we can

show that
L(θ∗(I3), I3)−

∑
t∈I3

ℓt(θ̂(I)) ≤ C1p
−2
lb

ndmax

λ2(LG)
log(Tn).

Combining the three facts proves the conclusion for case 3. Similar arguments can be used to prove
the conclusion for case 2.

B.3.1 Excess risk

Lemma B.8. Suppose θ,θ(t)∗ ∈ ΘB , then

ℓt(θ)− ℓt(θ∗(t)) ≥ [
exp(x(t)⊤θ∗(t))

1 + exp(x(t)⊤θ∗(t))
− yt]x(t)⊤(θ − θ∗(t)) + ce−2B [x(t)⊤(θ − θ∗(t))]2.

(B.20)
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Proof. By Taylor expansion,

log(1 + ex(t)
⊤θ)− log(1 + ex(t)

⊤θ∗(t))

=[
exp(x(t)⊤θ∗(t))

1 + exp(x(t)⊤θ∗(t))
− yt]x(t)⊤(θ − θ∗(t)) +

exp(x(t)⊤ξ)

[1 + exp(x(t)⊤ξ)]2
[x(t)⊤(θ − θ∗(t))]2

≥[ exp(x(t)⊤θ∗(t))

1 + exp(x(t)⊤θ∗(t))
− yt]x(t)⊤(θ − θ∗(t)) +

1

4e2B
[x(t)⊤(θ − θ∗(t))]2.

where ξ is a convex combination of θ and θ∗(t). Thus, ξ ∈ ΘB and we also use the facts that
|x(t)⊤v| ≤ 2B for any v ∈ ΘB and ex

(1+ex)2 ≥
1

4e|x| .

Lemma B.9. Assume there is no change points in interval I, then it holds with probability at least
1− (Tn)−4 that

L(θ̂(I), I)− L(θ∗(I), I) =
∑
t∈I

[ℓt(θ̂)− ℓt(θ∗)] ≥ −Cp−2
lb

ndmax

λ2(LG)
log(Tn),

where C is a universal constant that is independent of the choice of I.

Proof. Let ϵt := yt − exp(x(t)⊤θ∗(t))
1+exp(x(t)⊤θ∗(t))

. By Lemma B.8, we have

L(θ∗(I), I)− L(θ̂, I)

≤
∑
t∈I

ϵtx(t)
⊤(θ̂(I)− θ∗(I))− ce−2B

∑
t∈I

[x(t)⊤(θ̂(I)− θ∗(I))]2

≤
∑
t∈I

ϵtx(t)
⊤(θ̂(I)− θ∗(I))

≤∥θ̂(I)− θ∗(I)∥1 max
i∈[p]
|
∑
t∈I

ϵtxi(t)|.

(B.21)

When |I| ≳ C0|E|
λ2(LG) log(Tn), by Lemma B.16, we have ∥θ̂(I) − θ∗(I)∥1 ≲ p−2

lb n
√

|E| log(Tn)
|I|λ2(LG) .

Thus, Lemma B.21 ensures that the first term is upper bounded by C1p
−2
lb n

√
dmax

λ2(LG) log(Tn) where

C1 does not depend on C0. Since λ2(LG) ≤ 2dmax, we have

C1p
−2
lb n

√
dmax

λ2(LG)
log(Tn) ≤ Cp−2

lb

ndmax

λ2(LG)
log(Tn).

When |I| < C0|E|
λ2(LG) log(Tn), we can bound the difference by

L(θ∗(I), I)− L(θ̂(I), I)

≤
∑
t∈I

ϵtx(t)
⊤(θ̂(I)− θ∗(I))− ce−2B

∑
t∈I

[x(t)⊤(θ̂(I)− θ∗(I))]2

≤e
2B

4c

∑
t∈I

ϵ2t ≤ C2p
−2
lb

C0|E|
λ2(LG)

log(Tn),

(B.22)

where we use the fact that |ϵt| ≤ 1 and θ∗ ∈ ΘB by our assumption, and the basic inequality
ab ≤ a2 + b2/4. Since |E| ≤ ndmax, it holds that

C2p
−2
lb

C0|E|
λ2(LG)

log(Tn) ≤ Cp−2
lb

ndmax

λ2(LG)
log(Tn).

Lemma B.10. Under all assumptions in Theorem 3.2, let I = (s, e] ⊂ [1, T ] be any interval
containing no change point. Let I1, I2 be two intervals such that I1 ∪ I2 = I. It holds with
probability at least 1− (Tn)−4 that

L(θ̂(I1), I1) + L(θ̂(I2), I2) + γ ≥ L(θ∗(I), I).
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Proof. If I < 2C0
|E| log(Tn)
λ2(LG) , following the same arguments in Lemma B.9 we have that for i = 1, 2,

with probability at least 1− (Tn)−4,

L(θ∗(Ii), Ii)− L(θ̂(Ii), Ii) ≤ Cp−2
lb

ndmax

λ2(LG)
log(Tn).

