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Abstract

Vision Transformers (ViTs) have achieved comparable or superior performance
than Convolutional Neural Networks (CNNs) in computer vision. This empirical
breakthrough is even more remarkable since, in contrast to CNNs, ViTs do not
embed any visual inductive bias of spatial locality. Yet, recent works have shown
that while minimizing their training loss, ViTs specifically learn spatially localized
patterns. This raises a central question: how do ViTs learn these patterns by
solely minimizing their training loss using gradient-based methods from random
initialization? In this paper, we provide some theoretical justification of this
phenomenon. We propose a spatially structured dataset and a simplified ViT model.
In this model, the attention matrix solely depends on the positional encodings.
We call this mechanism the positional attention mechanism. On the theoretical
side, we consider a binary classification task and show that while the learning
problem admits multiple solutions that generalize, our model implicitly learns the
spatial structure of the dataset while generalizing: we call this phenomenon patch
association. We prove that patch association helps to sample-efficiently transfer to
downstream datasets that share the same structure as the pre-training one but differ
in the features. Lastly, we empirically verify that a ViT with positional attention
performs similarly to the original one on CIFAR-10/100, SVHN and ImageNet.

1 Introduction

Transformers are deep learning models built on self-attention [65], and in the past several years
they have increasingly formed the backbone for state-of-the-art models in domains ranging from
Natural Language Processing (NLP) [65, 23] to computer vision [24], reinforcement learning [13, 38],
program synthesis [5] and symbolic tasks [44]. Beyond their remarkable performance, several works
reported the ability of transformers to simultaneously minimize their training loss and learn inductive
biases tailored to specific datasets e.g. in computer vision [55], in NLP [10, 67] or in mathematical
reasoning [73]. In this paper, we focus on computer vision where convolutions are considered to be
an adequate and biologically plausible inductive bias since they capture local spatial information [27]
by imposing a sparse local connectivity pattern. This seems intuitively reasonable: nearby pixels
encode the presence of small scale features, whose patterns in turn determine more abstract features
at longer and longer length scales. Several seminal works [17, 24, 55] empirically show that although
randomly initialized, the positional encodings in Vision transformers (ViTs) [24] actually learn this
local connectivity: closer patches have more similar positional encodings, as shown in Figure 1a.
A priori, learning such spatial structure is surprising. Indeed, in contrast to convolutional neural
networks (CNNs), ViTs are not built with the inductive bias of local connectivity and weight sharing.
They start by replacing an image by a collection of D patches pX1, . . . ,XDq P RdˆD, each of
dimension d. While each Xi represents (an embedding of) a spatially localized portion of the original
image, the relative positions of the patches Xi in the image are disregarded. Instead, relative spatial
information is supplied through image-independent positional encodings P “ pp1, . . . ,pDq P RdˆD.
Unlike CNNs, each layer of a ViT then learns, via trainable self-attention, a non-local set of filters
that non-linearly depend on both the values of all patches Xj and their positional encodings pj .
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Figure 1: (a) Visualization of the positional encodings similarities PJP “ pxpi,pjyqpi,jqPrDs2 at initialization
(1) and after training on Imagenet (2) using a "ViT-small-patch32-224" [24]. We normalise the values PJP
between ´1 and 1 and apply a threshold of 0.55. In contrast with the initial arrays that are random, the final
ones show local connectivity patterns: nearby patches have similar positional encodings. (b) Partition of the
patches into sets Sℓ as in Definition 2.1. Squares in the same color belong to the same set Sℓ. We refer to (1) as a
"spatially localized set" since all the elements in a Sℓ are spatially contiguous. This is the type of sets appearing
in Figure 1a at the end of training. Definition 2.1 also covers sets with non-contiguous elements as (2).

Contributions. The empirical observation of Figure 1a sets a central question: from a theoretical
perspective, how do ViTs manage to learn these local connectivity patterns by simply minimizing their
training loss using gradient descent from random initialization? While it is known that attention can
express local operations as convolution [17], it remains unclear how ViTs learn it. In this paper, we
present a simple spatially-structured classification dataset for which it is sufficient (but not necessary)
to learn the structure in order to generalize. We also present a simplified ViT model which we prove
implicitly learns sparse spatial connectivity patterns when it minimizes its training loss via gradient
descent (GD). We name this implicit bias patch association (defined in Definition 2.2). We prove that
our ViT model leverages this bias to generalize. More precisely, we make the following contributions:

– In Section 2, we formally define the concept of performing patch association, which refer to the
ability of learning spatial connectivity patterns on a dataset.

