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1 Proofs

We prove Theorem 1 (restated as Theorem 1) and its Corollary 1 (restated as Corollary 1), Theorem 2
(restated as Theorem 2) and Proposition 1 (restated as Proposition 1) in main text.

1.1 Proof of Theorem 1

Same as main text, let PM be the set of all distributions over a finite manifoldM. Given a distribution
p ∈ PM, we use p′ to denote its PDF. As we mentioned in main text, the differential entropy of q,
Hq, is maximized (i.e., Hq = logmM) only if q is the uniform distribution overM. This can be
seen directly from the following Jensen inequality due to the concavity of the log function:

Hq =

∫
supp(q′)

log
1

q′ (x)
dq (x) 6 log

(∫
supp(q′)

1

q′ (x)
dq (x)

)
= logmsupp(q′) 6 logmM,

(1)
where msupp(q′) and mM is the measure of supp (q′) ⊂M andM, respectively, and the equality
holds if and only if q′ is constant almost everywhere on supp (q′), and supp (q′) is almost equal to
M. We then prove the following Theorem 1.

Theorem 1. For q ∈ PM that exhibits (ε, δ)-mode collapse, 0 6 Uq 6 π (ε, δ), where π (ε, δ) ,(
δ
ε

)ε ( 1−δ
1−ε

)(1−ε)
∈ [0, 1). That is, a generative distribution that exhibits (ε, δ)-mode collapse at

least exhibits π (ε, δ)-mode collapse.

Proof. From Lemma 1, we learn thatHq is maximized if and only if q′ is constant almost everywhere
on supp (q′)∩S and q′ is constant almost everywhere on supp (q′)∩S ′. In such a case, let q′ (x) ≡ ξ
for almost every x ∈ supp (q′) ∩ S and q′ (x) ≡ ξ′ for almost every x ∈ supp (q′) ∩ S ′, then by
plugging q (S) =

∫
supp(q′)∩S dq (x) = ξm and q (S ′) =

∫
supp(q′)∩S′ dq (x) = ξ′m′ into Eq. (18),

we have that

Hq 6 q (S) log
m

q (S)
+ q (S ′) log

m′

q (S ′)
= ξm log

1

ξ
+ ξ′m′ log

1

ξ′
, E (ξ, ξ′,m,m′) , (2)

Construction of a linear programming problem Since p (S) =
∫

supp(q′)∩S dp (x) = m
mM

> δ,
we have that δmM 6 m 6 mM. We also know that 0 6 m′ 6 mM and m + m′ 6 mM. Since
q (S) = ξm 6 ε, we have that ξ 6 ε

m . Since q (S) + q (S ′) = 1, we have that ξm + ξ′m′ = 1.
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Therefore, we consider the following linear programming problem:

maxE (ξ, ξ′,m,m′) , s.t. (3)

δmM 6 m 6 mM, 0 6 m′ 6 mM, m+m′ 6 mM, 0 6 ξ 6
ε

m
, ξm+ ξ′m′ = 1.

(4)

Solving the linear programming problem Considering two sets of solutions (ξ, ξ′1,m,m
′
1) and

(ξ, ξ′2,m,m
′
2), where m′2 > m′1. According to constraint (4), we have that ξ′1m

′
1 = ξ′2m

′
2, which

implies that ξ′1 > ξ′2. Therefore, we have that

E (ξ, ξ′2,m,m
′
2)− E (ξ, ξ′1,m,m

′
1) = ξ′1m

′
1

(
log

1

ξ′2
− log

1

ξ′1

)
> 0, (5)

hence according to constraint (4), the solution (ξ, ξ′,m,m′) to the linear programming problem
(Eq. (3)) satisfies m+m′ = mM. On the other hand, according to constraint ξm+ ξ′m′ = 1, we

can rewrite the objective as F (ξ,m,m′) , E
(
ξ, 1−ξm

m′ ,m,m
′
)

. Since
(

log 1
ξ

)′
= − 1

ξ ,

∂F

∂ξ
= m

(
log

1

ξ
− 1

)
− m

m′
m′
(

log
1

ξ′
− 1

)
= m

(
log

1

ξ
− log

1

ξ′

)
. (6)

Since

m′ (ξ′ − ξ) = 1− (m+m′) ξ = 1−mMξ > 1− εmM
m

= 1− ε

p (S)
> 0, (7)

we have that ξ′ > ξ, i.e., ∂F∂ξ > 0. Hence according to constraint (4), the solution (ξ, ξ′,m,m′) to
the linear programming problem (Eq. (3)) satisfies ξ = ε

m . Based on the above analysis, we have the
following equivalent linear programming problem to Eq. (3) after simplifying

maxE (ξ, ξ′,m,m′) , s.t. (8)

δmM 6 m 6 mM, m+m′ = mM, ξ =
ε

m
, ξm+ ξ′m′ = 1. (9)

Therefore, the above linear programming problem (Eq. (8)) is equivalent to the maximum problem of
the following function G (m) , E

(
ε
m ,

1−ε
mM−m ,m,mM −m

)
,

maxG (m) , δmM 6 m 6 mM. (10)

For G′ (m), according to the chain rule of derivatives, we have that

G′ (m) =
∂E

∂ξ

dξ

dm
+
∂E

∂ξ′
dξ′

dm
+
∂E

∂m
+
∂E

∂m′
dm′

dm
(11)

= m

(
log

1

ξ
− 1

)(
− ε

m2

)
+m′

(
log

1

ξ′
− 1

)
1− ε

(mM −m)
2 + ξ log

1

ξ
− ξ′ log

1

ξ′
(12)

= −ξ
(

log
1

ξ
− 1

)
+ ξ′

(
log

1

ξ′
− 1

)
+ ξ log

1

ξ
− ξ′ log

1

ξ′
= ξ − ξ′ < 0, (13)

therefore, we know that G (m) is maximized at m = δmM, and the maximum of G (m) is given as

G (δmM) = E

(
ε

δmM
,

1− ε
(1− δ)mM

, δmM, (1− δ)mM
)

(14)

= ε log
δmM
ε

+ (1− ε) log
(1− δ)mM

1− ε
= ε log

δ

ε
+ (1− ε) log

1− δ
1− ε

+ logmM (15)

= log

{(
δ

ε

)ε(
1− δ
1− ε

)(1−ε)

mM

}
. (16)

By denoting π (ε, δ) ,
(
δ
ε

)ε ( 1−δ
1−ε

)(1−ε)
, we have thatHq 6 log (π (ε, δ)mM).
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Conclusion Obviously, π (ε, δ) > 0, and we can verify that π (ε, δ) = 0 for ε = 0. Since δ
ε 6=

1−δ
1−ε ,

according to Jensen inequality, we have that

log π (ε, δ) = ε log
δ

ε
+ (1− ε) log

1− δ
1− ε

< log

(
ε
δ

ε
+ (1− ε) 1− δ

1− ε

)
= 0, (17)

namely 0 6 π (ε, δ) < 1. For q that exhibits (ε, δ)-mode collapse, as aforementioned we know that
Hq ∈ (−∞, log (π (ε, δ)mM)], hence 0 6 Uq 6 π (ε, δ) < 1, which completes the proof.

Lemma 1. Given a distribution q ∈ PM that exhibits (ε, δ)-mode collapse on S ⊂ M, namely
p (S) > δ and q (S) 6 ε where p is the ground-truth data distribution, we have that

Hq 6 q (S) log
m

q (S)
+ q (S ′) log

m′

q (S ′)
, (18)

where S ′ is the complementary set of S with respect toM,m , msupp(q′)∩S andm′ , msupp(q′)∩S′ ,
and the equality holds if and only if q′ is constant almost everywhere on supp (q′) ∩ S and q′ is
constant almost everywhere on supp (q′) ∩ S ′.

Proof. Given that

Hq =

∫
supp(q′)

log
1

q′ (x)
dq (x) =

∫
supp(q′)∩S

log
1

q′ (x)
dq (x)︸ ︷︷ ︸

1©

+

∫
supp(q′)∩S′

log
1

q′ (x)
dq (x)︸ ︷︷ ︸

2©

,

(19)
we can derive according to the Jensen inequality that

1© = q (S)

∫
supp(q′)∩S

log
1

q′ (x)
d
q (x)

q (S)
6 q (S) log

(∫
supp(q′)∩S

1

q′ (x)
d
q (x)

q (S)

)
(20)

= q (S) log

(
1

q (S)

∫
supp(q′)∩S

1

q′ (x)
dq (x)

)
= q (S) log

m

q (S)
, (21)

where the equality holds if and only if q′ is constant almost everywhere on supp (q′) ∩ S . Similarly,
we have that

2© 6 q (S ′) log
m′

q (S ′)
, (22)

where the equality holds if and only if q′ is constant almost everywhere on supp (q′)∩S ′. Combining
Eq. (20)-(22) completes the proof.

1.2 Proof of Corollary 1

We prove Corollary 1 in main text, which is restated as the following Corollary 1:
Corollary 1. The following claims can be deduced from Theorem 1:

(i) Let u∗ (ε, δ) be the maximum uniform diversity that can be achieved for a generative
distribution that exhibits (ε, δ)-mode collapse. Then u∗ (ε′, δ′) < u∗ (ε, δ) holds for δ′ > δ
and ε′ < ε. Moreover, ∀ξ > 0, ∃µ, ν > 0, such that u∗ (ε, δ) < ξ if ε < µ and 1− δ < ν.

(ii) Let q ∈ PM be a generative distribution that exhibits u-mode collapse for any u ∈ [0, 1),
then for any δ ∈ (0, 1) and ξ > 0, q can exhibit (ε, δ)-mode collapse for δ − ε < ξ.

Proof. From Theorem 1, we know that u∗ (ε, δ) = π (ε, δ). By denoting

F (ε, δ) , log π (ε, δ) = ε log
δ

ε
+ (1− ε) log

1− δ
1− ε

(23)

and using the fact that ε < δ and 1− ε > 1− δ, we have that
∂F

∂ε
= log

δ

ε
− log

1− δ
1− ε

> 0, (24)

∂F

∂δ
=
ε

δ
− 1− ε

1− δ
< 0. (25)
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Therefore, for δ′ > δ and ε′ < ε, we have that F (ε′, δ′) < F (ε, δ), namely u∗ (ε′, δ′) < u∗ (ε, δ).
Given 0 < ξ < 1, we can verify that ∃µ = 1, ν = 1− ξ, such that for ε < µ and 1− δ < ν,

π (ε, δ) < π (µ, 1− ν) = π (1, ξ) = ξ. (26)

On the other hand, π (ε, δ) < ξ always holds for ξ > 1. Hence the proof of Claim (i) is completed. To
Claim (ii), we use contradictory. Assume that ∃u ∈ [0, 1) , δ ∈ (0, 1) , ξ > 0, such that ∀ε > δ − ξ, q
cannot exhibit (ε, δ)-mode collapse, namely u > π (ε, δ). However, we can verify that π (ε, δ)→ 1
as ε→ δ, namely ∃ε > δ − ξ, such that π (ε, δ) > u, which contradicts the assumption. Therefore,
the proof of Claim (ii) is completed.

1.3 Proof of Theorem 2

We prove Theorem 2 in main text, which is restated as the following Theorem 2:
Theorem 2. Assume that the generator g : Z → M is a local diffeomorphism between Z ⊂ RK
andM⊂ RD with K < D, and the prior distribution pz ∈ PZ is the uniform distribution over Z .
The uniform diversity of the generative distribution q = g#pz is maximized, if g is uniform.