Thus, by the fact that L(θ∗(I), I) = L(θ∗(I1), I1) + L(θ∗(I2), I2) and γ = Cγ(K +

1)p−2
lb

ndmax

λ2(LG) log(Tn) with Cγ large enough, the conclusion holds.

Now assume I > 2C0
|E| log(Tn)
λ2(LG) . We will prove the lemma by contradiction. Assume that

L(θ̂(I1), I1) + L(θ̂(I2), I2) + γ < L(θ∗(I), I).
By Lemma B.8, the equation above implies that

ce−2B
∑
t∈I

[x(t)⊤∆(t)]2 < −γ +
∑
t∈I

ϵtx(t)
⊤∆(t), (B.23)

where ϵt := yt − exp(x(t)⊤θ∗(t))
1+exp(x(t)⊤θ∗(t))

and ∆i(t) = θ̂i(I) − θ∗i (t). For (B.23), following the same
arguments in the proof of Lemma B.11, we can get that with probability at least 1− (Tn)−4,

∑
t∈I

ϵtx(t)
⊤∆(t) ≤ C

√
ndmax

|E|
log(Tn)

[∑
t∈I
∥∆(t)∥22

] 1
2

.

By Lemma B.17, with probability at least 1− (Tn)−5,∑
t∈I

[x(t)⊤∆(t)]2 ≥ c1λ2(LG)

|E|
∑
t∈I
∥∆(t)∥22.

Thus, let z =
∑
t∈I ∥∆(t)∥22 and we have

cc1λ2
e2B |E|

z + γ ≤ C

√
ndmax

|E|
log(Tn)

√
z ≤ C2e2Bndmax

cc1λ2
log(Tn) +

cc1λ2
4e2B |E|

z,

which implies that ∑
t∈I
∥∆(t)∥22 + C1

p−1
lb |E|
λ2

γ ≤ C2p
−2
lb

|E|ndmax

λ22
log(Tn),

which is contradictory to the fact that γ = Cγp
−2
lb (K + 1) ndmax

λ2(LG) log(Tn) for sufficiently large
constant Cγ .

Lemma B.11. For I = (s, e) ⊂ (0, T +1), assume that I contains only one change point η. Denote
I1 = (s, η] and I2 = (η, e]. Assume that ∥θ∗(I1)− θ∗(I2)∥2 = κ > 0. If

L(θ̂(I), I) ≤ L(θ∗(I1), I1) + L(θ∗(I2), I2) + γ,

then with probability at least 1− (Tn)−4, there exists an absolute constant C > 0 such that

min{|I1|, |I2|} ≤ C
p−2
lb |E|

κ2λ2(LG)
[γ +

ndmax

λ2(LG)
log(Tn)].

Proof. Without loss of generality, assume |I1| ≥ |I2|. If |I2| < C0
|E| log(Tn)
λ2(LG) then the conclusion

holds automatically, where C0 is the constant in Lemma B.16 and Lemma B.19, since we can set Cγ
to be sufficiently large (notice that in the worst case, κ2 can be as large as nB2). Thus, in what follows
we can assume |I2| ≥ C0

|E| log(Tn)
λ2(LG) . Let ϵt := yt − exp(x(t)⊤θ∗(t))

1+exp(x(t)⊤θ∗(t))
and ∆i(t) = θ̂i(I) − θ∗i (t).

By the condition of the lemma and Lemma B.8, we have

ce−2B
∑
t∈I

[x(t)⊤∆(t)]2 ≤ γ +
∑
t∈I

∑
i∈[n]

ϵtxi(t)∆i(t).
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Lemma B.19 implies that with probability at least 1−(Tn)−4, the term on the right hand side satisfies∑
t∈I

∑
i∈[n]

ϵtxi(t)(θ̂i − θ∗i (t))

≤ sup
i∈[n]

∣∣∣∣∣∣
∑
t∈I ϵtxi(t)(θ̂i − θ∗i (t))√∑

t∈I(θ̂i − θ∗i (t))2

∣∣∣∣∣∣
∑
i∈[n]

√∑
t∈I

(θ̂i − θ∗i (t))2

≤C

√
dmax

|E|
log(Tn)

∑
i∈[n]

√∑
t∈I

(θ̂i − θ∗i (t))2 ≤ C

√
ndmax

|E|
log(Tn)

√∑
t∈I
∥∆(t)∥22 .

By Lemma B.17,
∑
t∈Ii

[x(t)⊤∆(t)]2 ≥ c1λ2(LG)
|E|

∑
t∈Ii
∥∆(t)∥22 with probability at least 1 −

(Tn)−5 for i = 1, 2. Therefore, letting z =
∑
t∈I ∥∆(t)∥22, we have

cc1
λ2(LG)

e2B |E|
z ≤ γ + c2

√
dmax

|E|
log(Tn)

√
z .