– In Section 3, we introduce a structured classification dataset and a simplified ViT model. This
model is simplified in the sense that its attention matrix only depends on the positional encodings.
We then present the learning problems we are interested in: empirical risk (realistic setting) and
population risk (idealized setting) minimization for binary classification.

– In Section 4, we prove that a one-layer single-head ViT model trained with gradient descent on our
synthetic dataset performs patch association and generalizes, in the idealized (Theorem 4.1) and
realistic (Theorem 4.2) settings. We present a detailed proof, based on invariance and symmetries
of coefficients in the attention matrix throughout the learning process.

– In Section 5, we show (Theorem 5.1) that after pre-training in our synthetic dataset, our model can
be sample-efficiently fine-tuned to transfer to a downstream dataset that shares the same structure
as the source dataset (and may have different features).

– On the experimental side, we validate in Section 6 that ViTs learn spatial structure in images from
the CIFAR-100 dataset, even when the pixels of the images are permuted. This result validates that,
in contrast to CNNs, ViTs learn a more general form of spatial structure that is not limited to local
patterns (Figure 5). We finally show that our ViT model –where the attention matrix only depends
on the positional encodings– is competitive with the vanilla ViT on the ImageNet, CIFAR-10/100
and SVHNs datasets (Figure 6 and Figure 7).

Notation. We use lower case letters for scalars, lower case bold for vectors and upper case bold
for matrices. Given an integer D, we define rDs “ t1, . . . , Du. Any statement made "with high
probability" holds with probability at least 1 ´ 1{polypdq. Given a vector a P Rd and k ď d, we
define Topktajudj“1 “ tai1 , . . . , aiku where ai1 , . . . , aik are the k-largest elements. For a function
F that implicitly depend on parameters A and v, we often write FA,v to highlight its parameters.
We use the asymptotic complexity notations when defining the different constants.

Related work

CNNs and ViTs. Many computer vision architectures can be considered as a form of hybridization
between Transformers and CNNs. For example, DeTR [11] use a CNN to generate features that
are fed to a Transformer. [25] show that self-attention can be initialized or regularized to behave
like a convolution and [19, 30] add convolution operations to Transformers. Conversely, [8, 56, 7]
introduce self-attention or attention-like operations to supplement or replace convolution in ResNet-
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like models. In contrast, our paper does not consider any form of hybridization with CNN, but rather
a simplification of the original ViT to explain how ViTs learn spatially structured patterns using GD.

Empirical understanding of ViTs. A long line of work consists in analyzing the properties of
ViTs, such as robustness [9, 54, 51] or the effect of self-supervision [12, 14]. Closer to our work,
some papers investigate why ViTs perform so well. [55] compare the representations of ViTs and
CNNs and [50, 64] argue that the patch embeddings could explain the performance of ViTs. We
empirically show in Section 6 that applying the attention matrices to the positional encodings – which
contains the structure of the dataset – approximately recovers the baselines. Hence, our work rather
suggests that the structural learning performed by the attention matrices may explain the success of
ViTs.

Theory for attention models. Early theoretical works have focused on the expressivity of attention.
[66, 26] addressed this question in the context of self-attention blocks and [21, 68, 34] for Transform-
ers. On the optimization side, [76] investigate the role of adaptive methods in attention models and
[59] analyze the dynamics of a single-head attention head to approximate the learning of a Seq2Seq
architecture. In our work, we also consider a single-head ViT trained with gradient descent and
exhibit a setting where it provably learns convolution-like patterns and generalizes.

Algorithmic regularization. The question we address concerns algorithmic regularization which
characterizes the generalization of an optimization algorithm when multiple global solutions exist
in over-parametrized models. This regularization arises in deep learning mainly due to the non-
convexity of the objective function. Indeed, this latter potentially creates multiple global minima
scattered in the space that vastly differ in terms of generalization. Algorithmic regularization appears
in binary classification [60, 49, 16], matrix factorization [29, 3], convolutional neural networks
[29, 37], generative adversarial networks [2], contrastive learning [70] and mixture of experts [15].
Algorithmic regularization is induced by and depends on many factors such as learning rate and batch
size [28, 33, 41, 58, 47], initialization [1], momentum [39], adaptive step-size [42, 53, 20, 71, 78, 40],
batch normalization [4, 32, 36] and dropout [61, 69]. However, all these works consider the case of
feed-forward neural networks which does not apply to ViTs.

