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A Proofs

In this appendix, we prove the Theorem 5.1 in Section 5. We consider the following optimization
objective, which is the expected version of our weighted mixup loss (Equation 4).

Lmix
n (θ, S) =

1

n2

n∑
i,j=1

Eλ∼Dλ
[λwil(θ, x̃i,j , yi) + (1− λ)wj l(θ, x̃i,j , yj)],

where the loss function we consider is l(θ, x, y) = h(fθ(x)) − yfθ(x) and h(·) and fθ(·) for all
θ ∈ Θ are twice differentiable. We compare it with the standard weighted loss function

Lstd
n (θ, S) =

1

n

n∑
i=1

wi[h(fθ(xi))− yifθ(xi)].

Lemma A.1. The weighted mixup loss can be rewritten as

Lmix
n (θ, S) = Lstd

n (θ, S) +

3∑
i=1

Ri(θ, S) + Eλ∼D̃λ

[
(1− λ)2φ(1− λ)

]
,

where D̃λ is a uniform mixture of two Beta distributions, i.e., α
α+βBeta(α+ 1, β) + β

α+βBeta(β +

1, α) and ψ(·) is some function with lima→0 ψ(a) = 0. Moreover,

R1(θ, S) =
Eλ∼D̃λ

[1− λ]

n

n∑
i=1

wi (h
′ (fθ (xi))− yi)∇fθ (xi)⊤ Erx∼DX

[rx − xi]

R2(θ, S) =
Eλ∼D̃λ

[
(1− λ)2

]
2n

n∑
i=1

wih
′′ (fθ (xi))∇fθ (xi)⊤ Erx∼DX

[
(rx − xi) (rx − xi)

⊤
]
∇fθ (xi)

R3(θ, S) =
Eλ∼D̃λ

[
(1− λ)2

]
2n

n∑
i=1

wi (h
′ (fθ (xi))− yi)Erx∼DX

[
(rx − xi)∇2fθ (xi) (rx − xi)

⊤
]
.
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Proof. The corresponding mixup version is

Lmix
n (θ, S) =

1

n2
Eλ∼Beta(α,β)

n∑
i,j=1

[λwih(fθ(x̃i,j(λ)))− λwiyi

+ (1− λ)wjh(fθ(x̃i,j(λ)))− (1− λ)wjyj ]

=
1

n2
Eλ∼Beta(α,β)EB∼Bern(λ)

n∑
i,j=1

[wiB(h(fθ(x̃i,j))− yi)

+ wj(1−B)(h(fθ(x̃i,j))− yj)]

=
1

n2

n∑
i,j=1

{ α

α+ β
Eλ∼Beta(α+1,β)wi[h(fθ(x̃i,j))− yi]

+
β

α+ β
Eλ∼Beta(α,β+1)wj [h(fθ(x̃i,j))− yj ])}

=
1

n

n∑
i=1

wiEλ∼D̃λ
Erx∼Dw

x
h(f(θ, λxi + (1− λ)rx))− yif(θ, λxi + (1− λ)rx)

=
1

n

n∑
i=1

wiEλ∼D̃x
lx̌i,yi(θ),

where Dw
x = 1

n

∑n
i=1 wiδi and x̌i = λxi + (1− λ)rx.

We let α = 1− λ and ψi(α) = lx̌i,yi
(θ). Then since we know ψi is twice-differential, we have

lx̆i,yi
(θ) = ψi(α) = ψi(0) + ψ′

i(0)α+
1

2
ψ′′
i (0)α

2 + α2φi(α).

By the proof of Lemma 3.1 in [76] we know

ψ′
i(0) = (h′ (fθ (xi))− yi)∇fθ (xi)⊤ (rx − xi) ,

ψ′′
i (0) = h′′ (fθ (xi))∇fθ (xi)⊤ (rx − xi) (rx − xi)

⊤ ∇fθ (xi)

+ (h′ (fθ (xi))− yi) (rx − xi)
⊤ ∇2fθ (xi) (rx − xi) .