Solving the inequality above gives∑
t∈I
∥∆(t)∥22 ≤ Cp−2

lb

|E|
λ2(LG)

[γ +
ndmax

λ2(LG)
log(Tn)],

where C is a universal constant that only depends on c, c1, c2. Since
∑
t∈I ∥∆(t)∥22 ≥

|I1||I2|
|I| κ2 ≥

κ2

2 |I2|, we have |I2| ≤ 2C
κ2 p

−2
lb

|E|
λ2(LG) [γ + ndmax

λ2(LG) log(Tn)].

Lemma B.12. Under all assumptions in Theorem 3.2, let I = (s, e] ⊂ [1, T ] be any interval
containing exactly two change points ηr+1 and ηr+2, I1 = (e, ηr+1], I2 = (ηr+1, ηr+2], and
I3 = (ηr+2, e]. Let κi = ∥θ∗(Ii)− θ∗(Ii+1)∥2 for i = 1, 2 and κ = min{κ1, κ2}. If

L(θ̂(I), I) ≤
3∑
i=1

L(θ∗(Ii), Ii) + 2γ,

then it holds with probability at least 1− (Tn)−4 that

max{|I1|, |I3|} ≤ Cp−2
lb

|E|
λ2(LG)

[γ +
ndmax

λ2(LG)
log(Tn)].

Proof. Without loss of generality, we assume |I1| ≥ |I3|. There are three possible cases: 1.
|I1| ≤ C0

|E| log(Tn)
λ2(LG) , 2. |I3| ≥ C0

|E| log(Tn)
λ2(LG) , and 3. |I1| ≥ C0

|E| log(Tn)
λ2(LG) ≥ |I3| where C0 is the

constant in Lemma B.16 and Lemma B.19. In case 1 the conclusion holds immediately since we can
set Cγ to be large enough. In case 2, the condition in the lemma implies that

ce−2B
∑
t∈I

[x(t)⊤∆(t)]2 ≤ 2γ +
∑
t∈I

ϵtx(t)
⊤∆(t),

where ϵt := yt − exp(x(t)⊤θ∗(t))
1+exp(x(t)⊤θ∗(t))

and ∆i(t) = θ̂i(I)− θ∗i (t).

For the term involving ϵt, following the same arguments in the proof of Lemma B.11, we can get that
with probability at least 1− (Tn)−4,

∑
t∈I

ϵtx(t)
⊤∆(t) ≤ C

√
ndmax

|E|
log(Tn)

[∑
t∈I
∥∆(t)∥22

] 1
2

.

Let z =
∑
t∈I ∥∆(t)∥22. By Lemma B.17,

∑
t∈I [x(t)

⊤∆(t)]2 ≥ c1λ2(LG)
|E|

∑
t∈I ∥∆(t)∥22 with

probability at least 1− (Tn)−5, and thus we have

cc1λ2(LG)

e2B |E|
z ≤ C

√
ndmax

|E|
log(Tn)

√
z + 2γ,
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which implies that ∑
t∈I
∥∆(t)∥22 ≤ C1p

−2
lb

|E|ndmax

λ22(LG)
log(Tn) + C2

e2B |E|
λ2(LG)

γ.

Denote Ĩ as the shorter one of |I1| and |I2|. The left hand can be lowered bounded by∑
t∈I
∥∆(t)∥22 ≥

∑
t∈I1∪I2

∥∆(t)∥22 ≥
|I1||I2|
|I1|+ |I2|

κ2 ≥ |Ĩ|
2
κ2.

If |I2| < |I1|, then we have

|I2|
2
κ2 ≤ C1p

−2
lb

|E|ndmax

λ22(LG)
log(Tn) + C2p

−1
lb

|E|
λ2(LG)

γ,

which leads to the bound

|I2| ≲
p−2
lb |E|

κ2λ2(LG)
[γ +

ndmax

λ2(LG)
log(Tn)],

and is contradictory to the assumption that ∆ ≥ BT p−4
lb K

|E|ndmax

κ2λ2(LG) log(Tn) in Assumption 3.1

because of the definition γ = Cγp
−2
lb (K + 1) ndmax

λ2(LG) log(Tn). Therefore, we have |I2| ≥ |I1| and
by the same arguments,

|I1| ≲
p−2
lb |E|

κ2λ2(LG)
[γ +

ndmax

λ2(LG)
log(Tn)].

Since we assume |I3| ≤ |I1|, the desired bound holds.

In case 3, we only need to prove that |I1| ≤ C
p−2
lb |E|

κ2λ2(LG) [γ + ndmax

λ2(LG) log(Tn)]. Following the same
arguments for Equation (B.22), we can get that with probability at least 1− (Tn)−5,

L(θ∗(I3), I3)− L(θ̂(I), I3) ≤ Cp−2
lb

ndmax

λ2(LG)
log(Tn) ≤ γ/3.

