A Environment Details

A.1 Maze

Environment. The mazes that we consider in this paper are implemented as MiniGrid environ-
ments [82]. Each maze is a 16 x 16 grid containing walls and empty cells, two of which are the
starting and the goal cells. An agent solving the maze starts at the starting cell and observesa 5 x 5
area around itself. The agent can move forward into an empty cell or turn left or right in its own
cell. To maintain consistency with the MiniGrid environments, the agent is also allowed to pick up,
drop or toggle an object or notify that a task is done. In the mazes generated by our work, all those
actions result in the agent staying in the same cell. A time limit of 648 is used since an optimal agent
will be able to finish all possible 16 x 16 mazes in this duration. If the agent reaches the goal within
this time limit, it receives a reward of 1 — 0.9 fraction of the time limit used. Otherwise, the agent
receives no reward.

Environment generator. The environment generator accepts a 16 x 16 bit map denoting the walls
and empty spaces as the input. For better visualization, we add a wall surrounding the 16 x 16 region.
We set the starting cell and goal cell to be the pair of empty cells that are furthest apart, as identified
by the Floyd-Warshall algorithm [93].

Agent. We select an agent from a recent work on open-ended learning, ACCEL [4], for the purpose
of evaluation. Since individual ACCEL agents have a high variance in their performance, we evaluated
the agents trained with four different random seeds on three of the test mazes given in the original
paper (Labyrinth, 16Rooms, LargeCorridor). We chose the best performing agent out of the four and
fixed it for all our experiments. The selected agent was able to always reach the goal in those test
mazes.

A.2 Mario

Environment The Mario environments that we consider in this paper are implemented in the Mario
Al Framework [94, 21]. Each level is a 16 x 56 grid of tiles, where each tile can be one of 17 different
objects. The agent in each environment receives as input the current game state, consisting of all tiles
that are visible on the screen. The agent then outputs the action for Mario to take. Each episode runs
for 20 time ticks.

Environment generator. Drawing from prior work [16, 58], the Mario environments are generated
with a GAN pre-trained on human-authored levels with the WGAN algorithm [95, 96]. The GAN’s
generator takes as input a latent vector of size 32 and outputs a 16 x 56 level padded to 64 x 64. The
GAN architecture is shown in Fig. 5]

i
2 > |
Latent 512 > L,
Vector BNiReLU 256
BN4ReLU

® BN+LeakyReLU

128 \°

64 %
BN+ReLU

BN+ReLU

Figure 5: GAN architecture for generating Mario levels (BN stands for Batch Normalization [97]).

Agent. In each environment, we run the A* agent developed by Robin Baumgarten [22]. This agent
won the Mario Al competitions at the ICE-GIC conference and the IEEE Computational Intelligence
in Games symposium in 2009. The trajectory taken by the agent in a level is stochastic due to
randomness in the environment dynamics.

17

y
éctive
Conv(4,2,1)
Batch Norm
Leaky ReLU

Measures

Batch Norm
Leaky ReLU %~

One-hot

Environment

Conv(3,1,1)
Leaky ReLU

Figure 6: Architecture of the surrogate model. The model predicts the occupancy grid (red arrows)
which guides the downstream prediction of the objective and the measure values (blue arrows).

B Deep Surrogate Model

In the DSAGE algorithm, we maintain a deep surrogate model (Fig.[6) for predicting the objective
and the measures resulting from simulating an agent’s execution in the environment. The input to
this model, provided as a one-hot encoded representation of the image of the environment, is passed
through a two-stage deep surrogate model as described in Sec. 4.

The first stage predicts the ancillary agent behavior data that is in the form of an occupancy grid. The
predictor consists of a 3 x 3 convolution (with Leaky ReLU activation) followed by two residual
layers [98] and a 1 x 1 convolution. Since the occupancy grid depends on the layout of the environment,
we believe that residual layers’ propagation of the input information is helpful for prediction.