2 Defining patch association
The goal of this section is to formalize the way ViTs learn sparse spatial connectivity patterns. We
thus introduce the concept of performing patch association for a spatially structured dataset.
Definition 2.1 (Data distribution with spatial structure). Let D be a distribution over RdˆD ˆt´1, 1u

where each patch X “ pX1, . . . ,XDq P RdˆD has label y P t´1, 1u. We say that D is spatially
structured if

– there exists a partition of rDs into L disjoint subsets i.e. rDs “
ŤL

ℓ“1 Sℓ with Sℓ Ĺ D and
|Sℓ| “ C.

– there exists a labeling function f˚ satisfying Pryf˚pXq ą 0s “ 1 ´ d´ωp1q and,

f˚pXq :“
ÿ

ℓPrLs

ϕp
`

Xi

˘

iPSℓ
q, where ϕ : RdˆC Ñ R is an arbitrary function. (1)
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Figure 2: Left: Test error of the ViT on the
convolution structured dataset. Upper Right:
Grid displaying the input patches. Yellow
squares represent spatially localized sets Sℓ.
Those sets are taken into account when com-
puting the convolutional function f˚. Lower Right:
Learnt PJP looks random compared to upper one.

Examples. A particular case for the sets Sℓ’s is
the one of spatially localized sets as in Figure 1b-
(1). In this case, we have D “ 16, C “ 4
and S1 “ t1, 2, 5, 6u, S2 “ t3, 4, 7, 8u, S3 “

t9, 10, 13, 14u, S4 “ t11, 12, 15, 16u. We empha-
size that Definition 2.1 is not limited to spatially lo-
calized sets and also covers non-contiguous sets as
Figure 1b-(2).

Labelling function Definition 2.1 states that there
exists a labelling function that preserves the under-
lying structure by applying the same function ϕ to
each Sℓ as in (1). For instance, when the sets Sℓ’s
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are spatially localized, f˚ can be a one-hidden layer convolutional network. In this paper, we are
interested in patch association which refers to the ability of an algorithm to identify the sets Sℓ’s, and
is formally defined as follow.
Definition 2.2 (Patch association for ViTs). Let D be as in Definition 2.1. Let M : RdˆD Ñ

t´1, 1u be a transformer and P pMq its positional encodings matrix. We say that M performs patch
association on D if for all ℓ P rLs and i P Sℓ, we have TopC txp

pMq

i ,p
pMq

j yuDj“1 “ Sℓ.

Definition 2.2 states that patch association is learned when for a given i P Sℓ, its positional encoding
mainly attends those of j such that i, j P Sℓ. In this way, the transformer groups the Xi according
to Sℓ just like the true labeling function. Definition 2.2 formally describes the empirical findings in
Figure 1a-(2), where nearby patches have similar positional encodings. A natural question is then:
would ViTs really learn those Sℓ after training to match the labeling function f˚? Without further
assumptions on the data distribution, we next show that the answer is no.

ViTs do not always learn patch association under Assumption 1. We give a negative answer
through the following synthetic experiment. Consider the case where all the patches Xj are i.i.d.
standard Gaussian and f˚ is a one-hidden layer CNN with cubic activation. The label y of any X is
then given by y “ signpf˚pXqq. As shown in Figure 2, one-layer ViT reaches small test error on the
binary classification task. However, PJP does not match the convolution pattern encoded in f˚.
This is not surprising, since the data distribution D is Gaussian, and thus lacks spatial structure. Thus,
in order to prove that ViTs learn patch association, we need additional assumptions on D, which we
discuss in the next section.

3 Setting to learn patch association

In this section, we introduce our theoretical setting to analyze how ViTs learn patch association. We
first define our binary classification dataset and finally present the ViT model we use to classify it.
Assumption 1 (Data distribution with specific spatial structure). Let D be a distribution as in
Definition 2.1 and w˚ P Rd be an underlying feature. We suppose that each data-point X is defined
as follow

– Uniformly sample an index ℓpXq from rLs and for j P SℓpXq, Xj “ yw˚ ` ξj , where yw˚ is the

informative feature and ξj
i.i.d.
„ N p0, σ2pID ´ w˚w˚ Jqq (signal set).

– For ℓ P rLsztℓpXqu and j P Sℓ, Xj “ δjw
˚ ` ξj , where δj “ 1 with probability q{2, ´1 with

same probability and 0 otherwise, and ξj
i.i.d.
„ N p0, σ2pID ´ w˚w˚ Jqq (random sets).
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Figure 3: Visualization of a data-point
X in D when the Sℓ’s are spatially lo-
calized. Each square depicts a patch
Xj and squares of the same color be-
long to the same set Sℓ. "0" indicates
that the patch does not have a feature,
"1" stands for feature 1¨w˚ and "-1" for
feature ´1 ¨ w˚. The large red square
depicts the signal set ℓpXq. Although
there are more "-1"’s than "+1"’s, the
label of X is `1 since there are only
"+1"’s inside the signal set.