Therefore, by the condition of the lemma, we have

L(θ̂(I), I1 ∪ I2) ≤
2∑
i=1

L(θ∗(Ii), Ii) +
7

3
γ.

Since I1 ∪ I2 only contains 1 true change point, the conclusion can be shown by the same arguments
of Lemma B.11.

Lemma B.13. Under all assumptions in Theorem 3.2, let I = (s, e] ⊂ [1, T ] be any interval
containing J ≥ 3 change points ηr+1, · · · , r + J . Let I1 = (e, ηr+1], Ij = (ηr+j−1, ηr+j ] for
j = 2, · · · , J , and IJ+1 = (ηr+J , e]. Also let κj = ∥θ∗(Ij) − θ∗(Ij+1)∥2 for j ∈ [J ] and
κ = minj∈[J]{κj}. Then it holds with probability at least 1− (Tn)−4 that

L(θ̂(I), I) >
J+1∑
j=1

L(θ∗(Ij), Ij) + Jγ,

Proof. Without loss of generality, assume that |I1| ≥ |IJ+1|. Similar to Lemma B.12, there are three
cases: 1. |I1| ≤ C0

|E| log(Tn)
λ2(LG) , 2. |IJ+1| ≥ C0

|E| log(Tn)
λ2(LG) , and 3. |I1| ≥ C0

|E| log(Tn)
λ2(LG) ≥ |IJ+1|

where C0 is the constant in Lemma B.16 and Lemma B.19. In case 2, we prove the conclusion by
contradiction. Assume that

L(θ̂(I), I) ≤
J+1∑
j=1

L(θ∗(Ij), Ij) + Jγ

We have

ce−2B
∑
t∈I

[x(t)⊤∆(t)]2 ≤ Jγ +
∑
t∈I

ϵtx(t)
⊤∆(t),
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where ϵt := yt − exp(x(t)⊤θ∗(t))
1+exp(x(t)⊤θ∗(t))

and ∆i(t) = θ̂i(I)− θ∗i (t).

For the term that contains ϵt, we can bound it as

∑
t∈I

ϵtx(t)
⊤∆(t) ≤ C

√
ndmax

|E|
log(Tn)

[∑
t∈I
∥∆(t)∥22

] 1
2

,

with probability at least 1 − (Tn)−4. Combining the bounds on both terms and use Lemma B.17
lead to a similar inequality in Lemma B.12 whose solution gives us∑

t∈I
∥∆(t)∥22 ≤ C1p

−2
lb

|E|ndmax

λ22(LG)
log(Tn) + C2J

e2B |E|
λ2(LG)

γ.

By definition we know that for 1 ≤ j ≤ J , |Ij | ≥ ∆ and thus,

∑
t∈I
∥∆(t)∥22 ≥

J∑
j=1

∑
t∈Ij

∥∆(t)∥22

≥
J−1∑
j=1

1

2
[
∑
t∈Ij

∥∆(t)∥22 +
∑

t∈Ij+1

∥∆(t)∥22]

≥
J−1∑
j=1

1

2
· |Ij ||Ij+1|
|Ij |+ |Ij+1|

κ2

≥ 1

4
(J − 1)∆κ2.

Therefore, we have

∆κ2 ≤ C3p
−2
lb

|E|
λ2(LG)

[γ +
ndmax

Jλ2(LG)
log(Tn)].

Since we assume |I2| ≥ |I3|, the inequality above contradicts to the assumption that ∆κ2 ≥
BT p−4

lb K
|E|ndmax

λ2
2(LG)

log(Tn) in Assumption 3.1.

In case 1, following the same arguments of Equation (B.22), we can get that for j = 1, J + 1, with
probability at least 1− (Tn)−5,

L(θ∗(Ij), Ij)− L(θ̂(I), Ij) ≤ Cp−2
lb

C0|E|
λ2(LG)

log(Tn) ≤ γ/3.

Similar to case 2, we assume that

L(θ̂(I), I) ≤
J+1∑
j=1

L(θ∗(Ij), Ij) + Jγ.

Therefore,
J∑
j=2

L(θ̂(I), Ij) ≤
J∑
j=2

L(θ∗(Ij), Ij) + (J +
2

3
)γ.

When J = 3, following same arguments in Lemma B.12, we lead to a contradiction that ∆ ≤
Cp−2

lb
|E|
κ2λ2

[γ + ndmax

λ2
log(Tn)]. When J > 3, we can get the same contradiction by the same

arguments for case 2 in this lemma. Case 3 can be handled in a similar manner.

B.3.2 Basic concentrations

First we introduce some results on the empirical risk minimizer of the Bradley-Terry model, which is
defined by the constraint MLE

θ̂ = argmin
θ∈ΘB

∑
i∈[m]

ℓi(θ). (B.24)
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Assumption B.14. Assume that (x(t), yt)t∈[m] are i.i.d. observations generated from model (2.5)
with θ∗(t) = θ∗ ∈ ΘB being a constant vector and (2.1) and the sample size m satisfies m ≥
C0

|E| logn
λ2(LG) .