Proof. The uniform diversity, Uq = eHq

mM
, of the generative distribution q is maximized, if and only if

Hq is maximized. For z ∈ Z , let x = g (z), we have that

Hq = −
∫

supp(q′)

log q′ (x) dq (x) (27)

= −
∫

supp(q′)

p′z (z)√
det J>g (z) Jg (z)

log
p′z (z)√

det J>g (z) Jg (z)
dVM|x (28)

= −
∫
Z

p′z (z)√
det J>g (z) Jg (z)

log
p′z (z)√

det J>g (z) Jg (z)

(√
det J>g (z) Jg (z)dVZ |z

)
(29)

= −
∫
Z
p′z (z) log

p′z (z)√
det J>g (z) Jg (z)

dVZ |z (30)

= −
∫
Z
p′z (z) log p′z (z) dVZ |z +

∫
Z
p′z (z) log

√
det J>g (z) Jg (z)dVZ |z (31)

= Hpz + p′z

∫
Z

log
√

det J>g (z) Jg (z)dVZ |z. (32)

Note that p′z is constant over Z since pz is the uniform distribution over Z . From Eq. (32), we learn

that maximizing Hq is equivalent to maximizing
∫
Z log

√
det J>g (z) Jg (z)dVZ |z . On the other

hand, given that Z is finite, we have that∫
Z

dVZ |z = mZ , (33)

Therefore, according to Jensen inequality, we have that∫
Z

log
√

det J>g (z) Jg (z)dVZ |z 6 mZ log

(
1

mZ

∫
Z

√
det J>g (z) Jg (z)dVZ |z

)
(34)

= mZ log

(
1

mZ

∫
supp(q′)

dVM|x

)
= mZ log

msupp(q′)

mZ
, (35)

where the equality holds if and only if det J>g Jg is constant over Z , which completes the proof.

1.4 Proof of Proposition 1

We prove Proposition 1 in main text, which is restated as the following Proposition 1. Recall that in
main text, we use an NF-based generator g : Z ⊂ RK → RD for arbitraryK < D with a hierarchical
architecture as follows

g = fL ◦ eL ◦ fL−1 ◦ eL−1 ◦ · · · ◦ f1 ◦ e1, (36)
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where fi : RKi → RKi is a bijective and invertible NF module (e.g., coupling layers [1, 2, 3]) with
tractable determinant of Jacobian, ei : RKi−1 → RKi boosts the dimensionality of the input feature x
from Ki−1 to Ki by simply padding Ki −Ki−1 zeros at the end of x [4], and the dimensionalities of
hierarchical features satisfy K = K0 < K1 < · · · < KL = D. We also mentioned that the pseudo
inverse of g, g† : RD → RK , is defined as

g† = e†1 ◦ f
−1
1 ◦ · · · ◦ e†L−1 ◦ f

−1
L−1 ◦ e

†
L ◦ f

−1
L , (37)

where f−1
i : RKi → RKi is the inverse of fi, and e†i : RKi → RKi−1 is the pseudo inverse of ei that

reduces the dimensionality of the input feature x from Ki to Ki−1 by simply dropping Ki −Ki−1

zeros at the end of x. We then prove the following Proposition 1:
Proposition 1. ∀z ∈ Z , Jg† (g (z)) Jg (z) = I ∈ RK×K holds, where I is the identity matrix.

Proof. Given z0 ∈ Z and xL ∈ g (Z), we denote that
z̃l , el (zl−1) , zl , fl (z̃l) , 1 6 l 6 L, (38)

xl−1 , e†l (x̃l) , x̃l = f−1
l (xl) , 1 6 l 6 L. (39)

Therefore, we have that
Jg (z0) = JfL (z̃L) JeL (zL−1) JfL−1

(z̃L−1) JeL−1
(zL−2) · · · Jf1 (z̃1) Je1 (z0) , (40)

Jg† (xL) = Je†1
(x̃1) Jf−1

1
(x1) · · · Je†L−1

(x̃L−1) Jf−1
L−1

(xL−1) Je†L
(x̃L) Jf−1

L
(xL) . (41)

Since ei : RKi−1 → RKi and e†i : RKi → RKi−1 are linear transformations, we have that
Je†i

Jei ≡ IKi−1×Ki
IKi×Ki−1

= IKi−1×Ki−1
, (42)

where we denote Im×n as an m× n identity matrix. On the other hand, for xL = g (z0), we have
zL = xL =⇒ z̃L = x̃L =⇒ zL−1 = xL−1 =⇒ · · · =⇒ z0 = x0. (43)

Therefore, we have that xi = fi ◦ f−1
i (xi) = fi (x̃i) = f (z̃i), which implies that
Jf−1

i
(xi) Jfi (z̃i) = IKi×Ki

. (44)

Therefore, by plugging Eq. (42) and Eq. (44) into Eq. (40) and Eq. (41), we have that
Jg† (g (z)) Jg (z) (45)
= Je†1

(x̃1) Jf−1
1

(x1) · · · Je†L−1
(x̃L−1) Jf−1

L−1
(xL−1) Je†L

(x̃L) Jf−1
L

(xL) (46)

JfL (z̃L) JeL (zL−1) JfL−1
(z̃L−1) JeL−1

(zL−2) · · · Jf1 (z̃1) Je1 (z0) (47)
= Je†1

(x̃1) Jf−1
1

(x1) · · · Je†L−1
(x̃L−1) Jf−1

L−1
(xL−1) (48)

JfL−1
(z̃L−1) JeL−1

(zL−2) · · · Jf1 (z̃1) Je1 (z0) (49)
= Je†1

(x̃1) Jf−1
1

(x1) · · · Jf1 (z̃1) Je1 (z0) (50)

= Je†1
(x̃1) Jf−1

1
(x1) Jf1 (z̃1) Je1 (z0) (51)

= IK×K , (52)
which completes the proof.

For any matrix J , we adopt σ∗ (J) and σ∗ (J) to denote the maximum and the minimum singular
value of J , respectively. Given Jg†Jg = I , we intuitively illustrate that σ∗ (Jg) = 1

σ∗(Jg†)
in the

case of u∗ ∈ Tg(z)M by using Fig. 4 in main text, where u∗ gives the maximum singular value of
Jg† andM is the generated manifold of g. However, it is notable that σ∗ (Jg) = 1

σ∗(Jg†)
does not

universally hold in the case of Jg†Jg = I as we mentioned in main text. For a toy example, consider
Jg , [a, b]

> ∈ R1×2 and Jg† ,
[

1
a , 0
]
∈ R2×1. We can then verify that Jg†Jg = [1] ∈ R1×1 = I .

We know that U∗ ,
{

[α, 0]
> |α ∈ R

}
are all the vectors that give the maximum singular value of

Jg† and Tg(z)M , {(αa, αb) |α ∈ R}, hence in the case of b 6= 0, we know that U∗ ∩ Tg(z)M = ∅,
i.e., there does not exist a tangent vector that gives the maximum singular value of Jg† . On the other
hand, we know that 1

σ∗(Jg†)
= |a| 6=

√
a2 + b2 = σ∗ (Jg) in the case of b 6= 0. Therefore, this toy

example is an illustration that 1

σ∗(Jg†)
6= σ∗ (Jg) can hold for Jg† such that the maximum singular

value can not be given by a vector from Tg(z)M.
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Figure 1: Illustration of the architecture of the i-th block fi ◦ ei : RKi−1 → RKi , which consists of
a dim increasing layer ei : RKi−1 → RKi and a flow layer fi : RKi → RKi . We use text (c, s) in
red to denote a feature of shape c× s× s, where c and s are the number of channels and spatial size,
respectively. Therefore, Ki = ci × 2i × 2i. To understand the operating mechanism of the unsqueeze
layer, we mark pixels of a feature by using different numbers, and the correspondence between pixels
of the input and output feature is indicated by numbers. The squeeze layer is actually an invert of the
unsqueeze layer. The split and concat deal with input features along the channel axis.

2 Implementation Details

We provide implementation details of our NF-based generator, the generator uniformity regularization
and the udiv diversity metric that are briefly introduced in main text.

2.1 The NF-based Generator

Given the architecture of our generator g as shown in Eq. (36), we refer to fi ◦ ei : RKi−1 → RKi as
the i-th block layer, which consists of a dim increasing layer ei and a flow layer fi. We illustrate the
architecture of a block layer as shown in Fig. 1. Given a feature of shape Ki−1 , ci−1×2i−1×2i−1,
the dim increasing layer ei promotes the dimensionality of the input feature and outputs a feature of
shape Ki , ci × 2i × 2i by using a zero pad layer, a 1× 1 convolution layer, and a unsqueeze layer.
The zero pad layer pads (4ci − ci−1)× 2i−1 × 2i−1 zeros at the end of the input feature along the
channel axis, obtaining an output feature of shape 4ci × 2i−1 × 2i−1 whose subfeatures of different
channels are further mixed by the following 1× 1 convolution layer. The final unsqueeze layer further
increases the spatial size of the feature while decreasing the number of channels without changing
the dimensionality of the feature, obtaining the output feature of shape ci × 2i × 2i. In terms of the
flow layer fi : Rci×2i×2i → Rci×2i×2i

, it consists of several module layers, where a module layer
consists of 1× 1 convolutional layer, a Batch Normalization [5] (BN) layer, and an additive coupling
layer [1, 2, 3]. All these layers do not change the dimensionality of features. In terms of an additive
coupling layer r : RKi → RKi , for y = r (x), the computation is given as

y
1:

Ki
2

= x
1:

Ki
2

, (53)

yKi
2 +1:Ki

= xKi
2 +1:Ki

+ n
(
x

1:
Ki
2

)
, (54)

where we use xa:b to denote [xa, xa+1, · · · , xb] ∈ Rb−a+1, and n : R
Ki
2 → R

Ki
2 (assume that Ki is

even) can be any flexible nonlinear neural network. However, a notable issue is that y
1:

Ki
2

remains
the same as x

1:
Ki
2

, which limits the flexibility of r. To overcome this problem, inspired by [3], the
1× 1 convolution layer and the BN layer before r are added. In terms of the nonlinear transformation
n inside r, given the input feature x

1:
Ki
2

of shape ci
2 × 2i × 2i, we first use a squeeze layer to reduce

its spatial size, obtaining a feature of shape 2ci× 2i−1× 2i−1, followed by using a 1× 1 convolution
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with a weight matrix of shape hi−1 × 2ci to obtain a feature of shape hi−1 × 2i−1 × 2i−1, where we
refer to hi as the number of channels of hidden features of i-th block. We further perform upsampling
on this feature by using a layer composed by a transposed convolution layer, a BN layer and a ReLU
layer, obtaining a hidden feature of shape hi × 2i × 2i. Finally, the hidden feature is transformed to
the output feature of shape ci × 2i × 2i by using a 1× 1 convolution layer with a weight matrix of
shape ci × hi. To stabilize training and reduce the amount of trainable parameters of our generator,
for all 1× 1 convolution layer with a weight matrix W of shape h× w, we first randomly initialize a
rotation matrix R of shape s× s, where s = max {h,w}, and then chose W to be the first h (resp.,
w) rows (resp., columns) of R in the case of h 6 w (resp., h > w), and W is fixed during training.