The predicted occupancy grid and the one-hot encoded image of the environment are stacked and
passed through another CNN that predicts the objective and the measure values. The architecture of
this CNN is inspired by the discriminator architecture in prior work on generating Mario levels with
a GAN [16, 58]. The input is passed through layers of 4 x 4 strided convolutions with a stride of 2
and an increasing number of channels. Each convolution is followed by Batch Normalization [97]
and LeakyReL U activation. Once the height and width of the output of a convolution have been
reduced to 4, it is flattened and passed through two fully connected layers to obtain the objective and
the measure values.

DSAGE Basic and DSAGE-Only Down do not predict the occupancy grid. The surrogate model in
those algorithms directly predicts the objective and the measure values as denoted by the blue arrows.

B.1 Evaluating the Prediction Performance

Mean absolute error. To test the prediction performance of the deep surrogate model trained by
DSAGE and its variants, we select two separate runs of each algorithm. The datasets generated in the
first run of each algorithm are combined into a single dataset. We then evaluate the trained surrogate
models from the second run of each algorithm on the combined dataset by calculating the mean
absolute error (MAE) between the predicted and the true objective and measures corresponding to
the solutions in the combined dataset.

Table 2 shows the obtained MAEs in the Maze and the Mario domains. In both domains, we observe
that the measures that depend on agent behavior (mean agent path length for Maze and number of
jumps for Mario) are harder to predict compared to the ones that only depend on the environment

18

—@— Ground-truth Prediction

Number of wall cells ~ Mean agent path length Sky tiles Number of jumps
— 256- 162 - / 150 - / 60 - /
o
@] I\
m o \
o é / J 4 @
% S 128- w 81- 75- 30-
[a) 2 / [} \/] /]
35 , /
g Y / /
&~ 0 | | 0 1/ | | 0 |) 0 | |
0 128 256 0 81 162 0 75 150 0 30 60
256 - 162 - 150 - 60 -
® / / /

75-

DSAGE Basic
Pred. Measure Cell
I~}

o0
x
\.

(98]

(=]

0 128 256 0 81 162 0 75 150 0 30 60
True Measure Cell True Measure Cell True Measure Cell True Measure Cell

Figure 7: Correlation between the predicted and the true measure cells. The first row corresponds to
DSAGE while the second row corresponds to DSAGE Basic. The columns correspond to the two
measures in the Maze and the Mario domains respectively. We observe that long agent path lengths
and high numbers of jumps are more difficult to predict.

(number of wall cells for Maze and number of sky tiles for Mario). Indeed, the MAEs for the number
of wall cells in the Maze domain and the number of sky tiles in the Mario domain are much smaller
than the MAE for the mean agent path length and the number of jumps, respectively.

In the Maze domain, predicting ancillary agent behavior data helped improve the prediction of the
mean agent path length. Both DSAGE and DSAGE-Only Anc have better predictions compared to
their counterparts that do not predict ancillary data. Since the mean agent path length is a scaled
version of the sum of the occupancy grid, having a good prediction of the occupancy grid makes the
downstream prediction task much easier. We believe that the additional supervision during training in
the form of the occupancy grid guides the surrogate model towards understanding the layout of the
maze and the agent’s behavior.

On the other hand, we see little improvement when predicting the number of jumps in the Mario
domain. Here, downsampling provided a larger boost to the predictions, with DSAGE and
DSAGE-Only Down making better predictions than their counterparts without downsampling. Since
we do not store temporal information in the occupancy grid, predicting the number of jumps remains
a challenging task even with an accurate prediction of the occupancy grid. We conjecture that the
increased number of outer iterations when downsampling played a more important role in correcting
the errors of the surrogate model and improving its predictions.

Correlation plots. To further test if DSAGE’s predictions of some measures were more accurate
in certain regions of the archive, for each solution we plot the true measure cell on the x-axis and
the average of the corresponding predicted measure cell on the y-axis (Fig.[7). In this plot, accurate
predictions would fall on the x = y line (denoted in blue), and inaccurate ones would be above or
below the line.

Once again, we see that the measures dependent on agent simulation, i.e., the mean agent path
length in Maze and the number of jumps in Mario, are difficult to predict. Interestingly, we observe
that accurately predicting large number of jumps and long agent path length is harder compared to
predicting them when the true value is low. Since the agent would be revisiting the tiles multiple times
when the path length or the number of jumps is high, it becomes harder to obtain useful information
from the occupancy grid.