To keep the analysis simple, the noisy patches
are sampled from the orthogonal complement of
w˚. Note that D admits the labeling function
f˚pXq “

ř

ℓPrLs Threshold0.9Cp
ř

iPSℓ
xw˚,Xiyq, where

ThresholdCpzq “ z if |z| ą C and 0 otherwise.

We sketch a data-point of D in Figure 3. Our dataset can
be viewed as an extreme simplification of real-world image
datasets where there is a set of adjacent patches that contain a
useful feature (e.g. the nose of a dog) and many patches that
have uninformative or spurious features e.g. the background of
the image. We make the following assumption on the param-
eters of the data distribution.
Assumption 2. We suppose that d “ polypDq, C “

polylogpdq, q “ polypCq{D, }w˚}2 “ 1 and σ2 “ 1{d. This
implies C ! D and q ! 1.
Assumption 2 may be justified by considering a "ViT-base-
patch16-224" model [24] on ImageNet. In this case, d “ 384,
D “ 196. σ is set to have }ξj}2 « }w˚}2. q is chosen so
that there are more spurious features than informative ones
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(low signal-to-noise regime) which makes the data non-linearly
separable. Our dataset is non-trivial to learn since generalized linear networks fail to generalize, as
shown in the next theorem (see Appendix J for a proof).

Theorem 3.1. Let D be as in Assumption 1. Let gpXq “ ϕ
´

řD
j“1xwj ,Xjy

¯

be a generalized

linear model. Then, g does not fit the labeling function i.e. Prf˚pXqgpXq ď 0s ě 1{8.

Intuitively, g fails to generalize because it does not have any knowledge on the underlying partition
and the number of random sets is much higher than those with signal. Thus, a model must have a
minimal knowledge about the Sℓ’s in order to generalize. In addition, the following Theorem 3.2
states the existence of a transformer that generalizes without learning spatial structure (see Appendix
J for a proof), thus showing that the learning process has a priori no straightforward reason to lead to
patch association.
Theorem 3.2. Let D be defined as in Assumption 1. There exists a (one-layer) transformer M so that
Prf˚pXqMpXq ď 0s “ d´ωp1q but for all ℓ P rLs, i P Sℓ, TopC txp

pMq

i ,p
pMq

j yuDj“1 X Sℓ “ H.

Simplified ViT model. We now define our simplified ViT model for which we show in Section 4
that it implicitly learns patch association via minimizing its training objective. We first remind the
self-attention mechanism that is ubiquitously used in transformers.
Definition 3.1 (Self-attention [6, 65]). The attention mechanism [6, 65] in the single-head case
is defined as follow. Let X P RdˆD a data point and P P RdˆD its positional encoding. The
self-attention mechanism computes

1. the sum of patches and positional encodings i.e. XXX “ X ` P .

2. the attention matrix A “ QKJ where Q “ XXX J
WQ, K “ XXX J

WK , WQ,WK P Rdˆd.

3. the score matrix S P RDˆD with coefficients Si,j “ exppAi,j{
?
dq{

řD
r“1 exppAi,r{

?
dq.

4. the matrix V “ XXX J
WV , where WV P Rdˆd.

It finally outputs SAppX;P qq “ SV P RdˆD.

In this paper, our ViT model relies on a different attention mechanism –the "positional attention"–
that we define as follows.
Definition 3.2 (Positional attention). Let X P RdˆD and P P RdˆD the positional encoding. The
positional attention mechanism takes as input the pair pX;P q and computes:

1. the attention matrix A “ QKJ where Q “ PJWQ, K “ PJWK and WQ,WK P Rdˆd.

2. the score matrix S P RDˆD with coefficients Si,j “ exppAi,j{
?
dq{

řD
r“1 exppAi,r{

?
dq.

3. the matrix V “ XJWV , where WV P Rdˆd.

It outputs PAppX;P qq “ SV .

Positional attention isolates positional encoding P from data X: A encodes the dynamics of P and
tracks whether patch association is learned. V encodes the data-dependent part and monitors whether
the feature is learned. Indeed, given its highly non-linear nature with respect to the input, directly
analyzing self-attention is difficult. Yet, positional attention is similar to self-attention. As this latter,
positional attention is also permutation-invariant and processes all tokens simultaneously. Besides,
positional attention also computes a score matrix between the different tokens. This similarity matrix
is also normalized in a sparse manner with the Softmax operator. The only aspect that positional
attention misses from self-attention is the fact that S does not depend on the input. Nevertheless, we
empirically show that our positional attention model competes with self-attention in Section 6. Lastly,
we make the following simplification in the parameters to ease our analysis.
Simplification 3.1. In the positional attention mechanism, we set d “ D, WK “ ID and WQ “ ID
which implies A “ PJP . We set WV “ rv, . . . ,vs P RdˆD where v P Rd. Finally, we set A and
v as trainable parameters. Besides, without loss of generality, we train all Ai,j for i ‰ j and leave
the diagonals of A fixed.