Conditional generation The manifold hypothesis [6, 7, 8] assumes that high dimensional data is
concentrated on a lower dimensional manifold. This assumption is natural for a set of images where
the change between images is continuous, e.g., the change between human face images is continuous.
We refer to such a case as continuous data mode. However, there also exists sets of images where the
change between images can be drastic, e.g., for the MNIST [9] dataset, changes between images of
different digits could be discontinuous and drastic. We refer to such a case as discrete data mode.
Existing work [10, 11] summarize two different types of mode collapse: collapse to a subset of data
modes, and collapse to a sub-manifold within the data distribution, which correspond to the discrete
data mode and the continuous data mode, respectively. Given continuous data mode, it is reasonable
that our proposed generator is applicable, since the generator is a continuous mapping. However, how
to extend our generator to the setting of discrete data mode is a notable problem. In order to tackle
this problem, we also extend our generator architecture to the conditional generation setting g̃ (z; y),
where z ∈ RK is the latent code, and y ∈ N is the category label. Given that g̃ : RK × N→ RD is
the conditional generator, our idea is to make gy : RK → RD a continuous generator that adopts the
same architecture as used in the case of continuous data mode, where gy (z) , g̃ (z; y). Though this
is similar to a multiple generator setting [12, 13, 14], we share model parameters between generators
gy corresponding to different category y. Specifically, let g : RK → RD be a continuous generator
that uses an architecture as shown in Eq. (36), in addition to the generator, we firstly set up trainable
category embeddings C ∈ RY×K where Y is the number of categories, then modify e1 from a layer
that increases dimensionality from K to K1 to a layer that increases dimensionality from 2K to K1.
In such a case, the conditional generator g̃ : RK × N→ RD is defined as

g̃ (z; y) = g (concat (z, Cy)) , z ∈ Z, y ∈ N, (55)

where Cy is the y-th row of matrix C, i.e., the embedding of the y-th category, and concat (z, Cy) ∈
R2K is a vector of length 2K obtained by concatenating the latent code z ∈ RK and Cy ∈ RK . Such
a modification does not increase the amount of model parameters. During our training in practice,
for datasets with known number of categories, e.g., MNIST that contains ten different categories of
digits, we can set Y to the ground-truth number of category. For datasets without category labels, we
can use labels automatically derived from clustering in the discriminator’s feature space as proposed
in [15]. Moreover, to ensure that different generators capture modes of different category, we employ
a MAD-GAN [12] discriminator distinguishes the real and fake samples along with identifying the
generator that generates the given fake sample. See our code provided in supplementary material.

2.2 The Generator Uniformity Regularization

Recall that the generator uniformity regularization is given in main text as

Lgunif , Ez∼pz

{
(LTg (z)− a)

2
+

(
1

LTg† (g (z))
− a
)2
}
, (56)

where LTg (z) gives the estimated spectral norm of Jg at z by using the Linearized Transpose (LT)
technique, and a is the moving average of the minimum and the maximum singular values of Jg .

2.2.1 The Linearized Transpose Technique

We firstly present the detailed introduction to our proposed Linearized Transpose (LT) technique that
estimates the spectral norm of the Jacobian J of a given mapping g in a sample efficient manner. We
fundamentally use the fast approximation approach proposed in [16, 17, 18] in our LT process. Given
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Algorithm 1 Linearized Transpose
Require: A mapping g : RK → RD, an input z ∈ RK , power of iteration M

1: procedure LTg(z; M )
2: Obtain x = g (z), meanwhile construct ĝz
3: Randomly sample ε ∈ RD, then obtain z′ = ĝz (ε) ∈ RK
4: Randomly sample u, u′ ∈ RD and v ∈ RK
5: for m = 1 to M do
6: Update v ← Pgrad

(
z, u

>x
‖u‖2

)
7: Update u′ ← u, u← Pgrad

(
ε, v

>z′

‖v‖2

)
8: end for
9: return estimated spectral norm u>u′

10: end procedure

a matrix J ∈ RD×K , the fast approximation approach first randomly sample a vector u ∈ RD, then
repeat the following update procedure several times

v ← J>u

‖J>u‖2
, u← Jv

‖Jv‖2
. (57)

Finally, the spectral norm σ∗ of J can be effectively approximated as σ∗ ≈ u>Jv. However, in our
case the problem is that the matrix J is implicit and is inefficient to estimate, since it is the Jacobian
of a nonlinear mapping g. Fortunately, we observe that an explicit J may be not necessary, since it is
sufficient to perform fast approximation if we can estimate J>u ∈ RK and Jv ∈ RD directly. We
are also aware that the autograd Pgrad of deep learning libraries [19, 20] can efficiently perform

Pgrad

(
z, u>g (z)

)
=

D∑
i=1

∂(u>g)i
∂z

= J>u ∈ RK (58)

and produces accurate estimation. Such a method was also adopted in [21]. Based on Eq. (58), J>u
is tractable. Similarly, to obtain Jv, we observe that a linear mapping ĝ should be constructed where
Jĝ = J>, where Jĝ is the Jacobian of ĝ. To see this, by exploiting Eq. (58), we have

Pgrad

(
ε, v>ĝ (ε)

)
= J>ĝ v = Jv, (59)

where ε ∈ RK can be an arbitrary vector, since ĝ is linear and hence Jĝ is independent of ε. Hence
we provide the formal definition of LT as

Definition 1 (Linearized transpose). Given a mapping g : RK → RD, the linearized transpose of g
at z, is a linear mapping ĝz : RD → RK , such that

Jĝz = J>g (z) . (60)

Therefore, for generator g, as long as we are able to construct ĝz , we can apply the aforementioned
fast approximation approach to estimate the spectral norm of Jg (z) by using Eq. 58 and Eq. 59, and
the LT algorithm for obtaining LTg (z) is provided in Alg. 1. Similarly, LTg† (g (z)) can be obtained
as long as we are able to construct ĝ†g(z).

2.2.2 Construction of Linearized Transpose

As we mentioned in Section 2.2.1, to obtain LTg (z) and LTg† (g (z)), the main task is to construct
ĝz and ĝ†g(z). We firstly provide the following Proposition 2:

Proposition 2. Given a mapping f = fL ◦ fL−1 ◦ · · · ◦ f1, we have

f̂z1 = f̂1z1 ◦ f̂2z2 ◦ · · · f̂LzL , (61)

where zl+1 = fl (zl) , 1 6 l 6 L.
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Proof. By checking

Jf̂z1
= Jf̂1z1

Jf̂2z2

· · · J
f̂LzL

= J>f1 (z1) J>f2 (z2) · · · J>fL (zL) (62)

= (JfL (zL) · · · Jf2 (z2) Jf1 (z1))
>

= J>f (z1) , (63)

we learn that Eq. (61) gives the LT of f at z1 according to the Definition 1 of LT.

We then introduce how to construct ĝz and ĝ†g(z). According to Eq. (36) and Eq. (37), by leveraging
Proposition 2, we have

ĝ = ê1 ◦ f̂1 ◦ · · · ◦ êL−1 ◦ f̂L−1 ◦ êL ◦ f̂L, (64)

ĝ† = f̂−1
L ◦ ê†L ◦ f̂

−1
L−1 ◦ ê

†
L−1 ◦ · · · ◦ f̂

−1
1 ◦ ê†1, (65)

where we omit the dependencies of ĝz (resp., ĝ†g(z)) on z (resp., g (z)) to avoid redundancy. Hence

we only need to construct êi, ê
†
i , f̂i and f̂−1

i .

LT of ei As we introduced in Section 2.1 and illustrated in Fig. 1, we know that the dim increasing
layer ei : RKi−1 → RKi is composed as

ei = u ◦ w ◦ p, (66)

where p : RKi−1 → RKi , w : RKi → RKi and u : RKi → RKi are the zero pad layer, the 1 × 1
convolution layer, and the unsqueeze layer of ei, respectively. From Proposition 2 we have

êi = p̂ ◦ ŵ ◦ û. (67)

Since p pads Ki −Ki−1 zeros at the end of the input feature, we know that its Jacobian Jp is the
identity matrix IKi×Ki−1

. Hence we can verify that p̂ = p†, where p† : RKi → RKi−1 is the pseudo
inverse of p which drops the last Ki −Ki−1 elements of the input feature, because Jp† = IKi−1×Ki

and hence Jp† = J>p . Regarding ŵ, we can easily verify that it is the ConvTransposed layer with
the same weight as w. Since the unsqueeze operation u only rearrange the elements of the input
feature, we know that its Jacobian Ju is a permutation matrix P ∈ RKi×Ki . Hence we can verify
that û = u−1 : RKi → RKi , where u−1 is essentially the squeeze layer (i.e., the inverted operation
of the unsqueeze layer), because Ju−1 = P−1 = P> = J>u . Summarizing the above gives us êi.

LT of e†i Based on Eq. (66), we know that the pseudo inverse of ei, e
†
i : RKi → RKi−1 , is given as

e†i = p† ◦ w−1 ◦ u−1, (68)

where p† is the pseudo inverse of p and u−1 is the inverse of u (i.e., a squeeze layer) as mentioned
above, and w−1 : RKi → RKi is the inverse of w which can be easily verified as a 1× 1 convolution
layer with weight W> where W is the weight matrix of w (note that W is a rotation matrix). From
Proposition 2 we have

ê†i = û−1 ◦ ŵ−1 ◦ p̂†, (69)

and we can know that û−1 = u and p̂† = p from what we discussed when we introduced the LT of ei.
In terms of ŵ−1, since w−1 is essentially a 1× 1 convolution layer with weight W>, we know that

ŵ−1 is a ConvTranspose layer with weight W>. Summarizing the above gives us ê†i .

LT of fi As we introduced in Section 2.1 and illustrated in Fig. 1, we know that the flow layer fi
consists of several module layers. Let q be a module layer of fi, then q is composed as

q = w ◦ b ◦ r, (70)

where w : RKi → RKi , b : RKi → RKi and r : RKi → RKi are a 1 × 1 convolution layer, a BN
layer, and an additive coupling layer, respectively. Therefore, in order to construct f̂i, we only need to
construct ŵ, b̂ and r̂, respectively. As we mentioned above, ŵ : RKi → RKi is a ConvTransposed
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layer with the same weight as w. In terms of the BN layer b, since we set b to the evaluation mode
without tracking running statistics [5] when it comes to constructing LT, for y = b (x), we have

y = γ
x− running_mean√

running_var
+ β, (71)

where γ, β are the learnable parameters of the BN layer b, and running_mean, running_var are the
running statistics. Therefore, we know that the Jacobian Jb ∈ RKi×Ki of b is diagonal, and hence b̂
is b itself because Jb̂ = Jb = J>b . In terms of r̂, we can verify that for x = r̂ (y), the computation

x
1:

Ki
2

= y
1:

Ki
2

+ n̂
(
yKi

2 +1:Ki

)
, (72)

xKi
2 +1:Ki

= yKi
2 +1:Ki

, (73)

gives that Jr̂ = J>r , because

Jr̂ =

[
IKi

2 ×
Ki
2

Jn̂
0 IKi

2 ×
Ki
2

]
=

[
IKi

2 ×
Ki
2

0

Jn IKi
2 ×

Ki
2

]>
= J>r . (74)

Therefore, we need to construct n̂. As we introduced in Section 2.1 and illustrated in Fig. 1,

n = c2 ◦ φ ◦ b ◦ v ◦ c1 ◦ u−1, (75)

where u−1 : R
Ki
2 → R

Ki
2 is the squeeze layer of n, c1 : R

Ki
2 → Rh̃i−1 and c2 : Rh̃i → R

Ki
2 are the

first and second 1× 1 convolution layer of n respectively, v : Rh̃i−1 → Rh̃i is the ConvTransposed

layer of n, and b, φ : Rh̃i → Rh̃i are the BN layer and the ReLU layer of n respectively, where we
use h̃i , hi × 2i × 2i (see Section 2.1 and Fig. 1). Therefore, we have

n̂ = û−1 ◦ ĉ1 ◦ v̂ ◦ b̂ ◦ φ̂ ◦ ĉ2, (76)

where we know that û−1 = u (i.e., a unsqueeze layer), ĉ1 (resp., ĉ2) is the ConvTransposed layer
with the same weight as c1 (resp., c2), and b̂ = b. In terms of the LT v̂ of the ConvTransposed layer
v, we can verify that v̂ is the convolution layer weight the same weight as v. In terms of the LT φ̂ of
the ReLU layer, since it is a elementwise activation layer, for y = φ (x), we know that

Jφ (x) =


φ′ (x1)

φ′ (x2)
. . .