We also believe that in these regions, minor environment differences could cause a large change in the
measure value, making the prediction problem extremely difficult. For example, if a jump in Mario is

19

e e

= = 1.10

2 600 2 600

5 2.00 5

= = 1.05

= 1 1.75 =]

T 400 T 400 L 0o

‘qc')' 1.50 ‘GE) '

2 200 7 1.25 S 200 7 0.95

5 5

%, 0 1.00 % 0 - 0.90
0 250 0 250

Number of wall cells Number of wall cells

M(c) (d)

e e

2 600 - 2.00 2 600

2 2 1.05

e e .

% 400 4 1.75 % 400 1

= > 1.00

2 3 1.50 2 :

E 200 - . § 200 - 005

g o4+ 1.00 g o4 0.90
0 250 0 250

Number of wall cells Number of wall cells

Figure 8: After running one surrogate model exploitation inner loop, we visualize the (a) surrogate
archive, (b) positions of solutions from the surrogate archive in the ground-truth archive, (c) down-
sampled surrogate archive, and (d) positions of solutions from the downsampled surrogate archive in
the ground-truth archive.

barely possible, the agent might need to try multiple times. But if one block is removed to make the
jump easier, the agent might be able to finish it in one try, drastically reducing the total number of
jumps.

Surrogate archive accuracy. To understand how the surrogate model’s accuracy affects the creation
of the ground-truth archive, we run an additional surrogate model exploitation inner loop starting
from a completed DSAGE run and obtain a surrogate archive. We evaluate all the solutions in the
surrogate archive and add them to a separate archive based on the ground-truth objective and measures.
Additionally, we downsample the surrogate archive and create a corresponding ground-truth archive
from the selected solutions.

Fig. [8] shows the full (8]a) and the downsampled (8]c) surrogate archive and the corresponding
ground-truth archives (8}b, @d) in the Maze domain. We observe that many of the solutions from the
surrogate archive end up in the same cell in the ground-truth archive, creating holes in the ground-truth
archive. Only 47% and 41% of the solutions from the surrogate archive ended up in unique cells in the
Maze and the Mario domains respectively. On the other hand, when downsampling, the percentage
of surrogate archive solutions filling unique cells in the ground-truth archive improved to 97% and

20

94% in the Maze and the Mario domains respectively. Hence, downsampling reduces the number of
unnecessary ground-truth evaluations.

In the Maze domain, only 0.06% of the surrogate archive solutions ended up in the exact same cell of
the ground-truth archive as predicted. 4.6% of the solutions were in the 8 x 6 (the area from which
downsampled solutions are chosen) neighborhood of the predicted cell. The average Manhattan
distance between the predicted cell and the true cell was 53.8. In the Mario domain, 2.0% of the
solutions were exactly in the same cell, 23.3% in the 5 x 5 neighborhood, and the average Manhattan
distance was 14.2.

Despite the low accuracy of the surrogate model in terms of predicting the exact cell of the archive
that the solution belongs to, the predictions were in the nearby region of the archive as evidenced
by the average Manhattan distance. Furthermore, we conjecture that the holes in the ground-truth
archive from a single outer iteration (as seen in Fig.[8]b,[8]d) are filled by solutions from other outer
iterations. Hence, the final ground-truth archive (Fig. 3, Fig. 4) is more densely filled, leading to a
better archive coverage and a better QD-score.

C Experimental Details

QD Optimization Algorithm. In the Maze domain, we used the MAP-Elites algorithm to generate
the wall and the empty tiles of a maze. The first 100 solutions were generated by setting each cell to
be either a wall cell or an empty cell uniformly at random. Every subsequent solution was generated
by first choosing a random solution in the archive and mutating 10 random cells to a random value.
The batch size was set to 150, i.e., 150 solutions were generated and evaluated in each iteration of the
MAP-Elites algorithm. The archive was divided into 256 x 162 cells corresponding to the number of
wall cells and the mean agent path length respectively.