Denote G(G,m) as the (weighted) random graph constructed by randomly sampling m edges with
replacement from a fixed symmetric, undirected, and binary graph G([n], E) of n nodes.
Lemma B.15 (Laplacian, general graph). Let A be a (weighted) adjacency matrix sampled from the
random graph model G(G,m) and LA = D −A be the Laplacian matrix. Denote the eigenvalues
of a Laplacian matrix L as 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L) for L = LA, LG . Suppose m ≥
C0

|E| logn
λ2(LG) for some sufficiently large constant C0 > 0, then with probability at least 1−O(n−10)

we have
mλ2(LG)

2|E|
≤ λ2(LA) ≤ λn(LA) ≤

3mλn(LG)

|E|
. (B.25)

Proof. Consider a partial isometry matrix R ∈ R(n−1)×n that satisfies RR⊤ = In−1 and R1n = 0.
By basic algebra we know that rank(R) = n − 1 and {R⊤v : v ∈ Rn−1} = {a1n : a ∈ R}⊥.
Consider Y = RLGR

⊤, then the eigenvalues {λi(LG)}ni=2 are the same as eigenvalues of Y . Since
E[Y ] = m

|E|RLGR
⊤, by matrix Chernoff inequality (e.g., Theorem 5.1.1 in Tropp (2015)), we have

P(λ2(LA) ≤
mλ2(LG)

2|E|
) = P(λmin(Y ) ≤ mλ2(LG)

2|E|
) ≤ n exp(−mλ2(LG)

8|E|
) ≤ n−10 (B.26)

for m ≥ C0
|E| logn
λ2(LG) where C0 is a sufficiently large constant. Similarly, we can show that λn(LA) <

3mλn(LG)
|E| with probability at least 1− n−10.

Lemma B.16 (Estimation of BTL, general graph). Under Assumption B.14, for the MLE θ̂ defined in
Equation (B.24), with probability at least 1−O(n−10) we have

∥θ̂ − θ∗∥2 ≤ Cp−2
lb

√
n|E| log n
mλ2(LG)

, ∥θ̂ − θ∗∥1 ≤ Cp−2
lb n

√
|E| log n
mλ2(LG)

. (B.27)

Proof. The first inequality is a corollary of Theorem 2 in Shah et al. (2016) and Lemma B.17.
Specifically, Shah et al. (2016) ensures that with probability at least 1−O(n−12),

∥θ̂ − θ∗∥22 ≤ Cp−4
lb

n log(n)

λ2(LA)
.

By Equation (B.26), λ2(LA) ≥ mλ2(LG)
2|E| with probability at least 1 − O(n−12), so a union bound

leads to the conclusion. The second inequality is implied by ∥x∥1 ≤
√
n ∥x∥2 for any x ∈ Rn.

As a special case, the random graph model G(n,m) generates random graphs with the vertex set
[n] and m edges randomly sampled from the full edge set Efull = {(i, j) : 1 ≤ i < j ≤ n}.
Lemma B.17 gives high probability bounds for the spectra of random graphs following G(n,m).
Lemma B.17 (Laplacian, complete graph). Let A be a (weighted) adjacency matrix sampled from the
random graph model G(n,m) and LA = D −A be the Laplacian matrix. Denote the eigenvalues
of LA as 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. Suppose m ≥ C0n log n for some sufficiently large constant
C0 > 0, then with probability at least 1−O(n−10) we have

m

n
≤ λ2(LA) ≤ λn(LA) ≤

4m

n
. (B.28)

Proof. Consider a partial isometry matrix R ∈ R(n−1)×n that satisfies RR⊤ = In−1 and R1n = 0.
By basic algebra we know that rank(R) = n − 1 and {R⊤v : v ∈ Rn−1} = {a1n : a ∈ R}⊥.
Consider Y = RLAR

⊤, then the eigenvalues {λi}ni=2 are the same as eigenvalues of Y . Since
E[Y ] = 2m

n−1In−1, by matrix Chernoff inequality (e.g., Theorem 5.1.1 in Tropp (2015)), we have

P(λ2(LA) ≤
m

n− 1
) = P(λmin(Y ) ≤ m

n− 1
) ≤ (n− 1)e−

m
8(n−1) ≤ n−10 (B.29)
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for m ≥ C0n log n where C0 is a sufficiently large constant. Similarly, we can show that λn(LA) ≤
4m/n with probability at least 1− n−10.