φ′
(
xh̃i

)
.

 (77)

Therefore, by denoting ξ ,
[
φ′ (x1) , φ′ (x2) , · · · , φ′

(
xh̃i

)]
∈ Rh̃i , we know that

φ̂ (y) = ξ ⊗ y, (78)

gives the LT of φ, where ⊗ is the elementwise multiplication. Summarizing the above gives us f̂i.

LT of f−1
i Since fi consists of several module layers, f−1

i is given based on the invert of module
layers. Let q : RKi → RKi be a module layer of fi, based on Eq. (70), we know that the invert of q,
q−1 : RKi → RKi , is given as

q−1 = r−1 ◦ b−1 ◦ w−1, (79)

where w−1 : RKi → RKi is the invert of the 1 × 1 convolution layer w, b−1 : RKi → RKi is the
invert of the BN layer b, and r−1 : RKi → RKi is the invert of the additive coupling layer r. As we
mentioned above, w−1 is a 1× 1 convolution layer with weight W> where W is the weight matrix
of w. In terms of b−1, according to Eq. (71), for x = b−1 (y), we know that

x =
(y − β)

√
running_var

γ
+ running_mean. (80)
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Algorithm 2 Train UniGAN.

Require: Training samples D =
{
x(i)
}N
i=1
⊂ RD, latent space Z ⊂ RK , generator g : Z → RD,

discriminator d : RD → (0, 1), model parameters Θg,Θd, optimizers ρg, ρd, uniform prior
distribution pz over Z , batch size B, hyper-parameter λgunif , frequency of regularization s.

1: Initialize steps of training i← 1
2: Randomly initialize the moving average a
3: while not converge do

/* Train discriminator d. */
4: Randomly sample

{
x(i) ∈ D

}B
i=1

5: Randomly sample
{
z(i) ∼ pz

}B
i=1

, obtaining
{
x̃(i) = g

(
z(i)
)}B
i=1

6: Compute Ldisc = 1
B

∑B
i=1 log d

(
x(i)
)

+ 1
B

∑B
i=1 log

(
1− d

(
x̃(i)
))

7: Update Θd ← ρd∇dLdisc

/* Train generator g. */
8: Randomly sample

{
z(i) ∼ pz

}B
i=1

, obtaining
{
x̃(i) = g

(
z(i)
)}B
i=1

9: Compute Lgen = 1
B

∑B
i=1 log d

(
x̃(i)
)

/* Apply the generator uniformity regularization. */
10: if i mod s = 0 then
11: if i/s mod 2 = 0 then
12: Compute the maximum singular values

{
σ(i) = LTg

(
z(i)
)}B
i=1

13: else

14: Compute the minimum singular values
{
σ(i) = 1

LT
g†(x̃(i))

}B
i=1

15: end if
16: Compute Lgunif = 1

B

∑B
i=1

(
σ(i) − a

)2
17: Update Lgen ← Lgen + λgunifLgunif

18: Update a← 0.99a+ 0.01
(

1
B

∑B
i=1 σ

(i)
)

19: end if
20: Update Θg ← ρg∇gLgen

21: Update i← i+ 1
22: end while

In terms of r−1, for x = r−1 (y) we can verify that the computation gives by r−1 is as follows,

x
1:

Ki
2

= y
1:

Ki
2

, (81)

xKi
2 +1:Ki

= yKi
2 +1:Ki

− n
(
y

1:
Ki
2

)
. (82)

To construction q̂−1 = ŵ−1 ◦ b̂−1 ◦ r̂−1, we need to construct ŵ−1, b̂−1 and r̂−1. In terms of ŵ−1,
as mentioned above, we know that it is a ConvTranspose layer with weight W>. In terms of b̂−1,
similar to obtaining b̂ from b, we know that b̂−1 is b−1 itself, since Jb−1 is diagonal. In terms of r̂−1,
we can verify that for y = r̂−1 (x), the computation

y
1:

Ki
2

= x
1:

Ki
2

− n̂
(
xKi

2 +1:Ki

)
, (83)

yKi
2 +1:Ki

= xKi
2 +1:Ki

, (84)

gives that J
r̂−1 = J>r−1 , because

Jr̂−1 =

[
IKi

2 ×
Ki
2

−Jn̂
0 IKi

2 ×
Ki
2

]
=

[
IKi

2 ×
Ki
2

0

−Jn IKi
2 ×

Ki
2

]>
= J>r−1 . (85)

The construction of n̂ is already given as mentioned above. Summarizing the above gives us f̂−1
i .
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2.2.3 Training Algorithm

We then introduce the whole training Algorithm 2 of our UniGAN framework augmented with the
aforementioned generator uniformity regularization Lgunif as in Eq. (56). The Algorithm 2 shows the
training procedure of our UniGAN adapted for a vanilla GAN [22], and the algorithm can be adapted
to other variants of GANs by replacing the method for training the generator and the discriminator.

Sample efficiency We show that our proposed Lgunif is superior in sample efficiency compared
to other isometry learning methods. Given a generator g : Z → RD, the LGAN [8] proposes the
following regularization

Llgan = Ez∼pzEi∈[K]Ej∈[K]

((
g (z + ∆i)

ε

)>(
g (z + ∆j)

ε

)
− δij

)2

(86)

to encourage an isometric generator, i.e., J>g Jg = I , where we use [K] , {1, 2, · · · ,K}, ε is a
small positive real number, and ∆i is a K-dimensional vector whose i-th element is ε and the other
elements are zero. Therefore, g(z+∆i)

ε is the approximated i-th column vector of Jg (z), and δij is
the Kronecker delta. By utilizing the automatic differentiation function of existing deep learning
libraries like PyTorch [23], the StyleGAN2 [21] proposes the following path length regularization

Lstylegan2 = Ez∼pzEy∼N (0,1)

(∥∥J>g (z) y
∥∥

2
− a
)2

, (87)

where a is the moving average of
∥∥J>g (z) y

∥∥
2
. For Llgan and Lstylegan2, we can observe that given a

z ∼ pz , both regularizations lead to further sampling complexity, since Llgan requires to sample i, j
from [k] while Lstylegan2 requires to sample y from N (0, 1) over a high dimensional space RD. So
to effectively encourage the generator g to be an isometry, the further sampling procedure should be
sufficient for both regularizations. However, as shown in Eq. (56), our regularization Lgunif does not
require any further sampling procedure given a z ∼ pz , since the LT technique does not require any
sampling procedure given a z ∼ pz . Therefore, our Lgunif is superior in sample efficiency compared
to Llgan and Lstylegan2. We provide ablation study on sample efficiency in Section 3.2.

Computational cost and memory usage Though our proposed LT is superior in sampling com-
plexity as we mentioned above, a major concern is that how our LT performs in terms of computational
cost and the memory usage. From Algorithm 1, we learn that to obtain LTg (z), we need to firstly
compute x = g (z) to obtain x. However, this does not increase the computational burden since we
can incorporate this forward computation into the computation that generates fake samples when
training the generator in Algorithm 2. In terms of constructing LT, according to what we mentioned in
Section 2.2.2, we learn that except for ReLU which requires recording the derivatives with respect to
the input (i.e., ξ in Eq. (78)) to construct LT, other LT constructions can be obtained directly without
involving any additional process. However, due to the simplicity of ReLU, the computational cost of
the ReLU derivatives is negligible, and the derivatives can be obtained while generating fake samples
without additional computation. During training, we only record the ReLU derivatives of the current
batch training samples, which leads to negligible memory usage. To obtain LTg† (g (z)), we only
require a computation z = g† (g (z)) to map generated samples back to latent codes, no more extra
computation is needed. We notice that our LT algorithm involves a hyper-parameter, i.e., power of
iterations M , which can lead to different computational cost with different M . We provide ablation
study on M in Section 3.2.

Lazy regularization Similar to [21], we also adopt a lazy regularization strategy when we apply
the generator uniformity regularization. Specifically, by changing the hyper-parameter frequency of
regularization s, the computational cost of the Lgunif can be reduced since it can be computed less
frequently than the main loss function [21]. We provide ablation study on s in Section 3.2.

2.3 The udiv Diversity Metric

To realize the computation of uniform diversity in practice, we propose a new diversity metric named
udiv estimating the uniform diversity of a given set of generative samples X =

{
x(i)
}N
i=1

, where X
contains N samples coming from a generative distribution.
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The sampling bias problem It is known that directly computing the entropy based on X leads to
biased results compared to the ground-truth entropy of q [24]. We firstly use a toy example to show
this problem intuitively and introduce our idea to tackle this problem. Let q ∈ P[0,1] be a distribution
over the interval [0, 1] whose PDF q′ is defined as

q′ (x) =

{
0.5, 0 6 x 6 0.8,

3.0, 0.8 < x 6 1.
(88)

since q ([0, 0.8]) = 0.4 and q ((0.8, 1]) = 0.6, given X , it is reasonable to assume that 2N
5 samples

come from [0, 0.8] and 3N
5 samples come from (0.8, 1]. Therefore, according to

Hq = −
∫ 1

0

q′ (x) log q′ (x) dx = lim
N→∞

N∑
i=1

1

N

(
−q′

(
i

N

)
log q′

(
i

N

))
, (89)

the approximated entropy based on X is given as

HX =
1

N

N∑
i=1

(
−q′

(
x(i)
)

log q′
(
x(i)
))

(90)

=
1

N

(
2N

5
(−0.5 log 0.5) +

3N

5
(−3.0 log 3.0)

)
(91)

=
2

5
(−0.5 log 0.5) +

3

5
(−3.0 log 3.0) (92)

≈ −1.83 (93)

However, the ground-truth entropyHq is given as

Hq =

∫ 1

0

−q′ (x) log q′ (x) dx = 0.8 (−0.5 log 0.5) + 0.2 (−3.0 log 3.0) ≈ −0.38. (94)

Comparing Eq. (93) to Eq. (94), we learn that the estimated entropy based on X is seriously biased
compared to the ground-truth result. From Eq. (92) and Eq. (94), we observe that the bias is caused
by the inaccuracy of the factors of (−0.5 log 0.5) and (−3.0 log 3.0), i.e., 2

5 and 3
5 respectively, in

Eq. (92), because the ground-truth factors in Eq. (94) is 0.8 and 0.2, respectively. We observe that

2

5
/0.5 :

3

5
/3.0 = 0.8 : 0.2, (95)

therefore, if we compute the following weighted entropy based on X , we have

H̃X =
1

N

N∑
i=1

(
−w(i)q′

(
x(i)
)

log q′
(
x(i)
))

(96)

=
1

N

(
2N

5
× 1

0.5
(−0.5 log 0.5) +

3N

5
× 1

3.0
(−3.0 log 3.0)

)
(97)

= 0.8 (−0.5 log 0.5) + 0.2 (−3.0 log 3.0) , (98)

which gives the exact estimation ofHq , where the weight w(i) = 1

q′(x(i))
.

The weighted estimation method Based on aforementioned analysis, we formalized our weighted
estimation method for accurately estimatingHq based on a set of generative samples X =

{
x(i)
}N
i=1

.
Let pi be the estimated probability density of x(i), and wi be the weight of x(i) for computing entropy,
then the weighted estimation of entropy based on X , H̃X , is computed as

H̃X = −
N∑
i=1

wipi log pi, s.t.

N∑
i=1

piwi = 1,

N∑
i=1

wi = N, (99)

where the constrain is added to satisfy the property of a PDF, namely by regarding pi and wi as the
probability density and the volume of the i-th region, the integral of probability densities

∑N
i=1 piwi
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Algorithm 3 The udiv metric.