In the Mario domain, we followed previous work [16] and selected the CMA-ME algorithm for QD
optimization. The archive was divided into 150 x 100 cells corresponding to the number of sky tiles
and the number of jumps respectively. The solutions, which are the input to a pre-trained GAN from
previous work [16], were generated by 5 improvement emitters, each with a batch size of 30 and
mutation power of 0.2.

In the baselines without a surrogate model, we ran the QD optimization algorithm until the number
of ground-truth evaluations reached the given budget. For the other algorithms, we used the QD
optimizer in the surrogate model exploitation phase and ran 10,000 iterations of the corresponding
algorithm to create the surrogate archive.

We implemented all QD algorithms in Python with the pyribs [99] library.

Ancillary data and downsampling. In both domains, we recorded and stored the average number
of visits by the agent to each discretized tile in the environment as the ancillary data. Algorithms
using downsampling chose a single random elite from every 8 x 6 cells in the Maze domain and
every 5 x 5 cells in the Mario domain

Surrogate Model Training. At the start of each outer iteration, the deep surrogate model was
trained on the most recent 20,000 data samples for 200 epochs with a batch size of 64. The surrogate
model was updated by backpropagating the mean square error loss between the predicted and the true
objective, measures, and ancillary data. The model weights were then updated by the Adam [100]
optimizer with a learning rate of 0.001 and betas equal to 0.9 and 0.999 respectively. We implemented
the surrogate model with the PyTorch [101] library.

Computational Resources. For each algorithm-domain pair, we repeated the experiments 5 times
and compared the mean performance. Experiments were run on two local machines and a high-
performance cluster. The local machines had AMD Ryzen Threadripper with a 64-core (128 threads)
CPU and an NVIDIA GeForce RTX 3090/RTX A6000 GPU. 16 CPU cores and one V100 GPU
were allocated for each run on the cluster. Maze experiments without downsampling lasted for
4-5 hours while those with downsampling lasted for around 30 hours. Mario experiments without
downsampling took 2-3 hours while those with downsampling took around 12 hours.

21

Table 3: QD-score and archive coverage attained by DSAGE variants with original hyperparameters
and longer training versions of DSAGE Basic and DSAGE-Only Anc in the Maze and Mario domains
over 5 trials.

Maze Mario
Algorithm QD-score Archive Coverage QD-score Archive Coverage
DSAGE 16,446.60 £ 42.27 0.40 £ 0.00 4,362.29 + 72.54 0.30 £ 0.00
DSAGE-Only Anc (longer training) 14,936.40 £ 400.45 0.36 + 0.01 1,679.55 £ 213.21 0.11 £ 0.01
DSAGE-Only Anc 14,568.00 =4 434.56 0.35 £ 0.01 2,045.28 4 201.64 0.16 £ 0.01
DSAGE-Only Down 14,205.20 =4 40.86 0.34 £ 0.00 4,067.42 + 102.06 0.30 £ 0.01
DSAGE Basic (longer training) 12,618.20 4 58.94 0.30 £ 0.00 1,983.84 + 434.15 0.13 £0.03
DSAGE Basic 11,740.00 =+ 84.13 0.28 £ 0.00 1,306.11 £ 50.90 0.11 £ 0.01

A single ground-truth evaluation in the Maze domain took between 1 to 13 seconds, with a mean of
3.5 seconds. The variation was mostly due to the difference in the agent performance since mazes
that were finished in fewer steps required fewer forward passes through the agent’s policy network.
Evaluations in the Mario domain took between 1 to 135 seconds, with an average of 53 seconds,
depending on the generated level. In contrast, a complete inner loop involving the surrogate model
exploitation phase (around 1,500,000 surrogate evaluations) finished in around 90 seconds.

D Ablation: Effect of More Outer Iterations

We perform an ablation to test between two possible explanations for why having more outer iterations
helps with performance: One explanation is that the larger number of training epochs, resulting from
training the model in each outer iteration, itself helps with the accuracy of the surrogate model [102].
The second explanation is based on the fact that at the beginning of training, the surrogate model is
inaccurate, and hence, the data generated by evaluating solutions in the surrogate archive would have
been incorrectly predicted by the surrogate model. A larger number of outer iterations results in a
larger number of times the algorithm updates the dataset with these adversarial examples, allowing
the surrogate model to iteratively correct its own errors.