In Simplification 3.1, we set WK and WQ to the identity so that A “ PJP . This Gram matrix
encodes the spatial patterns learned by the ViT as shown in Figure 1a. Besides, since fitting the
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labeling function requires to learn one feature w˚, it is sufficient to parameterize WV with a vector
v. Also, although A “ PJP and P is trainable, we choose for simplicity to only optimize over A.
Besides, we leave the Ai,i’s fixed because Softmax is invariant under the uniform shift of the input.
Under Simplification 3.1, our simplified ViT model is then a two attention layer with a single head:

F pXq “

D
ÿ

i“1

σ

ˆ

D
D
ÿ

j“1

Si,jxv,Xjy

˙

with Si,j “ exppAi,j{
?
dq{

D
ÿ

r“1

exppAi,r{
?
dq, (T)

where σ is an activation function. Since we aim to the simplest ViT model, we opt for a polynomial
activation i.e. σpxq “ xp ` νx where p ě 3 is an odd integer and ν “ 1{polypdq. Note that this
choice of polynomial activation is common in the deep learning theory literature – see e.g. [45, 1, 72]
among others. The degree p is odd to make the ViT model compatible with the labeling function and
strictly larger than 1 because the data is not linearly separable (Theorem 3.1). We add a linear part in
the activation function to ensure that the gradient is non-zero when v has small coefficients. With
these simplifications, we formally prove that F is able to learn patch association and generalize, in
the two following settings.

Idealized and realistic learning problems. Given a dataset Z “ tpXris, yrisquNi“1 sampled from
D, we solve the empirical risk minimization problem for the logistic loss defined by:

min
pA,v̂

1

N

N
ÿ

i“1

log
`

1 ` e´yrisF pXrisq
˘

:“ pLp pA, pvq. (E)

Instead of directly analyzing (E), we introduce a proxy where we minimize the population risk

min
A,v

ED
“

log
`

1 ` e´yF pXq
˘‰

:“ LpA,vq. (P)

We refer to (E) as the realistic problem while (P) as the idealized problem.

Algorithm. We solve (P) and (E) using gradient descent (GD) for T iterations. The update rule in
the case of (P) for t P rT s and i, j P rDs is

A
pt`1q

i,j “ A
ptq
i,j ´ ηBAi,j

LpAptq,vptqq, vpt`1q “ vptq ´ η∇vLpAptq,vptqq, (GD)

where η ą 0 is the learning rate. A similar update may be written for (E). We now detail how to set
the parameters in (GD).

Parametrization 3.1. When running GD on (P) and (E), the number of iterations is any T ě

polypdq{η. We set the learning rate as η P
`

0, 1
polypdq

˘

. The diagonal coefficient of the attention

matrix are set for i P rDs as Ap0q

i,i “ pA
p0q

i,i “ σAID where σA “ polyloglogpdq. The off-diagonal
coefficients of A and the value vector are initialized as:

1. Idealized case: vp0q “ αp0qw˚ where αp0q “ ν1{pp´1q and Ap0q

i,j “ 0 for i ‰ j.

2. Realistic case: pvp0q „ N p0, ω2Idq and pA
p0q

i,j „ N p0, ω2q where i ‰ j and ω “ 1{polypdq.

We remind that in Simplification 3.1, we have A “ PJP . If one initializes P „ N p0, σAID{Dq,
then with high probability, Ap0q

i,i “ }p
p0q

i }22 “ ΘpσAq and Ap0q

i,j “ xp
p0q

i ,p
p0q

j y “ ΘpσA{
?
Dq for

i ‰ j. Since D " 1, it is then reasonable to set Ap0q

i,j “ 0. Note that, also in the idealized setting, we
initialize vp0q in spanpw˚q, even though this latter should be unknown to the algorithm. We remind
that the idealized case is a proxy to ultimately characterize the realistic dynamics.

4 Learning spatial structure via matching the labeling function
As announced above, we show that our ViT (T) implicitly learns patch association and fits the labeling
function by minimizing the training objective. We first study the dynamics in (P). Using the analysis
in the idealized case, we then characterize the solution found in the realistic problem (E).
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Figure 4: Illustration of Theorem 4.2. We consider the exact same setting (data generation, parameter settings...)
as for the realistic case. From left to right, we first display in grey the tuples pi, jq such that pi, jq P Sℓ. We
then plot the learned matrix A and see that coefficients with high value exactly correspond to their grey scale
counterpart in the left plot. We also display test error and cosine similarity between w˚ and v w.r.t the number
of training steps.