Require: Generative samples X ,
{
x(i)
}N
i=1

, KDE bandwidth 0 6 h1 < h2 < · · · < hT , uniform

kernel ψh where ψh (x;x∗) =

{
1, ‖x− x∗‖ 6 h

0, otherwise.
1: procedure ent(X , h)
2: Initialize probability densities pi ← 0, i = 1, 2, · · · , N
3: for i = 1, 2, · · · , N do
4: Update pi ←

∑N
j=1 ψh

(
x(i);x(j)

)
5: end for
6: Normalize log pi ← log pi − 2 logN + logsumexp (− log pi) to satisfy Eq. (100)
7: Compute entropy e← − 1

N

∑N
i=1 log pi according to Eq. (101)

8: Normalize entropy e← e
logN

9: return e
10: end procedure
11: Compute normalized entropies {et ← ent (X , ht)}Tt=1

12: Obtain the udiv score u = min {et}Tt=1

should be equal to 1, and the total volume
∑N
i=1 wi isN . As we mentioned above, wi : wj = 1

pi
: 1
pj

,

hence from
∑N
i=1 piwi = 1 we have wi = 1

Npi
, and from

∑N
i=1 wi = N we have

N∑
i=1

1

pi
= N2. (100)

Therefore, from Jensen inequality we have

H̃X = −
N∑
i=1

wipi log pi = −
N∑
i=1

1

N
log pi =

N∑
i=1

1

N
log

1

pi
6 log

(
N∑
i=1

1

N

1

pi

)
= logN, (101)

where the equality holds if and only if p1 = p2 = · · · = pN , namely the probability distribution is a
uniform distribution. Therefore, the entropy normalized to [0, 1] is given as EX , H̃X

logN .

The udiv metric Given X =
{
x(i)
}N
i=1

, we adopt the normalized weighted entropy EX as the udiv
metric score that indicates the uniform diversity of X . To estimate the probability density pi of x(i)

for computing EX , we propose to use the Kernel Density Estimation [25] (KDE) technique, and the
procedure for estimating the udiv metric score based on KDE is provided in Algorithm 3. Since KDE
involves selecting the kernel bandwidth [26], we know that EX is dependent on kernel bandwidth h.
Specifically, for the uniform kernel ψh we adopt in Algorithm 3, we can verify that h = 0 gives that
ψh (x;x∗) is equal to 1 if and only if x = x∗, therefore, pi = 1 for all i and hence EX is maximized
because all probability densities pi are equal. On the other hand, for sufficiently large h, ψh (x;x∗)
is always equal to 1 because

∥∥x(i) − x(j)
∥∥ 6 h always holds, therefore, pi = N for all i and hence

EX is also maximized because all probability densities pi are also equal. Hence we know that there
exists h such that h gives the minimum of EX , which we adopt as the udiv metric score.

3 Experimental Results

We provide addition results on the synthetic data manifold provided in main text, and provide results
on simple datasets including MNIST [9], FashionMNIST [27] and their colored version [10], and
CIFAR10 [28]. We also provide results on natural image datasets including CelebA [29], FFHQ [30],
AFHQ [31] and LSUN [32]. All datasets are publicly available. We adapt our UniGAN for a variety
of existing models that reduce mode collapse, including GAN [22], MSGAN [33, 34], PacGAN [11],
BiGAN [35]/ALI [36], VEEGAN [37], MDGAN [38] and RegGAN [38]. Our experiments show that
the generator uniformity is closely related with the uniform diversity, and also show the effectiveness
of our proposed UniGAN framework in improving generator uniformity and uniform diversity.
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Table 1: Architectural details for the generator and discriminator for the 2D synthetic data manifold
sector. For the generator, since all features are vectors, the dim increasing layer ei : RKi−1 → RKi

does not involve an unsqueeze layer but only consists of a zero pad layer and a 1×1 convolution layer,
and the neural network n : R

Ki
2 → R

Ki
2 inside the additive coupling of a flow layer fi : RKi → RKi

is composed as “FC@hi, ReLU, FC@Ki

2 ”, where we use FC@c to denote a fully connected layer
with output shape c, and hi is the shape of hidden features of the i-th block layer fi◦ei, see Section 2.1
and Fig. 1. We denote the block layer with the shape of the output feature as c, the shape of hidden
features as h, and the number of module layers as m as Block@c#h#m.

Generator Discriminator
layers output shape layers output shape

Input noise z ∈ R2 Input sample x ∈ R2

Block@1024#1024#3 1024 FC@1024, ReLU 1024
FC@1024, ReLU 1024
FC@1024, ReLU 1024
FC@1 1

total number of parameters: 3.504M total number of parameters: 1.054M

Experimental settings We introduce shared setting across all datasets for conducting our experi-
ments, while the settings specific to different datasets are introduced in the corresponding sections
below. We use Adam [39] optimizer with fixed learning rate 10−4, and all models are end-to-end
trained with PyTorch [19] from scratch. We train 40, 000 steps with batch size of each step being 96
for all models. In terms of Lgunif , we set λgunif to 1.0 and frequency of regularization s to 4, and the
power of iteration M involved in LT is set to 2. In terms of evaluating udiv, we randomly generate
1, 000 samples, and 100 kernel bandwidths are selected from range [0, 1] with step 0.01. In terms of
evaluating the gunif metric indicating the generator uniformity, we first randomly sampling 1, 000

latent codes
{
z(i)
}1000

i=1
, then compute the standard deviation of estimated

{
log detJ>J

(
z(i)
)}1000

i=1
,

where for each z(i), log detJ>J
(
z(i)
)

is accurately computed by using the automatic differential

function of PyTorch. We also show the correlation between the probability densities
{
p(i)
}1000

i=1
and{

log det J>J
(
z(i)
)}1000

i=1
, where p(i) is the probability density of g

(
z(i)
)

estimated by the method
introduced in Algorithm 3. In order to avoid randomness, experiments are run 10 times with random
initialization, and for each experiment, we provide the p-value of the significant test or the confidence
interval over multiple runs. Note that a p-value below 0.05 indicates significant differences between
the baselines results and ours. In terms of the type of computing resources used, all experiments are
done using a single NVIDIA RTX-2080Ti GPU.

3.1 Synthetic Data Manifold

Experimental settings We provide architectural details of the generator and discriminator used for
the 2D synthetic data manifold sector as in Tbl. 1. The generator g is composed of a block layer f ◦ e,
namely g = f ◦ e : R2 → R1024, where e : R2 → R1024 is a dim increasing layer that boosts the
dimensionality of the input feature from 2 to 1024 to permit a flow layer f : R1024 → R1024 that is a
high dimensional nonlinear mapping with more expressive power. Given an output feature x ∈ R1024

of the generator, we directly drop the final 1022 elements of x, leaving x̃ = [x1, x2] ∈ R2 as the final
2-dimensional generated sample, where xi is the i-th element of x.

3.2 Image Datasets

Experimental settings We provide more experimental results on image datasets, including simple
datasets such as MNIST [9], FashionMNIST [27] and their colored version [10], and CIFAR10 [28],
and natural image datasets such as CelebA [29], FFHQ [30], AFHQ [31] and LSUN [32]. For simple
datasets, architectural details for the generator and discriminator are shown in Tbl. 2, and the shape
of image is img_nc× 32× 32, where img_nc is 1 for grayscale image datasets including MNIST
and FashionMNIST, and img_nc is 3 for RGB image datasets including colored MNIST, colored
FashionMNIST, and CIFAR10. For natural image datasets, architectural details for the generator and
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Table 2: Architectural details for the generator and discriminator for simple datasets. In terms of the
generator, we denote the block layer with the number of output feature channels as c, the number of
hidden feature channels as h, and the number of module layers as m as Block@c#h#m. Note that
for the first layer Block@128#128#1, in order to reduce the amount of parameters, the upsampling
scale of the unsqueeze layer inside the dim increasing layer is 4 instead of 2, namely the unsqueeze
layer reshapes the input feature of shape 2048× 1× 1 into the output feature of shape 128× 4× 4.
In terms of the discriminator, Conv@c#k#s#p denotes a convolution layer with output channels c,
kernel size k, stride s, and padding p. We use LReLU to denote a leaky ReLU layer with negative
slope 0.2. The channels img_nc of the input image is 1 for grayscale images and 3 for RGB images.

Generator Discriminator
layers output shape layers output shape

Input noise z ∈ R6 Input image x ∈ Rimg_nc×32×32

Block@128#128#1 128× 4× 4 Conv@32#4#2#1, LReLU 32× 16× 16
Block@64#64#1 64× 8× 8 Conv@64#4#2#1, BN, LReLU 64× 8× 8
Block@32#32#1 32× 16× 16 Conv@128#4#2#1, BN, LReLU 128× 4× 4
Block@8#16#1 8× 32× 32 Conv@1#4#1#0 1

total number of parameters: 0.280M total number of parameters: 0.188M

Table 3: Architectural details for the generator and discriminator for natural image datasets. We use
a similar generator architecture as in Tbl. 2, and use a StyleGAN2 [21] discriminator.

Generator Discriminator
layers output shape layers output shape

Input noise z ∈ R64 Input image x ∈ R3×64×64

Block@512#512#1 512× 4× 4 The StyleGAN2 [21] discriminator 1
Block@256#256#3 256× 8× 8
Block@128#128#3 128× 16× 16
Block@64#64#3 64× 32× 32
Block@16#32#3 16× 64× 64

total number of parameters: 8.889M total number of parameters: 22.679M

discriminator are shown in Tbl. 3, and the shape of image is 3× 64× 64. Similar to the settings for
the 2D synthetic data manifold sector, we increase the dimensionality of the intermediate features to
be higher than the dimensionality of the image to improve the expressive power of the generator, and
obtain the generated sample by dropping redundant channels of the output feature of the generator. In
terms of the setting of generation, for simple datasets, we extend our UniGAN framework to a setting
of categorical generation as we mentioned in Section 2.1, because all these datasets contain images
of different classes with known category labels. In terms of natural image datasets, we use a normal
generation setting. For datasets including only a single category, i.e., CelebA and FFHQ, we directly
use the whole dataset to train the model, and for datasets including multiple categories, i.e., AFHQ
and LSUN, we train different models for each category respectively.

3.2.1 Quantitative Results

For explicit comparison, we first provide quantitative results on a variety of metrics as in Tbl. 4-16.
For simple datasets involving discrete modes, we adopt metrics that measure the model performance
regarding covering different modes, including Inception Score [38, 40], Mode Score [38], Number of
Modes [38, 10] and KL divergence between generated and ground-truth category distribution [10].
We also use metrics that measure the quality and diversity of generated samples, including IvOM [10],
Pairwise Distance [10], NDB [41] and JSD [41]. For natural image datasets, we measure the quality
and diversity of generated samples by using the FID [42] and LPIPS [43] metrics. For both types of
datasets, we evaluate the uniform diversity and generator uniformity by using the proposed udiv and
gunif metric, respectively. In Tbl. 4-16, the comparisons are made between baseline models and our
UniGANs, where ↑ (resp., ↓) indicates that larger (resp., lower) values are better. For each metric, the
first and the second rows give the results of baselines and the corresponding UniGANs, respectively,
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we also provide the p-value of significant tests in the third row. For each baseline model, the better
value among the baseline results and the corresponding UniGAN result is shown in bold.

From Tbl. 4-16, we learn that our proposed UniGANs achieve similar performances to baselines in
terms of existing metrics that measure quality and diversity of generated samples. However, the udiv
and gunif scores indicate that our UniGANs significantly outperform baselines in terms of uniform
diversity and generator uniformity, which also implies that the uniform diversity indeed corresponds
to a new type of mode collapse that cannot be captured by existing metrics.

In Tbl. 17, we provide quantitative results on CelebA dataset with 128× 128 resolution to verify the
effectiveness of our method on high-resolution datasets. From Tbl. 17, we see that the performance
of our method is similar to that on the 64× 64 resolution datasets, namely by imposing the proposed
generator uniformity regularization, our UniGANs outperform baselines in terms of the udiv and the
gunif metrics, which shows the effectiveness of our method on the 128× 128 CelebA dataset.