To disambiguate the two explanations, we increased the number of training epochs for the algorithms
that do not use downsampling (DSAGE-Only Anc and DSAGE Basic), making the total number of
training epochs the same as that with downsampling. In the Maze domain, the surrogate models of
DSAGE-Only Anc and DSAGE Basic were trained for 5300 and 6400 epochs respectively in each
outer iteration, compared to 200 epochs with downsampling. In the Mario domain, the models of
DSAGE-Only Anc and DSAGE Basic were trained for 1350 epochs in each outer iteration, compared
to 200 epochs with downsampling.

Table [3]shows the results with the longer training versions of DSAGE Basic and DSAGE-Only Anc.
Longer training improves the QD-score and the archive coverage for both DSAGE Basic and
DSAGE-Only Anc in the Maze domain and for DSAGE Basic in the Mario domain, but they still
perform much worse than their counterparts with downsampling, DSAGE-Only Down and DSAGE.
Hence, more iterative corrections of the errors of the surrogate model in variants with downsampling
(due to a larger number of outer iterations) seems to be the major cause of performance improvement.

E Ablation: Random Selection of Surrogate Archive Solutions

As discussed in Sec. 6.3, selecting solutions from the surrogate archive with downsampling has several
advantages which lead to better performance, with the major advantage being that downsampling
increases the number of outer loop iterations. However, we could also increase the number of outer
iterations by choosing a different subset selection mechanism, including simply selecting solutions
uniformly at random. Thus, we test DSAGE with the random selection mechanism as an additional
baseline. Namely, after every inner loop, we select a fixed number of solutions from the surrogate
archive uniformly at random such that the number of outer iterations is approximately the same for
both downsampling and random sampling.

Table[d]shows the results obtained by DSAGE with downsampling and random sampling. We observe
that the performance with random sampling is lower than that of downsampling in the Maze domain,
but they are very close in the Mario domain. Hence, we can conclude that increasing the number of

22

Table 4: Mean and standard error of the QD-score and archive coverage attained by DSAGE and
DSAGE with random sampling in the Maze and Mario environments over 5 trials.

Maze Mario
. Archive Archive
Algorithm QD-score Coverage QD-score Coverage
DSAGE 16,446.60 + 42.27 0.40 £+ 0.00 4,362.29 + 72.54 0.30 £ 0.00

DSAGE (random sampling) 15,974.40 £ 78.71 0.39 £0.00 4,370.28 + 107.87 0.30 £ 0.01

outer iterations is the largest contributor to the performance improvement, although downsampling
has additional advantages that improve its performance in the Maze domain.

F Qualitative Analysis of the Algorithms

Fig.[9]and Fig.[I0]show typical archives output by the algorithms in our experiments in the Maze and
Mario domains, respectively.

DSAGE-Only DSAGE-Only

DSAGE Anc Down DSAGE Basic MAP-Elites DR
1.0
600 b b b b b
g) 0.8
5
*':5 400 — 7 7 7 7 7 0.6
a,
g
&0 0.4
= 200 B B B B B
B
s 0.2
0 T T T T T \ 0.0
0 250 0 250 0 250 0 250 0 250 0 250

Number of wall cells

Figure 9: Example archives generated by algorithms in the Maze domain. Among the algorithms,
DSAGE fills the largest portion of the archive, resulting in the highest QD-score, while MAP-Elites
fills the smallest portion, resulting in the lowest QD-score. Since the objective only tests whether
the level is valid, all levels in each archive have an objective of 1. Note that certain portions of the
archive are physically impossible to obtain. For example, a maze with O wall cells would have the

starting position and the goal at opposite corners, meaning that the mean agent path length must be at
least 32.