Lemma B.18 (Estimation of BTL, complete graph). Under Assumption B.14, for the MLE θ̂ defined
in Equation (B.24), with probability at least 1−O(n−10) we have

∥θ̂ − θ∗∥2 ≤ Cp−2
lb n

√
log n

m
, ∥θ̂ − θ∗∥1 ≤ Cp−2

lb n
3/2

√
log n

m
. (B.30)

Proof. The first inequality is a corollary of Theorem 2 in Shah et al. (2016) and Lemma B.17.
Specifically, Shah et al. (2016) ensures that with probability at least 1−O(n−12),

∥θ̂ − θ∗∥22 ≤ Cp−4
lb

n log(n)

λ2(LA)
.

By Equation (B.26), λ2(LA) ≥ m/n with probability at least 1−O(n−12), so a union bound leads
to the conclusion. The second inequality is implied by ∥x∥1 ≤

√
n ∥x∥2 for any x ∈ Rn.

In what follows, we prove some concentration properties related to ϵt := yt − exp(x(t)⊤θ∗(t))
1+exp(x(t)⊤θ∗(t))

.

Lemma B.19. Under all assumptions in Theorem 3.2, let I = [1, T ] be an integer interval such
that |I| ≥ c0(R+ 1) |E|

λ2(LG) log(Tn) and R be a fixed integer. Denote SI,R = {v ∈ R|I| : ∥v∥2 =

1, ∥Dv∥0 = R, min{k : vj ̸= vj+k} ≥ c0 |E|
λ2(LG) log(Tn)} and ϵt := yt− exp(x(t)⊤θ∗(t))

1+exp(x(t)⊤θ∗(t))
. Then

for some sufficiently large constant C, it holds with probability at least 1− (Tn)−2R−10 that

max
i∈[p]

sup
v∈SI,R

∑
t∈I

vtϵtxi(t) ≤ C

√
dmaxR log(Tn)

|E|
.

Proof. Since ∥Dv∥0 = R, {vt} is piece-wise constant over I = [1, T ] and has R change points
that have at most

(
T
R

)
possible choices of locations. Let {ηk}k∈[R] be the change points of {vt} and

S({ηk}k∈[R]) the linear subspace ofR|I| that contains all piecewise-linear sequences over I whose
change points are {ηk}k∈[R]. Let Nδ({ηk}k∈[R]) be a δ-net of S({ηk}k∈[R]) ∩ S |I| where S |I| is
the unit sphere inR|I|. By Lemma 4.1 in Pollard (1990), since S({ηk}k∈[R]) is an affine space with
dimension R+ 1, we can pick a δ-net Nδ({ηk}k∈[R]) such that |Nδ({ηk}k∈[R])| ≤ ( 3δ )

R+1.

Taking δ = 1
|I| , then for any fixed i ∈ [n] and fixed set of change points {ηk}k∈[R], we have

P

[
sup

v∈SI,R

∑
t∈I

vtϵtxi(t) ≥ C
√
dmaxR log(Tn)/|E|

]

≤P

[
sup

u∈N1/|I|({ηk}k∈[R])

|
∑
t∈I

utϵtxi(t)|+ sup
v∈SI,R

inf
u∈N1/|I|

|
∑
t∈I

(vt − ut)ϵtxi(t)| ≥ C
√
dmaxR log(Tn)/|E|

]

≤P

[
sup

u∈N1/|I|({ηk}k∈[R])

|
∑
t∈I

utϵtxi(t)|+ sup
v

inf
u
∥v − u∥1 max

t∈I
|ϵtxi(t)| ≥ C

√
dmaxR log(Tn)/|E|

]

≤P

[
sup

u∈N1/|I|({ηk}k∈[R])

|
∑
t∈I

utϵtxi(t)|+
√
|I|
|I|

·max
t∈I
|ϵtxi(t)| ≥ C

√
dmaxR log(Tn)/|E|

]

≤P

[
sup

u∈N1/|I|({ηk}k∈[R])

|
∑
t∈I

utϵtxi(t)| ≥ C
√
dmaxR log(Tn)/|E|

]

× P
[
max
t∈I
|ϵtxi(t)| < C

√
dmaxR|I| log(Tn)/|E|

]
+ P

[
max
t∈I
|ϵtxi(t)| ≥ C

√
dmaxR|I| log(Tn)/|E|

]
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Since ∥x(t)∥∞ ≤ 1 and |ϵt| ≤ 2 under Model (2.5), we can make C sufficiently large so that
P
[
maxt∈I |ϵtxi(t)| ≥ C

√
R|I| log(Tn)/n

]
= 0. Therefore,

P

[
sup

v∈SI,R

∑
t∈I

vtϵtxi(t) ≥ C
√
dmaxR log(Tn)/|E|

]

≤(3|I|)R+1 sup
u∈N1/|I|({ηk}k∈[R])

P

[
|
∑
t∈I

utϵtxi(t)| ≥ C
√
dmaxR log(Tn)/|E|

]

≤(3|I|)R+1 ×max{2 exp
[
−CR log(Tn)∑

t∈I u
2
t

]
, (Tn)−3R−12}

≤C2 exp(−C2R log(Tn) +R log(3|I|)),

where in the second inequality we use Lemma B.20. Therefore, for the given interval I ⊂ [1, T ], it
holds that

P(BR(I)) ≤
(
T

R

)
C2 exp(−C3R log(Tn)) ≤ (Tn)−2R−10,

where the event BR(I)) := {maxi∈[n] supv∈SI,R

∑
t∈I vtϵtxi(t) ≥ C

√
dmaxR log(Tn)/|E| } for

some sufficiently large universal constant C.