3.2.2 Qualitative Results

We provide qualitative results on each image dataset in Fig. 3-14. For each dataset, we first randomly
sample a bunch of latent codes, then select z1 and z2 such that log det J>J (z1) and log detJ>J (z2)
give the minimum and maximum log det that can be achieved among all latent codes. Then, for z1,
we generate samples x = g (z) around x1 = g (z1) by randomly sample z from Z1 ⊂ Z , where g is
the generator, Z is the latent space, and Z1 is the latent subspace around z1 spanned by the 5 latent
dimensions with the smallest Jacobian column vector norm. Similarly, we obtain generated samples
x = g (z) around x2 = g (z2) by randomly sample z from a subspace Z2 ⊂ Z such that Z2 is the
latent subspace around z2 spanned by the 5 latent dimensions with the largest Jacobian column vector
norm. We visualize generated samples in such a manner since it can intuitively show how generator
uniformity is related with the uniform diversity, and how generator uniformity reduces mode collapse.

In Fig. 3-14, the visualization of generated samples of baselines are shown in the top row. We found
that for baselines, log det J>J (z1) ≈ 0, therefore the model tends to collapse on the subspace Z1

around z1, which leads to almost identical generated samples around x1. Meanwhile for z2, the value
of log detJ>J (z2) tends to be very large, which leads to drastic change of images when varying z
in the subspace Z2 around z2, and the generative qualities are commonly inferior, especially for the
generators trained on natural image datasets, see Fig. 9-14. We also found that estimated probability
densities of samples around x1 and x2 commonly tend to be large and small respectively, which
is also consistent with our analysis on the relationship between generator uniformity and uniform
diversity provided in main text. In terms of qualitative results of our UniGANs provided in the bottom
rows, we see that for latent codes varying in both Z1 and Z2, the generators result in moderate change
of generated images, therefore lead to a more smooth generation compared to baseline models. The
qualitative results provided in Fig. 9-14 also demonstrate the generative quality of our UniGANs.

3.2.3 Ablation Study

We firstly show that our hierarchical architecture design of our NF-based generator indeed accelerates
training and greatly reduces the amount of model parameters. We set up a counterpart of our NF-based
generator in the case of K = D, i.e., a Glow [3] generator, where K and D are the dimensionality of
the latent space and data space, respectively. As we shown in Tbl. 3, for our UniGAN generator in
the case of K = 64 and D = 3× 64× 64, the total amount of parameters of the generator is 8.889M.
However, for the Glow generator in the case of K = D = 3× 64× 64, the total amount of generator
parameters is 61.214M, which is far larger than ours. We also found that the training time and the
memory usage of a Glow generator is about 7 times that of ours. Note that all settings except for the
dimensionalities are the same for the Glow generator and our UniGAN generator.

Sample efficiency We compare our proposed LT algorithm to existing methods including LGAN [8]
and StyleGAN2 [21] regularizations (i.e., Llgan and Lstylegan2 in Eq. (86) and Eq. (87)) in terms of
the sample efficiency on isometry learning. The results are shown in Fig. 2(a). For Llgan, we sample
1, 2, 3, 4, 5 latent dimensions given each latent code z (see Eq. (86)), while for Lstylegan2, we sample
1, 2, 3, 4, 5 noises given each latent code z (see Eq. (87)). For both regularizations, the higher the
sample counts, the better the results. Since our LT does not involve an additional sampling process
given a latent code, the result is plotted as a single point. We learn that compared to Lstylegan2, the
training time cost of Llgan is superior, which is reasonable because Llgan does not involve a second
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(a) Sample efficient comparison. (b) Study of frequency of Lgunif .

(c) Study of power of iteration of LT. (d) Study of hyper-parameter λgunif .

Figure 2: Ablation study results on sample efficiency in isometry learning, frequency of regularization
Lgunif , power of iteration of LT, and hyper-parameter λgunif . The effectiveness of the regularization
is reflected by the Jacobian orthogonality (i.e., y-axis) versus the singular value standard deviation

(i.e., x-axis). The Jacobian orthogonality is measured by O , Ez∼pz
∑

i6=j

∣∣∣(J>J)
ij

(z)
∣∣∣

(K−1)
∑K

i=1|(J>J)ii(z)|
, namely

the ratio of the averaged absolute value of the non-diagonal elements of J>J (z) to the averaged
absolute value of the diagonal elements of J>J (z), hence the lower the O, the more orthogonal the
Jacobian. On the other hand, an isometry corresponds to a Jacobian such that all singular values are
the same. Hence the lower the O and the lower the singular value std, the closer the generator to an
isometry and the more effective the regularization. For each setting, we also show the training time
per 100 batches t versus the memory usage m by marking t@m in the plot.

derivative computation procedure like Lstylegan2. However, because Lstylegan2 can reuse the same
forward computation graph for different noises when computing second derivatives using PyTorch,
the memory usage of Lstylegan2 is much lower than that of Llgan. Meanwhile for Llgan, different
latent dimensions i cannot share forward computation process g(z+∆i)

ε (see Eq. (86)), therefore Llgan

requires considerable memory footprint as the number of sampled latent dimensions increases. We
learn from Fig. 2(a) that our LT achieves the best performance on isometry learning at the minimum
cost of memory usage and a lower cost of training time. Note that in our LT Algorithm 1, for iteration
index m we only retain the computation graph of PyTorch for computing the second derivative at
m = M , hence the second derivative computation is not involved for m < M , which greatly reduces
the cost of training time compared to Lstylegan2 that also involves second derivative computation.

Frequency of regularization We provide ablation study on the frequency of regularization s for
our generator uniformity regularization Lgunif , see lazy regularization in Section 2.2.3. The results
are provided in Fig. 2(b). We see that as s decreases (i.e., the regularization becomes more frequent),
the result becomes better, which is reasonable. We see that as s decreases, the training time increases
meanwhile the memory usage remains the same, and we can better trade-off between the effectiveness
of the regularization and training time cost by selecting s = 5.
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Power of iteration We provide ablation study on the power of iteration M for our LT algorithm,
see Algorithm 1. The results are provided in Fig. 2(c). As mentioned above, the computation graph
of PyTorch of different iterations can be reused, therefore, the memory usage remain the same as M
increases. It is reasonable that the training time increases as M increase, but we can still trade-off
between the effectiveness of the regularization and training time cost by selecting M = 2.

Hyper-parameter λgunif We provide ablation study on the hyper-parameter λgunif for Lgunif in
Fig. 2(d). Changing λgunif does not lead to changes in training time or memory usage. We learn that
compared to a model without involving Lgunif , imposing Lgunif significantly improves performance
on isometry learning, which verifies the effectiveness of our proposed regularization.

4 Limitations of Our Work

Our work adopts the manifold hypothesis that assumes that high dimensional data is concentrated on a
lower dimensional manifold, and we propose to encourage the generator to be a local diffeomorphism
between a K-dimensional latent space and a manifold residing in a high dimensional data space. To
ease practical implementation, we encourage the generator to be an isometry whose Jacobian is an
orthonormal matrix up to a constant. In such a case, the dimensionality K should be carefully chosen,
because on one hand, a K lower than the ground-truth dimensionality of the data manifold may result
in a generator that is unable to recover the manifold well, and on the other hand, a larger K may lead
to a generator with many redundant latent dimensions which may affect the effectiveness of isometry
learning and increase the computational cost. Hence how to automatically determine the value of K
while learning the generator may be a notable research problem for future work.
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Table 4: Quantitative comparison on MNIST dataset.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

Inception
Score ↑

3.71 3.73 3.70 3.72 3.69 3.72 3.71
3.72 3.73 3.72 3.70 3.72 3.71 3.72

7.8e−2 2.6e−1 2.2e−2 3.1e−1 3.2e−2 5.7e−1 3.5e−1

Mode Score ↑
3.68 3.70 3.67 3.71 3.67 3.67 3.70
3.69 3.71 3.69 3.72 3.65 3.69 3.71

9.2e−1 2.2e−1 3.2e−2 1.0e−1 6.1e−2 5.2e−2 2.5e−1

Number of
Modes ↑

10 10 10 10 10 10 10
10 10 10 10 10 10 10

4.4e−1 2.9e−1 2.9e−1 1.8e−1 5.0e−1 5.9e−1 4.0e−1

KL
Divergence ↓

0.07 0.08 0.07 0.06 0.07 0.05 0.06
0.06 0.08 0.08 0.05 0.05 0.06 0.05

7.8e−1 2.6e−1 5.6e−1 1.4e−1 7.4e−2 3.8e−1 2.6e−1

IvOM ↓
0.20 0.21 0.21 0.19 0.23 0.22 0.20
0.19 0.22 0.20 0.20 0.21 0.21 0.21

1.7e−1 8.2e−2 5.7e−1 4.3e−1 3.7e−1 4.8e−1 2.1e−1

Pairwise
Distance ↑

0.11 0.10 0.12 0.15 0.13 0.11 0.11
0.10 0.12 0.13 0.12 0.14 0.10 0.12

2.8e−1 1.3e−1 3.1e−1 8.6e−2 3.4e−1 7.3e−1 4.8e−1

NDB ↓
20.9 20.2 22.0 20.3 21.3 20.9 20.8
19.3 20.8 19.9 19.5 20.2 19.6 20.3

8.5e−2 2.5e−1 5.6e−2 2.9e−1 5.6e−1 9.2e−2 2.5e−1

JSD ↓
0.13 0.14 0.13 0.12 0.13 0.11 0.12
0.12 0.11 0.12 0.14 0.14 0.10 0.15

7.0e−1 9.3e−2 4.9e−1 3.6e−1 4.4e−1 1.4e−1 7.1e−2

udiv ↑
0.59 0.58 0.60 0.61 0.59 0.59 0.60
0.66 0.67 0.67 0.66 0.68 0.68 0.67

2.1e−5 5.9e−6 9.7e−6 1.1e−5 8.4e−6 2.1e−5 7.9e−5

gunif ↓
0.87 0.90 0.93 0.86 0.88 0.87 0.89
0.62 0.59 0.63 0.61 0.60 0.59 0.61

8.6e−5 9.9e−6 5.0e−5 3.8e−6 6.5e−5 2.1e−5 8.1e−6
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Table 5: Quantitative comparison on colored MNIST dataset.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

Inception
Score ↑

3.70 3.69 3.74 3.71 3.73 3.72 3.73
3.73 3.72 3.72 3.75 3.72 3.73 3.72

5.7e−2 1.3e−2 1.4e−1 2.6e−2 1.0e−1 2.5e−1 4.7e−1

Mode Score ↑
3.73 3.72 3.73 3.74 3.70 3.69 3.74
3.70 3.73 3.71 3.72 3.73 3.70 3.69