23

DSAGE-Only DSAGE-Only

é* DSAGE Anc Down DSAGE Basic CMA-ME DR
8, 100 1
[
5] e) [— JPa—
;3 s : - "‘F"“ = 3 : i S ;‘? - .'" S T i
T 0+ - 0
E 0 150 0 150 0 150 0 150 0 150 0 150

Sky tiles

Figure 10: Example archives generated by all algorithms in the Mario domain. Compared to
CMA-ME, DSAGE and its variants are more adept at finding levels with high numbers of jumps.
The algorithms then differ in the objective values of the levels that have high numbers of jumps:
DSAGE Basic finds levels with low objective values, so its QD-score is low. DSAGE-Only Down
finds many levels with high numbers of jumps, but many of these levels have low objective values
(hence the dark region in the top right of its archive), leading to a lower QD-score than DSAGE,
which primarily finds levels with high objective values. Note that in our experiments, we never
observed a level that caused Mario to jump more than 60 times, so the upper portion of all archives is
unoccupied.

G Searching for Additional Agent Behaviors
Here we present example results from different measures in the Maze and Mario domains. By

searching for these measures with DSAGE, we discover environments that elicit a wide range of
agent behaviors not presented in our main paper.

G.1 Maze

Fig. and[I3]show results from DSAGE runs in the Maze domain with different measures.

G.2 Mario

Fig.|I4|and|15|show results from DSAGE runs in the Mario domain with different measures.

24

(a) (b) (e) ()
Maze exploration: 40% Maze exploration: 15% Maze exploration: 97% Maze exploration: 60%
Repeated visits: 504 Repeated visits: 632 Repeated visits: 625 Repeated visits: 402

DSAGE
10
600 -
500
)
Z 400 — 06
(¢) (d) > (h)

Maze exploration: 51% Maze exploration: 28% E 3004 04 Maze exploration: 96% Maze exploration: 79%
Repeated visits: 108 Repeated visits: 6 g 200 .| A Repeated visits: 12 Repeated visits: 192
N 02

— 00

!
.0 0.5 1.0
Maze exploration

Figure 11: A DSAGE run in the Maze domain where the measures are (1) the fraction of reachable
cells that the agent has visited (termed the “Maze exploration”; range [0, 1]) and (2) the number of
times that the agent visits a cell it has already visited (termed the “Repeated visits”; range [0, 648]).
Note that both of these measures are agent-based. In (a) and (b), the agent becomes stuck in a small
portion of the maze, leading to many repeated visits but low maze exploration. Notably, the agent
observes the goal multiple times in (b), but it never figures out how to go around the large wall which
blocks it. In (c), the agent gets stuck in several traps (leading to repeated visits) but eventually makes
its way to the goal. In (d), the agent heads directly to the goal, so it does not explore the maze much,
and the only repeated visits it makes come from turning (when the agent turns, it stays in the same
cell, which counts as a repeated visit). In (e) and (f), the agent visits multiple parts of the maze several
times and is unable to reach the goal. In (g), the agent explores all of the space without revisiting
many cells and eventually finds the goal. Finally, in (h), the agent has many repeated visits because it
gets stuck at the beginning, but afterwards, it explores the rest of the maze and finds the goal. Refer
to the supplemental material for videos of these agents.

25

(a) (b) (e) ()
Maze exploration: 39% Maze exploration: 55% Maze exploration: 92% Maze exploration: 97%
Number of wall cells: 155 Number of wall cells: 213 Number of wall cells: 100 Number of wall cells: 100

DSAGE

2
Q
© C) § - @ (b
Maze exploration: 12% Maze exploration: 17% & Maze exploration: 97% Maze exploration: 58%
Number of wall cells: 60 Number of wall cells: 48 5 100 Number of wall cells: 43 Number of wall cells: 42
=]
El
Z

S —
00 05 10
Maze exploration

Figure 12: A DSAGE run in the Maze domain where the measures are (1) the fraction of reachable
cells that the agent has visited (termed the “Maze exploration”; range [0, 1]) and (2) the number
of wall cells in the maze (range [0, 256]). (a) and (b) are mazes where the wall cells define a
straightforward path for the agent to follow to the goal, resulting in low maze exploration. In (c),
the agent goes in circles in the bottom right corner, resulting in low exploration. (d) has a similar
number of wall cells to (c), but the agent here is able to quickly find the goal, which also results in
low exploration. (e) and (f) are two levels that are similar in terms of both measures yet have very
different structures — in particular, (f) has a much larger reachable space for the agent to explore. In
(g), the agent spends all its time exploring even though there are relatively few wall cells blocking its
path. Finally, (h) has a similar number of wall cells as (g), but the agent heads almost directly to the
goal. Refer to the supplemental material for videos of these agents.