Lemma A.2. Consider the centralized dataset, i.e., 1
n

∑n
i=1 xi = 0, we have

Eλ∼D̃λ
[Lmix

n (θ, S̃)] ≈ Lstd
n (θ, S) +

1

2n
[

n∑
i=1

wiA
′′(x⊤i θ)]Eλ∼D̃λ

(
(1− λ)2

λ2
)θ⊤Σ̂Xθ,

where Σ̂X = 1
n

∑n
i=1 wixix

⊤
i , and the expectation is taken with respect to the randomness of λ.

Proof. For GLM, the prediction is invariant to the scaling of the training data and thus we consider
the re-scaled dataset S̃ = {(x̃i, yi)}ni=1 where x̃i = 1

λ (λxi+(1−λ)rx). For GLM the mixed stadard
loss function is

Lstd
n (θ, S̃) =

1

n

n∑
i=1

wilx̌i,yi
(θ) =

1

n

n∑
i=1

−wi(yix̃
⊤
i θ −A(x̃⊤i θ)).

In the proof of Lemma 3.3 in [76], we know by taking expectation with respect to the randomness of
λ and rx we have the following second-order approximation for the GLM loss,

E[Lstd
n (θ, S̃)] ≈ Lstd

n (θ, S) +
1

2n
[

n∑
i=1

wiA
′′(x⊤i θ)]E(

(1− λ)2

λ2
)θ⊤Σ̂Xθ,

where Σ̂X = 1
n

∑n
i=1 wixix

⊤
i .
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Lemma A.3. Assume that the distribution of xi is ρ-retentive, i.e., satisfies the Assumption 5.1. Then
the empirical Rademacher complexity of Wr satisfies

Rad(Wr,S) ≤ max{(γ(δ)
ρ

)1/4, (
γ(δ)

ρ
)1/2} ·

√
rank(ΣX)

n
,

with probability at least 1− δ for some constant γ(δ) that only depends on δ.

Proof. The proof is mainly based on [76]. By definition, given n i.i.d. Rademacher rv. ξ1, . . . , ξn,
the empirical Rademacher complexity is

Rad (Wγ , S) = Eξ sup
a(θ)·θ⊤ΣXθ≤γ

1

n

n∑
i=1

ξiθ
⊤xi

Let x̃i = Σ
†/2
X xi, a(θ) = Ex

[
A′′ (x⊤θ)] and v = Σ

1/2
X θ, then ρ-retentiveness condition implies

a(θ)2 ≥ ρ ·min
{
1,Ex

(
θ⊤x

)2} ≥ ρ ·min
{
1, θ⊤ΣXθ

}
and therefore a(θ) · θ⊤ΣXθ ≤ γ implies

that ∥v∥2 = θ⊤ΣXθ ≤ max

{(
γ
ρ

)1/2

, γρ

}
.

As a result,

Rad (Wγ , S) = Eξ sup
a(θ)·θ⊤ΣXθ≤γ

1

n

n∑
i=1

ξiθ
⊤xi

= Eξ sup
a(θ)·θ⊤ΣXθ≤γ

1

n

n∑
i=1

ξiv
⊤x̃i

≤ Eξ sup
∥v∥2≤( γ

ρ )
1/2∨ γ

ρ

1

n

n∑
i=1

ξiv
⊤x̃i

≤ 1

n
·
(
γ

ρ

)1/4

∨
(
γ

ρ

)1/2

· Eξ

∥∥∥∥∥
n∑

i=1

ξix̃i

∥∥∥∥∥
≤ 1

n
·
(
γ

ρ

)1/4

∨
(
γ

ρ

)1/2

·

√√√√Eξ

∥∥∥∥∥
n∑

i=1

ξix̃i

∥∥∥∥∥
2

≤ 1

n
·
(
γ

ρ

)1/4

∨
(
γ

ρ

)1/2

·

√√√√ n∑
i=1

x̃⊤i x̃i

Consequently,

Rad (Wγ , S) = ES [Rad (Wγ , S)] ≤
1

n
·
(
γ

ρ

)1/4

∨
(
γ

ρ

)1/2

·

√√√√ n∑
i=1

Exi

[
x̃⊤i x̃i

]
≤ 1√

n
·
(
γ

ρ

)1/4

∨
(
γ

ρ

)1/2

· rank (ΣX)

Based on this bound on Rademacher complexity, Theorem 5.1 can be proved by directly applying
the Theorem 8 from [7].