4.1 Learning process in the idealized case

In this section, we analyze the dynamics of (P). Our main result is that after minimizing (P), our
model (T) performs patch association while generalizing.
Theorem 4.1. Assume that we run GD on (P) for T iterations with parameters set as in Parametriza-
tion 3.1. With high probability, the ViT model (T)

1. learns patch association i.e. for all ℓ P rLs and i P Sℓ, TopC tA
pT q

i,j uDj“1 “ Sℓ.

2. learns the labeling function f˚ i.e. PDrf˚pXqFApT q,vpT q pXq ą 0s ě 1 ´ op1q.

We now sketch the main ideas to prove the theorem for which one can refer to Appendix D for a
complete proof.

Invariance and symmetries. In (P), we take the expectation over D. Since (T) is permutation-
invariant and the data distribution is symmetric, we can thus dramatically simplify the variables in (P).
An illustration of this is the next lemma that shows that A can be reduced to three variables in (P).
Lemma 4.1. There exist β “ σA, γptq, ρptq P R such that for all t ě 0:

1. for all i P rDs, Aptq
i,i “ β.

2. for all i, j P rDs such that i, j P Sℓ for some ℓ P rLs, Aptq
i,j “ γptq.

3. for all i, j P rDs such that i P Sℓ and j P Sm for some ℓ,m P rLs with ℓ ‰ m, Aptq
i,j “ ρptq.

Besides, using the initialization in Parametrization 3.1, we can show that v always lies in spanpw˚q.

Lemma 4.2. For all t P rT s, there exists αptq P R such that vptq “ αptqw˚.

In summary, Lemma 4.1 and Lemma 4.2 imply that instead of optimizing over A and v in (P), we
can instead consider the scalar variables αptq, γptq and ρptq. The remaining of this section consists in
analyzing the dynamics of these three quantities.

Learning patch association. We first analyze the dynamics of γptq and ρptq. To this end, we
introduce the following terms:

Λptq “
eβ

eβ ` pC ´ 1qeγptq
` pD ´ Cqeρptq

, Γptq “
eγ

ptq

eβ ` pC ´ 1qeγptq
` pD ´ Cqeρptq

,

Ξptq “
eρ

ptq

eβ ` pC ´ 1qeγptq
` pD ´ Cqeρptq

, Gptq “ DpΛptq ` pC ´ 1qΓptqq.

Note that Λptq, Γptq and Ξptq respectively correspond to the coefficients on the diagonal, those for
which i, j P Sℓ for some ℓ P rLs and all the other coefficients of the attention matrix S. Using these
notations, we first derive the GD updates of γptq and ρptq.

Lemma 4.3. Let t ď T . The attention weights γptq and ρptq satisfy:

γpt`1q “ γptq ` ηpolylogpdqpαptqqp ¨ ΓptqpGptqqp´1,

|ρpt`1q| ď |ρptq| ` ηpolylogpdqpαptqqp
´ 1

D
`

1

D
ΓptqpGptqqp´1

¯

.
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Lemma 4.3 shows that the increment of γptq is larger than the one of ρptq. Since γp0q “ ρp0q “ 0,
this implies that γptq ě ρptq for all t ě 0. This observation proves the first item of Theorem 4.1. We
now explain how learning patch association leads to v highly correlated with w˚.

– Event I: At the beginning of the process, the update of vptq is larger than the one of Aptq
i,j which

implies that only vptq updates during this first phase. We show that αptq “ xvptq,w˚y increases
until a time T0 ą 0 where it reaches some threshold (Lemma D.2). At this point, the model is
nothing else than a generalized linear model that would not generalize because there are much
more noisy tokens than signal ones (see Theorem 3.1).

– Event II: During this phase, the attention weights must update. Indeed, assume by contradiction
that the Aptq

i,j stay around initialization and that vptq is optimal i.e. vptq “ aptqw˚ where aptq " 1.
Then, the predictor g we would have is

gpXq “

D
ÿ

i“1

D
ÿ

j“1

S
p0q

i,j xvptq,Xjy9

D
ÿ

i“1

D
ÿ

j“1

eA
p0q

i,j xw˚,Xjy (2)

Such predictor g would yield high population loss because there many more data with random
labels (qD “ polypCq) than with the exact label. Therefore, Aptq

i,j ’s start to update. The gradient
increment for γptq (which corresponds to i and j in the same set Sℓ) is much larger than the one for
ρptq (Lemma 4.3). Thus, γptq increases until a time T1 P rT0, T s such that γpT1q ą maxtPrT s |ρptq|.