Lemma B.20. Let ϵt = yt − exp(x(t)⊤θ∗(t))
1+exp(x(t)⊤θ∗(t))

. Under all assumptions in Theorem 3.2, for any fixed

integer interval I ⊂ [1, T ] such that |I| ≥ c0(R + 1) |E|
λ2(LG) log(Tn) for some sufficiently large

constant c0 > 0 and any fixed v ∈ DI,R where DI,R = {v ∈ R|I| : ∥Dv∥0 = R, min{k : vj ̸=
vj+k} ≥ c0 |E|

λ2(LG) log(Tn)} with a fixed integer R, it holds for any κ > 0 that

max
i∈[n]

P

[
|
∑
t∈I

vtϵtxi(t)| ≥ κ

]
≤ max{2 exp(− C|E|κ2

dmax

∑
t∈I v

2
t

), (Tn)−3R−12}.

Proof. Following the same arguments in the proof of Lemma B.21, we have index set of nonzero
terms Ii for each i ∈ [n]. Furthermore, let {Jk}k∈[R+1] be the R+ 1 subintervals such that for each
k, vj takes identical values for all j ∈ Jk. Since R is fixed, by similar arguments we can prove that
uniformly for k ∈ [R + 1] and i ∈ [n], we have |Ii ∩ Jk| ≤ 3dmax

|E| |Jk| with probability at least
1− (Tn)−4R−13. Now we condition on this event.

By definition, E[ϵt|x(t)] = 0, so for each i ∈ [n], if we let Si(t) =
∑
j∈[t] vli,tϵ(li,t)xi(li,t) for

t ∈ [|Ii|] and Si(0) = 0, then {Si(t)} is a martingale with respect to the filtration {Ft : Ft =
σ(x(li,1), · · · ,x(li,t))}. Furthermore, for any t ∈ [1, T ],

|Si(t)− Si(t− 1)| ≤ |vli,txi(li,t)| ≤ |vli,t |.

Thus by Lemma B.23 we have

P

[
|
∑
t∈I

vtϵtxi(t)| ≥ κ

]
≤ 2 exp(− Cκ2∑

t∈Ii
v2t

).

Now by the fact that |Ii∩Jk| ≤ 3dmax

|E| |Jk| for each i, k, we have
∑
t∈Ii

v2t ≤ 3dmax

|E|
∑
t∈I v

2
t . Then

the conclusion follows from a union bound.

Lemma B.21 (General graph). Let ϵt = yt − exp(x(t)⊤θ∗(t))
1+exp(x(t)⊤θ∗(t))

. Under all assumptions above, for

any integer interval I ⊂ [1, T ] such that |I| ≥ C0
|E|

λ2(LG) log(Tn) for some sufficiently large constant
C0 > 0, it holds with probability at least 1− (Tn)−10

max
i∈[n]
|
∑
t∈I

ϵtxi(t)| ≤

√
dmax

|E|
|I| log(Tn) .
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Proof. By the assumptions above, i.e., in the comparison graph at each time point a single edge is
uniformly randomly picked from the edge set E of G, we know that P[|xi(t)| = 1] = di

|E| ≤
dmax

|E| .
Therefore, it follows from a Chernoff inequality (Lemma B.22) that for each i ∈ [n] with probability
at least 1− (Tn)−12, ∑

t∈I
|xi(t)| −

di
|E|
|I| ≤ c

√
log(Tn) ·

√
di
|E|
|I| .

Since λ2(LG) ≤ 2dmax and |I| ≥ C0
|E|

λ2(LG) log(Tn), we have |I| ≥ c0
|E|
dmax

log(Tn) ≥
c0

|E|di
d2max

log(Tn) and thus

∑
t∈I
|xi(t)| −

di
|E|
|I| ≤ c

√
log(Tn) ·

√
di
|E|
|I| ≤ C dmax

|E|
|I|,

which implies that with probaility at least 1 − (Tn)−11, it holds uniformly for all i ∈ [n] that in
summation

∑
t∈I ϵtxi(t) there are at most C|I|dmax

|E| nonzero terms.

Now we condition on this event and denote for each i ∈ [n] the index set of nonzero terms as Ii.
Thus we have

∑
t∈I ϵtxi(t) =

∑
t∈Ii

ϵtxi(t). For each Ii, we write its elements as li,t for t ∈ [|Ii|]
such that li,1 < li,1 < · · · < li,|Ii|.