B Experimental details

In this section, we present experimental setup in detail. Specifically, we describe the backbone model
for each dataset in Sec. B.1, the detailed datasets description in Sec. B.2, the implementation details
in Sec. B.3, uncertainty quantification results on simulated dataset in Sec. B.4, training accuracy of
different subpopulations throughout training process in Sec. B.5 and additional results in Sec. B.6.
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B.1 Backbone model

Within each dataset, we keep the same model architecture as in previous work [70]: ResNet-50 [23]
for Waterbirds and CelebA, DistilBERT [16] for CivilComments, and DenseNet-121 for Camelyon17.
For ResNet-50, we used the PyTorch [55] implementation pre-trained with ImageNet. For DistilBERT,
we employ the HuggingFace [67] implementation and start from the pre-trained weights. Same as
previous work [70], for DenseNet-121 we employ the implementation without pretraining.

B.2 Datasets details

We describe the datasets used in the experiments in detail and summarize the datasets in Table 4.

• WaterBirds [58]. The task of this dataset is to distinguish whether the bird is a waterbird or a
landbird. According to the background and label of an image, this dataset has four predefined
subpopulations, i.e., “landbirds on land”, “landbirds on water”, “waterbirds on land“ , and
“waterbirds on water”. In the training set, the largest subpopulation is “landbirds on land” with
3,498 samples, while the smallest subpopulation is “landbirds on water” with only 56 samples.

• CelebA [43]. CelebA is a well-known large-scale face dataset. Same as previous works
[41, 58], we employ this dataset to predict the color of the human hair as “blond” or “not
blond”. There are four predefined subpopulations based on gender and hair color, i.e., “dark
hair, female”, “dark hair, male”, “blond hair, female” and “blond hair, male” with 71,629,
66,874, 22,880, and 1,387 training samples respectively.

• CivilComments [9]. For this dataset, the task is to classify whether an online comment is toxic
or not, where according to the demographic identities (e.g., Female, Male, and White) and
labels, 16 overlapping subpopulations can be defined. We use 269,038, 45,180, and 133,782
samples as training, validation, and test datasets respectively.

• Camelyon17 [5, 33]. Camelyon17 is a pathological image dataset with over 450, 000 lymph-
node scans used to distinguish whether there is cancer tissue in a patch. The training data is
drawn from three hospitals, while the validation and test data are sampled from other hospitals.
However, due to the different coloring methods, even the same hospital samples have different
distributions. Therefore, we cannot get reliable subpopulation labels of Camelyon17.

Table 4: Summary of the datasets used in the experiments.

Datasets Labels Groups Population type Data type Backbone model

Waterbirds 2 2 Label×Group Image ResNet-50
CelebA 2 2 Label×Group Image ResNet-50

CivilComments 2 8 Label×Group Text DistilBERT-uncased
Camelyon17 2 5 Group Image DenseNet-121

B.3 Implementation details

In this section, we present the implementation details of all approaches. We implement our method
in the codestack released with the WILDS datasets [33]. For some comparative methods, including
ERM, IRM [3], IB-IRM [1], V-REx [34], CORAL [63], Group DRO [58], DomainMix [69], Fish
[60], LISA [70], vanilla mixup and in-group mixup, we directly use the results in previous work
[70]. For JTT [41], on the Waterbirds and CelebA datasets, we directly report the results in the
paper, and on the CivilComments dataset, due to a different backbone model being employed, we
reimplement the algorithm for fairly comparison. Same as the proposed method, we reimplement
other methods in the codestack released with the WILDs datasets. We employ vanilla mixup on
WaterBirds and Camelyon17 datasets. On CelebA and CivilComments datasets, we employ cutmix
[71] and manifoldmix [65] respectively. For all approaches, we tune all hyperparameters with
AutoML toolkit NNI [49] based on validation performance. Then we run the experiment multiple
times on a computer with 8 Tesla V100 GPUs with different seeds to obtain the average performance
and standard deviation. The selected hyperparameters for Algorithm 1 and Algorithm 2 are listed in
Tabel 5.
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Table 5: Hyperparameter settings for Algorithm 1 and Algorithm 2.