1.4e−1 3.0e−1 2.4e−2 3.5e−1 6.6e−2 3.0e−1 1.2e−2

Number of
Modes ↑

10 10 10 10 10 10 10
10 10 10 10 10 10 10

9.0e−1 4.1e−2 9.1e−1 8.9e−1 6.2e−1 6.3e−1 4.3e−1

KL
Divergence ↓

0.12 0.11 0.09 0.11 0.07 0.10 0.11
0.13 0.10 0.07 0.12 0.06 0.12 0.12

1.1e−1 2.8e−1 3.7e−2 7.4e−1 2.0e−1 4.8e−1 3.1e−2

IvOM ↓
0.56 0.54 0.58 0.55 0.53 0.56 0.55
0.57 0.53 0.57 0.56 0.54 0.55 0.54

4.2e−2 8.1e−1 2.1e−1 7.5e−1 1.9e−1 2.2e−1 8.4e−2

Pairwise
Distance ↑

0.09 0.07 0.11 0.08 0.07 0.11 0.09
0.10 0.09 0.10 0.07 0.10 0.10 0.10

8.7e−2 7.4e−2 3.7e−1 7.7e−1 4.5e−1 3.6e−1 4.8e−1

NDB ↓
20.4 19.3 18.4 19.6 18.1 19.4 18.5
18.2 19.5 18.3 19.0 17.9 20.0 18.1

2.1e−1 8.6e−2 4.7e−1 6.5e−1 9.2e−2 7.2e−1 3.7e−1

JSD ↓
0.11 0.12 0.09 0.11 0.10 0.12 0.09
0.09 0.10 0.10 0.12 0.09 0.10 0.11

1.6e−1 1.1e−1 2.9e−1 3.7e−1 3.1e−1 8.5e−2 4.7e−1

udiv ↑
0.65 0.63 0.67 0.64 0.65 0.66 0.64
0.75 0.77 0.78 0.76 0.75 0.77 0.76

4.7e−6 2.2e−5 4.9e−6 9.7e−6 4.3e−6 3.1e−6 2.0e−5

gunif ↓
0.93 0.87 0.89 0.91 0.92 0.90 0.89
0.67 0.65 0.66 0.65 0.67 0.65 0.65

1.1e−6 7.8e−5 9.2e−5 2.8e−5 2.7e−6 9.5e−5 1.6e−5
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Table 6: Quantitative comparison on FashionMNIST dataset.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

Inception
Score ↑

3.73 3.75 3.72 3.74 3.72 3.71 3.70
3.71 3.73 3.75 3.76 3.74 3.70 3.76

2.8e−1 5.9e−2 3.7e−1 1.7e−1 6.8e−1 3.1e−1 2.5e−2

Mode Score ↑
3.71 3.68 3.69 3.71 3.72 3.68 3.69
3.72 3.69 3.70 3.69 3.70 3.71 3.72

1.6e−1 4.1e−1 4.3e−1 3.4e−1 2.0e−1 8.5e−2 3.2e−1

Number of
Modes ↑

10 10 10 10 10 10 10
10 10 10 10 10 10 10

1.4e−1 8.2e−1 9.7e−1 8.7e−1 4.8e−1 9.4e−2 8.5e−1

KL
Divergence ↓

0.08 0.10 0.08 0.09 0.11 0.08 0.09
0.07 0.11 0.06 0.07 0.09 0.07 0.10

3.2e−1 7.9e−1 1.4e−1 9.1e−2 1.5e−1 3.9e−1 8.5e−1

IvOM ↓
0.21 0.20 0.23 0.22 0.21 0.20 0.21
0.20 0.21 0.21 0.23 0.20 0.22 0.23

4.3e−1 9.0e−2 4.2e−1 1.7e−1 2.3e−1 4.4e−1 8.3e−2

Pairwise
Distance ↑

0.19 0.18 0.16 0.20 0.22 0.17 0.20
0.20 0.21 0.19 0.18 0.19 0.18 0.19

9.4e−2 8.1e−1 7.8e−1 5.7e−1 3.8e−1 3.3e−1 1.9e−1

NDB ↓
23.1 22.7 21.3 22.9 21.5 22.3 21.3
21.6 21.0 21.4 20.8 22.3 21.8 20.0

2.2e−1 1.4e−1 9.4e−2 1.6e−1 7.4e−1 8.3e−1 1.5e−1

JSD ↓
0.17 0.17 0.16 0.17 0.16 0.18 0.17
0.19 0.15 0.14 0.14 0.17 0.16 0.15

3.6e−1 1.7e−1 9.6e−2 1.0e−1 2.8e−1 8.1e−1 8.4e−2

udiv ↑
0.65 0.64 0.64 0.65 0.63 0.65 0.65
0.75 0.76 0.77 0.75 0.77 0.75 0.76

1.8e−6 5.0e−6 9.8e−7 2.0e−5 4.4e−6 6.2e−5 4.8e−5

gunif ↓
1.09 1.05 1.07 1.08 1.07 1.09 1.07
0.75 0.73 0.73 0.75 0.76 0.74 0.73

1.9e−6 8.2e−5 9.8e−6 1.2e−5 5.1e−5 1.7e−5 2.9e−5
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Table 7: Quantitative comparison on colored FashionMNIST dataset.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

Inception
Score ↑

3.71 3.74 3.74 3.72 3.75 3.72 3.73
3.74 3.75 3.73 3.74 3.77 3.75 3.69

3.2e−1 8.6e−2 3.5e−1 1.3e−1 3.2e−1 6.0e−1 7.3e−1

Mode Score ↑
3.70 3.71 3.73 3.70 3.73 3.71 3.74
3.72 3.75 3.71 3.71 3.72 3.72 3.69

2.0e−1 3.3e−1 1.4e−1 3.2e−1 3.8e−1 6.5e−2 1.9e−1

Number of
Modes ↑

10 10 10 10 10 10 10
10 10 10 10 10 10 10

7.1e−1 4.2e−1 2.0e−1 3.4e−1 4.4e−1 8.0e−1 8.5e−1

KL
Divergence ↓

0.10 0.07 0.09 0.07 0.08 0.12 0.10
0.11 0.08 0.08 0.08 0.12 0.09 0.08

2.8e−1 9.7e−2 3.4e−1 8.6e−2 4.8e−1 7.2e−1 3.7e−1

IvOM ↓
1.21 1.23 1.19 1.20 1.22 1.22 1.21
1.19 1.20 1.20 1.21 1.19 1.21 1.22

3.4e−1 5.4e−1 9.9e−2 4.5e−1 8.5e−2 1.1e−1 3.9e−1

Pairwise
Distance ↑

0.13 0.11 0.10 0.15 0.12 0.13 0.11
0.12 0.13 0.13 0.14 0.13 0.11 0.12

2.4e−1 6.3e−1 3.1e−1 2.3e−1 3.7e−1 9.5e−2 5.1e−1

NDB ↓
22.0 22.7 23.9 21.7 22.9 22.1 22.3
21.2 22.1 21.3 22.2 23.1 23.0 21.9

5.1e−1 4.6e−1 3.3e−2 6.8e−1 2.4e−1 2.3e−1 2.1e−1

JSD ↓
0.18 0.19 0.20 0.18 0.17 0.18 0.19
0.19 0.17 0.18 0.19 0.19 0.17 0.20

4.8e−1 4.0e−1 3.1e−1 8.6e−2 9.5e−2 5.7e−1 3.6e−1

udiv ↑
0.51 0.49 0.50 0.51 0.52 0.50 0.50
0.67 0.69 0.67 0.70 0.65 0.68 0.68

1.7e−5 2.9e−5 9.5e−6 1.5e−5 1.1e−5 7.0e−5 2.8e−5

gunif ↓
1.24 1.28 1.19 1.23 1.22 1.18 1.20
0.81 0.80 0.79 0.78 0.81 0.80 0.80

3.6e−5 1.4e−5 1.1e−5 3.9e−5 2.0e−5 2.1e−5 3.9e−5
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Table 8: Quantitative comparison on FashionMNIST and partial MNIST [44] dataset.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

Inception
Score ↑

3.68 3.71 3.69 3.70 3.70 3.71 3.68
3.69 3.69 3.70 3.68 3.71 3.70 3.69

8.4e−1 5.5e−2 9.0e−2 7.8e−2 8.6e−2 7.8e−2 6.2e−1

Mode Score ↑
3.67 3.69 3.68 3.68 3.69 3.70 3.68
3.68 3.68 3.69 3.66 3.70 3.69 3.67

4.4e−1 5.6e−1 9.8e−2 7.2e−2 5.4e−2 8.6e−2 6.5e−1

Number of
Modes ↑

11 11 11 11 11 11 11
11 11 11 11 11 11 11

8.9e−1 6.5e−1 9.4e−1 8.7e−1 9.7e−1 8.8e−1 7.9e−1

KL
Divergence ↓

0.12 0.15 0.11 0.16 0.13 0.11 0.12
0.13 0.12 0.10 0.15 0.12 0.10 0.14

6.5e−2 1.6e−2 5.0e−1 4.2e−1 3.9e−1 1.3e−1 7.8e−2

IvOM ↓
1.24 1.22 1.21 1.23 1.21 1.23 1.22
1.22 1.21 1.23 1.22 1.20 1.22 1.23

7.6e−2 6.2e−2 4.7e−2 7.5e−1 1.4e−1 8.5e−2 2.1e−1

Pairwise
Distance ↑

0.16 0.14 0.15 0.17 0.15 0.14 0.15
0.15 0.15 0.17 0.16 0.14 0.16 0.14

9.8e−2 8.6e−1 4.9e−2 8.3e−2 1.5e−1 5.3e−2 8.4e−1

NDB ↓
22.1 23.5 24.3 22.4 23.7 22.9 23.4
22.8 23.2 23.1 23.3 23.5 22.4 23.6

6.4e−2 1.1e−1 5.3e−1 7.8e−2 4.1e−1 8.2e−2 9.1e−2

JSD ↓
0.22 0.21 0.21 0.19 0.20 0.19 0.20
0.20 0.19 0.22 0.20 0.21 0.18 0.19

5.2e−2 1.8e−1 7.3e−2 2.1e−1 4.2e−2 7.5e−2 1.7e−1

udiv ↑
0.48 0.47 0.48 0.46 0.49 0.45 0.47
0.61 0.62 0.59 0.64 0.66 0.65 0.65

6.3e−6 8.8e−7 3.7e−6 8.2e−6 5.2e−6 1.7e−6 7.7e−5

gunif ↓
1.28 1.31 1.27 1.30 1.29 1.27 1.26
0.84 0.85 0.80 0.81 0.83 0.82 0.83

6.2e−6 8.7e−7 4.1e−6 8.1e−5 1.4e−7 6.9e−6 7.5e−6
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Table 9: Quantitative comparison on stacked-MNIST [37] dataset.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

Inception
Score ↑

2.59 2.57 2.67 2.53 2.73 2.51 2.58
2.64 2.62 2.59 2.58 2.68 2.57 2.62

2.1e−2 4.7e−1 8.1e−2 9.5e−2 1.7e−1 8.2e−2 2.8e−1

Mode Score ↑
2.58 2.57 2.64 2.53 2.69 2.50 2.57
2.62 2.61 2.58 2.55 2.67 2.55 2.61

6.2e−2 4.1e−2 3.1e−1 9.3e−2 3.8e−1 5.8e−2 3.7e−2

Number of
Modes ↑

979 980 980 981 980 988 984
985 979 981 984 979 992 981

6.2e−1 8.7e−1 5.2e−1 7.4e−1 6.3e−1 8.1e−1 9.5e−1

KL
Divergence ↓

0.15 0.17 0.16 0.18 0.15 0.19 0.18
0.16 0.16 0.18 0.17 0.16 0.17 0.17

1.3e−1 5.2e−2 7.2e−2 6.2e−2 7.2e−2 8.1e−2 9.1e−2

IvOM ↓
1.32 1.31 1.29 1.34 1.30 1.32 1.35
1.31 1.33 1.30 1.32 1.29 1.31 1.34

8.4e−2 9.7e−2 6.2e−2 1.1e−1 7.2e−2 4.2e−1 7.2e−2

Pairwise
Distance ↑

0.21 0.18 0.17 0.18 0.20 0.19 0.18
0.23 0.19 0.17 0.17 0.19 0.20 0.19

5.2e−2 2.3e−1 6.8e−2 9.5e−2 4.2e−2 7.2e−2 1.5e−1

NDB ↓
23.1 24.2 24.8 24.1 23.6 23.9 24.5
23.4 24.1 23.9 24.3 23.8 23.4 24.0

8.5e−2 1.3e−1 5.3e−2 6.5e−2 7.2e−2 2.4e−1 5.8e−2

JSD ↓
0.25 0.24 0.23 0.25 0.22 0.24 0.26
0.24 0.26 0.21 0.24 0.25 0.23 0.25

7.2e−2 9.5e−2 2.6e−1 1.8e−1 8.3e−2 2.6e−1 1.8e−1

udiv ↑
0.42 0.41 0.39 0.45 0.44 0.46 0.44
0.58 0.61 0.62 0.61 0.63 0.62 0.60

6.3e−7 4.1e−6 7.9e−7 5.7e−6 8.1e−7 5.2e−7 1.9e−5

gunif ↓
1.34 1.39 1.35 1.41 1.38 1.29 1.34
0.81 0.80 0.83 0.79 0.82 0.81 0.80

7.6e−6 2.3e−5 1.8e−7 9.2e−7 8.8e−7 9.3e−7 1.5e−6
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Table 10: Quantitative comparison on CIFAR10 dataset.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