– Event III: Because we have γpT1q ą maxtPrT s |ρptq|, we again have αpt`1q ą αptq as in Phase I
(Lemma D.11). Thus, αptq increases again until the population risk becomes a op1q.

Main insights of our analysis. Our mechanism highlights two important aspects that are proper to
attention models:

– because of the initialization and the data structure, we have patch association for any time t
(Lemma 4.3).

– our ViT model uses patch association to minimize the population loss (Event III). Without patch
association, the model would only be a generalized linear model that does not minimize the loss.

4.2 From the idealized to the realistic learning process

The real learning process differs from the idealized one in that we have a finite number of samples and
we initialize both pA and pv as Gaussian random variables. Using a polynomial number of samples,
we show that (T) still learns patch association and generalizes.
Theorem 4.2. Assume that we run GD on (E) for T iterations with parameters set as in Parametriza-
tion 3.1. Assume that the number of samples is N “ polypdq. With high probability, the model

1. learns patch association i.e. for all ℓ P rLs and i P Sℓ, TopC t pA
pT q

i,j uDj“1 “ Sℓ.

2. fits the labeling function i.e. PDrf˚pXqF
pApT q,pvpT q pXq ą 0s ě 1 ´ op1q.

Similarly to [46], the proof introduces a "semi-realistic" learning process that is a mid-point between
the idealized and realistic processes. We show that pApT q and pvpT q are close to their semi-realistic
counterparts – see Appendix E for a complete proof. Figure 4 numerically illustrates Theorem 4.2.

5 Patch association yields sample-efficient fine-tuning with ViTs

A fundamental byproduct of our theory is that after pre-training on a dataset sampled from D, our
model (T) sample-efficiently transfers to datasets that are structured as D but differ in their features.
Downstream dataset. Let rD a downstream data distribution defined as in Assumption 1 such that
its underlying feature is rw˚ with } rw˚}2 “ 1 and rw˚ potentially different from w˚. In other words,
the downstream rD and source D distributions share the same structure but not necessarily the same
feature. We sample a downstream dataset rZ “ tpĂXris, ryrisqu

ĂN
i“1 from rD.
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Figure 5: (a): Test accuracy obtained with ViT (patch size 2), ResNet-18 and VGG-19 on permuted (in
solid lines) and on original (in dashed lines) CIFAR-100. While convolutional models are very sensitive to
permutations, the ViT performs equally whether the dataset is permuted or not. (b): (2) CIFAR-100 image (1)
and Permuted CIFAR-100 image when shuffle grid size is 2 (2), 4 (3) and 8 (4). (c): (1-2) Visualization of
positional encoding similarities after training a ViT (patch size 2) on permuted CIFAR-100 (shuffle grid size 2).
Here, we display pJ

i P where i is some fixed index and reshape such vector into a matrix 16 ˆ 16. We observe
that these similarities (1-2) do not have any spatially localized structure. However, when applying the inverse of
the permutation, we recover spatially localized patterns in (1’-2’).

Learning problem. We consider the model (T) pre-trained as in subsection 4.2. We assume that pA
is kept fixed from the pre-trained model and we only optimize the value vector rv to solve:

min
rv

1

rN

ĂN
ÿ

i“1

log
`

1 ` e´ryrisF p ĂXrisq
˘

:“ rLprvq. (rE)

We run GD on (rE) with parameters set as in Parametrization 3.1 except that the pAi,j’s are fixed and
rvp0q „ N p0, ω2Idq with ω “ 1{polypdq. Our main results states that this fine-tuning procedure
requires a few samples to achieve high test accuracy in rD. In contrast, any algorithm without patch
association needs a large number of samples to generalize.

Theorem 5.1. Let pA be the attention matrix obtained after pre-training as in subsection 4.2. Assume
that we run GD for T iterations on (rE) to fine-tune the value vector. Using rN ď polylogpDq samples,
the model (T) transfers to rD i.e. P

rDrf˚pXqF
pA,rvpT q pXq ą 0s ě 1 ´ op1q.

Theorem 5.2. Let A : RdˆD Ñ t´1, 1u be a binary classification algorithm without patch associa-
tion knowledge. Then, it needs DΩp1q training samples to get test error ď op1q on rD.