(a) Hyperparameter settings for Algorithm 1.

WaterBirds CelebA CivilComments Camelyon17

Learning rate 1e-5 1e-4 5e-5 1e-5
Weight decay 1 1e-4 1e-4 1e-2
Batch size 64 128 128 32
Optimizer SGD SGD AdamW SGD
Hyperparameter α 0.5 1.5 0.5 0.5
Hyperparameter σ 0.5 0.5 1 1
Maximum Epoch 300 20 10 5

(b) Hyperparameter settings for Algorithm 2.

WaterBirds CelebA CivilComments Camelyon17

Learning rate 1e-5 1e-5 1e-05 1e-3
Weight decay 1 1e-1 1e-2 1e-2
Batch size 64 128 128 32
Optimizer SGD SGD AdamW SGD
Start epoch Ts 50 0 0 0
Sampling epoch T 50 5 5 5
Hyperparameter η 80 50 3 5

B.4 Uncertainty quantification results on simulated dataset

We conduct a toy experiment to show the uncertainty quantification could work well on the dataset
with subpopulation shift. Specifically, we construct a four moons dataset (i.e., a dataset with four
subpopulations) as shown in Fig. B.4. We compare our approximation (i.e., Eq. 6) with the following
ensemble-based approximation:

ui ≈
1

T

T∑
t=1

κ(yi, f̂θt(xi))p(θt;D)dθ. (8)

Specifically, we train T models and then ensemble them. The quantification results are shown in
Fig. 3. We can observe that (1) the proposed historical-based uncertainty quantification method could
work well on the simulated dataset; (2) compared with the ensemble-based method, the proposed
method could better characterize the subpopulation shift.

B.5 Training accuracy throughout training

We present how the training accuracy change throughout training in Fig. 4 on the CelebA and
Waterbirds datasets to empirically show why the proposed estimation approach could work. From
the experimental results, we observe that during training, easy groups with sufficient samples can be
fitted well, and vice versa. For example, on the CelebA dataset, Group 0 and Group 1 with about
72K and 67K training samples quickly achieved over 95% accuracy. The accuracy rate on Group 2,
which has about 23K training samples, increased more slowly and finally reached around 84%. The
accuracy on Group 3, which has only about 1K training samples, is the lowest. Meanwhile, On the
Waterbirds dataset, the samples of hard-to-classify group (e.g., Group 1) are also more likely to be
forgotten by the neural networks.

B.6 Additional results

In this section, we present the full results with standard deviation in Table 6, Table 7, and Table 8.
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Table 6: Full comparison results with other methods in the group-oblivious setting where NA indicates
the standard deviation in the original paper [41] is not available. The best results are in bold blue.

Waterbirds CelebA
Avg. Worst Avg. Worst

ERM 97.0 ± 0.2% 63.7 ± 1.9% 94.9 ± 0.2% 47.8 ± 3.7%

Focal Loss [40] 87.0 ± 0.5% 73.1 ± 1.0% 88.4 ± 0.3% 72.1 ± 3.8%
CVaR-DRO [38] 90.3 ± 1.2% 77.2 ± 2.2% 86.8 ± 0.7% 76.9 ± 3.1%
CVaR-DORO [72] 91.5 ± 0.7% 77.0 ± 2.8% 89.6 ± 0.4% 75.6 ± 4.2%
χ2-DRO [38] 88.8 ± 1.5% 74.0 ± 1.8% 87.7 ± 0.3% 78.4 ± 3.4%
χ2-DORO [72] 89.5 ± 2.0% 76.0 ± 3.1% 87.0 ± 0.6% 75.6 ± 3.4%
JTT [41] 93.6 ± (NA)% 86.0 ± (NA)% 88.0 ± (NA)% 81.1 ± (NA)%

Ours 93.0 ± 0.5% 90.0 ± 1.1% 90.1 ± 0.4% 85.3 ± 4.1%

CivilComments Camelyon17
Avg. Worst Avg.