By definition, E[ϵt|x(t)] = 0, so for each i ∈ [n], if we let Si(t) =
∑
j∈[t] ϵ(li,t)xi(li,t) for

t ∈ [|Ii|] and Si(0) = 0, then {Si(t)} is a martingale with respect to the filtration {Ft : Ft =
σ(x(li,1), · · · ,x(li,t))}. Furthermore, for any t ∈ [1, T ],

|Si(t)− Si(t− 1)| ≤ |xi(li,t)| ≤ 1.

Thus by Azuma’s inequality (Lemma B.23) and a union bound we can get the conclusion.

Lemma B.22. Suppose Z1, · · · , Zs are independent random variables with zero expectation and
variance EZ2

i = σ2
i satisfying |Zi| ≤ 1 almost surely, then

P{|
∑
i∈[s]

Zi| ≥ uσ} ≤ Cmax{e−cu
2

, e−cuσ},

where σ2 =
∑
i∈[s] σ

2
i , and C, c > 0 are universal constants. In particular, for u ≤ σ, we have

P{|
∑
i∈[s]

Zi| ≥ uσ} ≤ Ce−cu
2

.

Proof. See Theorem 2.1.3 in Tao (2012).

A sequence of random variables {Dk}k∈Z+ is called a martingale difference if there exists a mar-
tingale (Zk,Fk)k∈Z+ such that Dk = Zk − Zk−1. The following result is well-known in high-
dimensional statistics (Wainwright, 2019). We include the proof for completeness and the convenience
of readers.
Lemma B.23 (Azuma’s Inequality or Azuma-Hoeffding Inequality). Suppose {Dk}k∈Z+

is a mar-
tingale difference. If Dk ∈ (ak, bk) almost surely for some ak < bk, then

P

(∣∣∣∣∣
n∑
k=1

Dk

∣∣∣∣∣ ≥ t
)
≤ 2 exp

{
− 2t2∑

k(bk − ak)2

}
. (B.31)

Proof. Dk ∈ (ak, bk) almost surely implies that for almost all ω ∈ Ω, the conditional variable
(Dk|Fk−1)(ω) ∈ (ak, bk) almost surely, where (Dk|Fk−1)(ω) is defined using regular conditional
distributions. By the Hoeffding’s bound, (Dk|Fk−1)(ω) is sub-Gaussian with parameter σ2 =
(bk − ak)2/4, for almost all ω. Therefore by the definition of sub-Gaussian random variables, we
have that for almost all ω,

E [exp{λ(Dk|Fk−1)(ω)}] ≤ exp

{
λ2

(bk − ak)2

8

}
. (B.32)
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By the property of regular conditional distributions,

E
[
eλDk |Fk−1

]
(ω) = E [exp{λ(Dk|Fk−1)(ω)}] , almost surely. (B.33)

Therefore

E
[
eλDk |Fk−1

]
≤ exp

{
λ2

(bk − ak)2

8

}
, almost surely. (B.34)

Now let ν2k = (bk − ak)2/4 and αk = 0 in Theorem B.24 and we can prove the inequality.

A random variable X with E = µ is called sub-exponential with parameters ν2 and α, or SE(ν2, α)
for brevity, if

E[eλ(X−µ)] ≤ eλ
2ν2/2, ∀|λ| ≤ 1

α
.

Lemma B.24. Let {(Dk,Fk), k ∈ Z+} be a martingale difference s.t.

E
[
eλDk |Fk−1

]
≤ eλ

2ν2
k/2, ∀|λ| ≤ 1

αk
, (B.35)

almost surely. Then

1)
∑n
k=1Dk ∈ SE(

∑
k ν

2
k ,maxk αk);

2)

P(|
∑
k

Dk| ≥ t) ≤

2 exp
{
− t2

2
∑

k ν
2
k

}
, t ≤

∑
k ν

2
k

maxk αk
,

2 exp
{
− t

2maxk αk

}
, t >

∑
k ν

2
k

maxk αk
.

(B.36)

Proof. 1). By the iterated law of expectation

E
[
eλ

∑n
k=1Dk

]
= E

[
E
[
eλ

∑n
k=1Dk |Fn−1

]]
= E

[
exp{λ

n−1∑
k=1

Dk}E
[
eλDn |Fn−1

]]

≤ E

[
exp{λ

n−1∑
k=1

Dk}eλ
2ν2

n/2

]

= eλ
2ν2

n/2E
[
eλ

∑n−1
k=1 Dk

]
, for|λ| < 1

αn
,

where we use the fact that exp{λ
∑n−1
k=1 Dk} ∈ Fn−1 and (B.35). Repeating the same procedure for

k = n− 1, · · · , 2, we can get

E
[
eλ

∑n
k=1Dk

]
≤ eλ

2
∑n

k=1 ν2
k

2 , for|λ| < 1

maxk αk
. (B.37)

2) Use the property of sub-exponential random variables and 1).
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