(a) (b) (e) (
Number of wall cells: 56 Number of wall cells: 100 Number of wall cells: 181 Number of wall cells: 202
Repeated visits: 604 Repeated visits: 401 Repeated visits: 271 Repeated visits: MAX

1.0
08
?
> al 0.6
© @ < Y e)
Number of wall cells: 45 Number of wall cells: 75 5 3004 04 Number of wall cells: 150 Number of wall cells: 219
Repeated visits: 18 Repeated visits: 149 S 200] ’ Repeated visits: 77 Repeated visits: 0
m e
0.2
100
—
-
3 200 0.0

Number of wall cells

Figure 13: A DSAGE run in the Maze domain where the measures are (1) the number of wall cells in
the maze (range [0, 256]) and (2) the number of times that the agent visits a cell it has already visited
(termed the “Repeated visits”; range [0, 648]). In (a), the agent gets stuck in the top right corner
since it is surrounded by walls with only one path out, so it has many repeated visits. In (b), the agent
repeatedly goes around the maze and even sees the goal several times, but it usually does not reach
the goal. (c) and (d) are relatively easy for the agent — since it finds the path quickly, it does not
repeat many visits. (e) and (f) are cases where the agent gets stuck going in loops even though it is
right next to the goal, which leads to many repeated visits. In (g), the agent makes several loops but
eventually finds the goal. Finally, in (h), the agent goes directly to the goal, so it never repeats any
visits. Refer to the supplemental material for videos of these agents.

26

(a) ()
Sky tiles: 0, Enemies killed: 5 Sky tiles: 120, Enemies killed: 2

0.8

DSAGE
0.6
(b) = / 04 (@
Sky tiles: 63, Enemies killed: 15 0 074 6 8 100 120 140 Sky tiles: 144, Enemies killed: 7
Sky tiles 02

Figure 14: A DSAGE run in the Mario domain where the measures are (1) the number of sky tiles
(exactly as in the main paper) and (2) the number of enemies Mario kills (range [0, 25]). Note that in
(b), Mario kills many enemies because Mario repeatedly jumps on the bullets fired by the cannon at
the end of the level. In (d), even though Mario kills multiple enemies, Mario cannot complete the
level because the sky tiles form an unbreakable barrier. Refer to the supplemental material for videos
of these agents.

(2)
Number of jumps: 2, Enemies killed: 5

(d)
0 Number of jumps: 41, Enemies killed: 10

(b)
Number of jumps: 0, Enemies killed: 0

(©
Number of jumps: 53, Enemies killed: 1

Number of jumps

(©)

Figure 15: A DSAGE run in the Mario domain where the measures are (1) the number of times that
Mario jumps (range [0, 100]) and (2) the number of enemies that Mario kills (range [0, 25]). Similar
to the levels from our earlier experiment (Fig. 4(c)), levels (c), (d), and (e) here have a “staircase
trap” at the end which causes Mario to perform many jumps, where different trap structures result in
different numbers of jumps. Note that in some environments, there appear to be more jumps than
indicated in the measures because Mario bounces whenever Mario lands on and kills an enemy, but
these bounces do not count as jumps. Refer to the supplemental material for videos of these agents.

27

	Environment Details
	Maze
	Mario

	Deep Surrogate Model
	Evaluating the Prediction Performance

	Experimental Details
	Ablation: Effect of More Outer Iterations
	Ablation: Random Selection of Surrogate Archive Solutions
	Qualitative Analysis of the Algorithms
	Searching for Additional Agent Behaviors
	Maze
	Mario