ERM 92.2 ± 0.1% 56.0 ± 3.6% 70.3 ± 6.4%

Focal Loss [40] 91.2 ± 0.5% 60.1 ± 0.7% 68.1 ± 4.8%
CVaR-DRO [38] 89.1 ± 0.4% 62.3 ± 0.7% 70.5 ± 5.1%
CVaR-DORO [72] 90.0 ± 0.4% 64.1 ± 1.4% 67.3 ± 7.2%
χ2-DRO [38] 89.4 ± 0.7% 64.2 ± 1.3% 68.0 ± 6.7%
χ2-DORO [72] 90.1 ± 0.5% 63.8 ± 0.8% 68.0 ± 7.5%
JTT [41] 90.7 ± 0.3% 67.4 ± 0.5% 69.1 ± 6.4%

Ours 90.6 ± 0.4% 70.1 ± 0.9% 75.1 ± 5.9%

Table 7: Full comparison results with the algorithms using training group labels (Our method does
not depend on this type of information). Results of baseline models are from [70]. The best three
results are in bold brown or bold blue and the color indicates whether the train group label is used.

Group labels Waterbirds CelebA
in train set? Avg. Worst Avg. Worst

IRM Yes 87.5 ± 0.7% 75.6 ± 3.1% 94.0 ± 0.4% 77.8 ± 3.9%
IB-IRM Yes 88.5 ± 0.6% 76.5 ± 1.2% 93.6 ± 0.3% 85.0 ± 1.8%
V-REx Yes 88.0 ± 1.0% 73.6 ± 0.2% 92.2 ± 0.1% 86.7 ± 1.0%
CORAL Yes 90.3 ± 1.1% 79.8 ± 1.8% 93.8 ± 0.3% 76.9 ± 3.6%
GroupDRO Yes 91.8 ± 0.3% 90.6 ± 1.1% 92.1 ± 0.4% 87.2 ± 1.6%
DomainMix Yes 76.4 ± 0.3% 53.0 ± 1.3% 93.4 ± 0.1% 65.6 ± 1.7%
Fish Yes 85.6 ± 0.4% 64.0 ± 0.3% 93.1 ± 0.3% 61.2 ± 2.5%
LISA Yes 91.8 ± 0.3% 89.2 ± 0.6% 92.4 ± 0.4% 89.3 ± 1.1%
Ours No 93.0 ± 0.5% 90.0 ± 1.1% 90.1 ± 0.4% 85.3 ± 4.1%

Group labels CivilComments Camelyon17
in train set? Avg. Worst Avg.

IRM Yes 88.8 ± 0.7% 66.3 ± 2.1% 64.2 ± 8.1%
IB-IRM Yes 89.1 ± 0.3% 65.3 ± 1.5% 68.9 ± 6.1%
V-REx Yes 90.2 ± 0.3% 64.9 ± 1.2% 71.5 ± 8.3%
CORAL Yes 88.7 ± 0.5% 65.6 ± 1.3% 59.5 ± 7.7%
GroupDRO Yes 89.9 ± 0.5% 70.0 ± 2.0% 68.4 ± 7.3%
DomainMix Yes 90.9 ± 0.4% 63.6 ± 2.5% 69.7 ± 5.5%
Fish Yes 89.8 ± 0.4% 71.1 ± 0.4% 74.7 ± 7.1%
LISA Yes 89.2 ± 0.9% 72.6 ± 0.1% 77.1 ± 6.5%
Ours No 90.6 ± 0.5% 70.1 ± 0.9% 75.1 ± 5.9%
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Figure 2: Simulated dataset with four different subpopulations. In the four subpopulations, Group 0
and Group 2 have the same label and groups 1 and 3 have the same labels.

(a) Ours (b) Ensemble

Figure 3: Visualization of the obtained uncertainty with kernel density estimation on simulated
dataset, where group size refers to the sample number of the group.