The proofs of Theorem 5.1 and Theorem 5.2 are in Appendix F. These theorems hightlight that
learning patch association is required for efficient transfer. We believe that they offer a new perspective
on explaining why ViTs are widely used in transferring to downstream tasks. While it is possible that
ViTs learn shared (with the downstream dataset) features during pretraining, our theory hints that
learning the inductive bias of the labeling function is also central for transfer.

6 Numerical experiments
In this section, we first empirically verify that ViTs learn patch association while miniziming their
training loss. We then numerically show that the positional attention mechanism competes with the
vanilla one on small-scale datasets such as CIFAR-10/100 [43], SVHN [52] and large-scale ones such
as ILSVRC-2012 ImageNet [22]. For the small datasets, we use a ViT with 7 layers, 12 heads and
hidden/MLP dimension 384. For ImageNet, we train a "ViT-tiny-patch16-224" [24]. Both models are
trained with standard augmentations techniques [18] and using AdamW with a cosine learning rate
scheduler. We run all the experiments for 300 epochs, with batch size 1024 for Imagenet and 128
otherwise and average our results over 5 seeds. We refer to Appendix A for the training details.

ViTs learn patch association. We consider the CIFAR-100 dataset where we divide each image
into grids of size sˆs pixels. For a fixed s P t2, 4, 8, 16, 32u, we permute the grids according to πs to
create the permuted CIFAR-100 dataset. We call s the grid shuffle size. Figure 5b-(1) shows a CIFAR-
100 image and its corresponding shuffling in the permuted CIFAR-100 dataset Figure 5b-(2-3-4).
We train a ViT and CNNs ResNet18 [31] and VGG-19 [57] on the permuted CIFAR-100 dataset.
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Figure 6: Training loss (1) and test accuracy (2)
obtained using a ViT-tiny-patch16-224 on Imagenet.
ViT using positional attention (Ours) gets 68.9% test
accuracy while vanilla ViT (ViT) gets 71.9%.

For the ViT, we set the patch size to 2, although
this is sub-optimal in terms of accuracy, because
the patch size needs to stay smaller or equal to
s. Indeed, intuitively, when we permute the grids
in Figure 5b, we lose the local aspect of the spa-
tial structure and create new sets Sℓ’s and a new
labeling function f˚. Figure 5a reports the test
accuracy of these three models for different values
of s. When s is small, the image does not have
a coherent structure e.g. Figure 5b-(2) and thus,
CNNs struggle to generalize. As s increases e.g.
Figure 5b-(4), the information inside a patch is
meaningful and thus, the CNNs well-perform. Unsurprisingly, since ViTs are permutation invariant,
their performance remains unchanged for all s – see Figure 5a. Despite this change, we verify that
the ViT is able to recover the new Sℓ’s: we feed the ViT with the shuffled pear image ( Figure 5b-(2))
and consider for some i the similarity matrix pJ

i P . We see that it does not exhibit a local spatial
structure in Figure 5c-(1,2). We then apply π´1

s to pJ
i P and observe that we recover the spatially

localized patterns Figure 5c-(1’,2’). This experiment highlights that ViTs do not just group nearby
pixels together as convolutions. They learn a more general spatial structure, in accordance to our
theoretical results.

ViT Ours
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99
SVHN
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90

91

CIFAR-10
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Figure 7: Test accuracy obtained with a ViT using
vanilla attention (ViT) and positional attention (Ours)
on CIFAR-10 (1), CIFAR-100 (2) and SVHN (3). Our
model competes with the vanilla ViT. Patch size 4 and
average over 10 seeds for this experiment.

ViTs with positional attention are competitive.
We numerically verify that ViTs using positional
attention compete with those with vanilla attention.
In Section 3, we introduced positional attention to
define our theoretical learner model. Figure 6 and
Figure 7 show that ViTs using positional attention
compete with vanilla ViTs on a range of datasets.
These experiments strengthen our intuition that
for images, having an attention matrix that only
depends on the positional encodings is sufficient
to have a good test accuracy.

Conclusion, limitations and future works

Our work is a first step towards understanding how Transformers learn tailored inductive biases when
trained with gradient descent. Our analysis heavily relies on the positional attention mechanism that
disentangles patches and positional encodings. In practice, self-attention mixes these two quantities.
An interesting direction is to understand the impact of patch embeddings on the inductive bias learned
by ViTs. Moreover, our experiment on the Gaussian data shows that ViTs do not always learn the
correct inductive bias under Definition 2.1: characterizing the distributions under which ViTs recover
the structure of the function is an important question. Lastly, this work also paves the way to many
extensions beyond convolution. For example, can ViTs learn other inductive biases? What are
the inductive biases learnt by Transformers in NLP? Answering those questions is central to better
understand the underlying mechanism of attention.
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