(a) CelebA (b) Waterbirds

Figure 4: Visualization of the changing of training accuracy on different groups of CelebA and
Waterbirds datasets.
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Table 8: Full comparison with ERM and mixup based methods. Results of baseline models are from
[70]. The best results are in bold brown or bold blue and the color indicates whether the train group
label is used.

Group labels Waterbirds CelebA
in train set? Avg. Worst Avg. Worst

ERM No 97.0 ± 0.2% 63.7 ± 1.9% 94.9 ± 0.2% 47.8 ± 3.7%
vanilla mixup No 81.0 ± 0.2% 56.2 ± 0.2% 95.8 ± 0.0% 46.4 ± 0.5%

in-group mixup Yes 88.7 ± 0.3% 68.0 ± 0.4% 95.2 ± 0.3% 58.3 ± 0.9%

Ours No 93.0 ± 0.5% 90.0 ± 1.1% 90.1 ± 0.4% 85.3 ± 4.1%

Group labels CivilComments Camelyon17
in train set? Avg. Worst Avg.

ERM No 92.2 ± 0.1% 56.0 ± 3.6% 70.3 ± 6.4%
vanilla mixup No 90.8 ± 0.8% 67.2 ± 1.2% 71.2 ± 5.3%

in-group mixup Yes 90.8 ± 0.6% 69.2 ± 0.8% 75.5 ± 6.7%
Ours No 90.6 ± 0.5% 70.1 ± 0.9% 75.1 ± 5.9%

C Justification for choosing historical-based uncertainty score

We employ the information from the historical training trajectory to approximate the sampling process
because it is simple and effective in practice. Empirically, in contrast to other typical uncertainty
quantification methods such as Bayesian learning or model ensemble [17, 36], our method can
significantly reduce the computational and memory-storage cost by employing the information from
the historical training trajectory, since Bayesian learning or model ensemble needs to sample/save
multiple DNN models and performs inference computations on them. Meanwhile, our method
has achieved quite promising final accuracy in contrast to other methods. In summary, we choose
an uncertainty score that can achieve satisfactory performance while being more memory and
computationally efficient.

D Societal impact and limitations

D.1 Societal impact

Algorithmic fairness and justice are closely related to our work. Philosophically, there are two
different views on justice. Firstly, Jeremy Bentham believes “the greatest good for the greatest
number” can be seen as justice [50]. ERM can be considered to inherit this spirit which pays more
attention to minimizing the majority subpopulation risks. Different from Jeremy Bentham’s opinion,
Rawlsian distributive justice [57] argues that we should maximize the welfare of the worst-off group.
The proposed method and other IW-based methods can be seen as the practice of Rawlsian distributive
justice due to focusing more on the minority subpopulations. However, in practice, the proposed
method and other IW-based methods may sacrifice the average accuracy. Therefore, the ones using
the proposed method need to carefully consider what fairness and justice are in a social context to
decide whether to sacrifice the average accuracy and improve the worst-case accuracy.

D.2 Limitations and future works

Even though the proposed method achieves excellent performance, it still has some potential limita-
tions. (1) Similar to other IW-based methods, the proposed method may sacrifice the average accuracy.
Therefore, it is also important and valuable to conduct a theoretical analysis of this phenomenon and
explore novel ways to improve the worst-case accuracy of the model without sacrificing the average
accuracy in the future work. (2) Although our method does not require training set group labels, how
to leverage unreliable subpopulation information (e.g., subpopulation labels are noise) to improve
UMIX would be a promising research topic. For example, when the unreliable subpopulation labels
are available, UMIX could be improved by equipping with existing importance weighting methods.
(3) Similar to the previous IW-based methods, the label noise is also not considered in our method,
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which may lead to over-focusing on noisy samples. Currently, it’s still a challenging open problem to
distinguish the minority samples from the mislabeled noise samples in the data with subpopulation
shift. (4) At the same time, this work only considers subpopulation shifts on Euclidean data, hence it
is also a promising future direction to generalize IW-based methods to graph-structured data, under
the guidance of invariance principle on graphs, such as that of [12]. We leave them as important
future works.

24