Inception
Score ↑

3.74 3.77 3.80 3.76 3.77 3.78 3.75
3.78 3.78 3.74 3.77 3.79 3.76 3.77

9.5e−2 6.8e−1 1.7e−1 5.2e−1 1.4e−1 1.1e−1 3.1e−1

Mode Score ↑
3.75 3.73 3.73 3.78 3.75 3.74 3.76
3.73 3.74 3.78 3.75 3.76 3.78 3.77

3.2e−1 6.2e−1 4.9e−2 9.5e−2 2.5e−1 1.5e−1 5.6e−1

Number of
Modes ↑

10 10 10 10 10 10 10
10 10 10 10 10 10 10

2.7e−1 9.9e−1 4.5e−1 7.4e−2 6.5e−1 6.1e−1 3.0e−1

KL
Divergence ↓

0.05 0.04 0.06 0.05 0.07 0.03 0.04
0.07 0.03 0.05 0.04 0.06 0.04 0.03

8.8e−2 3.3e−1 6.9e−1 1.8e−1 4.9e−2 1.0e−1 8.3e−1

IvOM ↓
0.20 0.19 0.20 0.23 0.22 0.19 0.20
0.19 0.20 0.19 0.21 0.20 0.20 0.21

1.2e−1 5.4e−1 9.8e−2 1.6e−1 4.0e−1 8.5e−2 7.3e−1

Pairwise
Distance ↑

0.22 0.25 0.23 0.19 0.21 0.22 0.22
0.23 0.23 0.24 0.20 0.22 0.23 0.20

5.3e−1 1.4e−1 4.5e−1 1.2e−1 9.6e−2 1.2e−1 1.0e−1

NDB ↓
22.1 23.7 25.2 22.8 23.9 22.0 22.2
21.8 24.5 22.6 21.0 21.9 23.5 23.8

4.0e−1 1.6e−1 1.2e−1 4.7e−1 9.1e−2 5.6e−1 1.2e−1

JSD ↓
0.12 0.17 0.13 0.14 0.13 0.15 0.13
0.14 0.12 0.11 0.15 0.12 0.14 0.16

6.2e−1 8.5e−2 6.8e−1 1.3e−1 4.1e−1 3.2e−1 1.9e−1

udiv ↑
0.61 0.58 0.65 0.61 0.60 0.62 0.61
0.78 0.75 0.75 0.78 0.81 0.77 0.76

1.2e−5 6.1e−9 9.6e−6 9.1e−6 1.8e−7 4.7e−5 1.0e−8

gunif ↓
12.87 14.15 14.32 15.12 14.12 13.94 15.51
7.91 8.17 9.64 8.12 9.12 8.26 9.19

3.3e−6 9.8e−7 3.1e−6 4.6e−5 3.1e−5 2.4e−6 7.8e−7
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Table 11: Quantitative comparison on CelebA dataset.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

FID ↓
9.21 11.24 12.15 12.92 8.53 11.82 11.22
9.18 11.87 13.04 13.12 8.22 11.00 12.43

9.6e−2 1.8e−1 2.8e−1 1.3e−1 6.1e−2 8.0e−2 3.6e−1

LPIPS ↑
0.27 0.23 0.24 0.24 0.22 0.22 0.25
0.26 0.24 0.25 0.25 0.25 0.23 0.24

7.7e−1 1.4e−1 1.0e−1 7.5e−2 1.9e−1 9.9e−2 3.1e−1

udiv ↑
0.71 0.73 0.72 0.74 0.72 0.75 0.73
0.85 0.86 0.85 0.86 0.83 0.85 0.86

1.1e−6 4.9e−5 5.2e−9 6.0e−5 1.0e−4 4.1e−4 1.6e−7

gunif ↓
28.76 24.85 27.96 30.72 28.30 35.25 30.88
21.08 20.22 20.41 24.22 21.68 21.08 23.98

2.9e−5 1.5e−5 1.1e−5 9.8e−6 4.8e−7 3.5e−9 1.2e−5

Table 12: Quantitative comparison on FFHQ dataset.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

FID ↓
14.73 12.84 13.05 15.68 11.27 12.34 13.39
15.49 11.03 12.21 14.89 11.22 12.73 14.83

5.5e−1 8.1e−2 2.4e−1 1.9e−1 5.4e−1 7.3e−1 6.4e−1

LPIPS ↑
0.34 0.31 0.29 0.30 0.28 0.27 0.29
0.33 0.33 0.30 0.31 0.29 0.26 0.28

1.2e−1 2.6e−1 7.2e−2 1.5e−1 9.7e−1 1.7e−1 2.4e−1

udiv ↑
0.65 0.65 0.67 0.66 0.67 0.65 0.64
0.80 0.79 0.78 0.79 0.78 0.81 0.79

1.5e−4 7.6e−5 4.3e−3 1.1e−8 6.2e−8 3.1e−7 5.7e−5

gunif ↓
34.78 33.04 32.19 30.88 36.06 33.30 35.69
27.11 27.10 25.90 24.91 25.87 25.17 26.51

8.0e−5 2.1e−3 6.2e−5 1.2e−6 7.1e−5 1.0e−8 7.1e−4

Table 13: Quantitative comparison on AFHQ Cat dataset.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

FID ↓
26.91 24.82 25.57 23.33 23.28 23.69 25.19
25.78 26.87 25.38 21.54 23.39 21.34 26.89

7.7e−2 1.6e−1 2.7e−1 6.8e−1 1.6e−1 1.4e−1 6.9e−2

LPIPS ↑
0.39 0.37 0.35 0.36 0.36 0.35 0.35
0.38 0.35 0.36 0.35 0.37 0.38 0.36

5.2e−1 1.7e−1 3.5e−1 1.2e−1 4.7e−1 9.1e−2 5.3e−1

udiv ↑
0.67 0.64 0.70 0.68 0.65 0.66 0.69
0.79 0.81 0.81 0.79 0.80 0.80 0.78

8.4e−7 5.0e−5 3.2e−5 7.5e−4 8.1e−7 7.3e−6 2.6e−7

gunif ↓
31.86 30.93 32.01 30.51 30.86 29.36 29.91
22.07 23.38 20.19 19.24 22.41 23.59 21.78

1.7e−6 3.6e−4 7.1e−5 8.1e−7 1.6e−4 1.4e−5 1.2e−6
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Table 14: Quantitative comparison on LSUN Car dataset.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

FID ↓
16.81 12.54 14.90 12.45 9.16 14.23 12.56
15.78 13.32 13.58 12.30 10.17 15.21 12.19

1.4e−1 9.4e−2 7.4e−1 8.1e−2 5.3e−1 3.6e−1 1.3e−1

LPIPS ↑
0.48 0.44 0.45 0.45 0.46 0.46 0.45
0.47 0.45 0.44 0.46 0.45 0.45 0.44

1.7e−1 8.4e−2 9.7e−2 1.5e−1 9.1e−1 1.4e−1 4.6e−1

udiv ↑
0.41 0.43 0.47 0.42 0.45 0.46 0.45
0.71 0.70 0.68 0.67 0.69 0.68 0.71

3.2e−4 4.4e−7 7.3e−4 1.1e−7 7.4e−5 8.7e−4 1.2e−6

gunif ↓
43.48 42.77 41.82 39.32 42.77 40.21 41.32
31.59 31.68 32.55 33.67 33.71 32.46 31.88

7.6e−4 2.7e−8 2.2e−5 1.1e−5 5.4e−8 3.0e−6 1.4e−7

Table 15: Quantitative comparison on LSUN Bedroom dataset.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

FID ↓
13.87 12.66 11.63 10.93 8.20 11.04 12.53
14.21 11.97 10.67 11.66 8.96 10.87 11.87

3.7e−2 2.1e−1 1.0e−1 1.9e−1 2.9e−1 1.8e−1 5.3e−1

LPIPS ↑
0.49 0.47 0.46 0.45 0.46 0.46 0.45
0.48 0.48 0.45 0.46 0.47 0.47 0.46

3.4e−1 4.1e−1 3.8e−1 5.6e−1 5.0e−1 7.2e−2 1.1e−1

udiv ↑
0.55 0.56 0.59 0.61 0.59 0.57 0.58
0.80 0.81 0.77 0.78 0.79 0.80 0.82

4.6e−5 8.5e−6 1.4e−5 5.5e−7 2.1e−7 6.0e−4 2.8e−5

gunif ↓
35.69 36.12 34.91 35.81 33.17 36.97 33.87
23.87 21.98 25.00 24.31 22.95 26.20 24.01

5.7e−7 3.5e−4 1.4e−7 7.8e−5 4.3e−7 1.1e−6 3.5e−6

Table 16: Quantitative comparison on LSUN Church dataset.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

FID ↓
15.23 13.92 13.99 12.87 10.39 13.43 12.81
14.39 13.09 14.87 15.93 9.83 14.30 11.08

1.7e−1 8.4e−2 3.7e−1 6.3e−1 8.0e−1 1.2e−1 8.7e−2

LPIPS ↑
0.47 0.45 0.44 0.45 0.44 0.44 0.46
0.46 0.46 0.45 0.44 0.45 0.45 0.45

1.8e−1 4.7e−1 3.3e−1 4.0e−1 5.2e−1 1.6e−1 8.9e−2

udiv ↑
0.63 0.66 0.64 0.63 0.65 0.65 0.66
0.79 0.81 0.77 0.80 0.78 0.79 0.81

8.4e−7 8.0e−4 6.3e−4 4.8e−7 8.1e−4 3.5e−8 5.6e−8

gunif ↓
33.04 35.33 35.59 34.61 33.09 35.62 34.85
25.55 24.38 24.41 24.58 25.84 25.57 26.15

7.4e−8 1.4e−4 1.7e−8 1.0e−7 6.8e−5 1.5e−8 5.3e−6
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Table 17: Quantitative comparison on 128× 128 CelebA dataset.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

FID ↓ 17.48 18.35 17.53 18.42 16.38 16.79 16.94
18.29 18.21 17.66 20.05 17.45 16.08 16.42

LPIPS ↑ 0.38 0.36 0.37 0.38 0.35 0.37 0.36
0.34 0.37 0.38 0.36 0.35 0.36 0.37

udiv ↑ 0.35 0.39 0.38 0.36 0.38 0.40 0.36
0.46 0.43 0.47 0.48 0.49 0.47 0.45

gunif ↓ 31.58 34.31 33.76 35.29 38.45 32.87 36.12
26.97 25.62 25.18 26.83 25.23 26.34 25.21

(a) Baseline samples around x1. (b) Baseline samples around x2.

(c) UniGAN samples around x1. (d) UniGAN samples around x2.

Figure 3: Qualitative results on MNIST dataset.
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(a) Baseline samples around x1. (b) Baseline samples around x2.

(c) UniGAN samples around x1. (d) UniGAN samples around x2.

Figure 4: Qualitative results on colored MNIST dataset.
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(a) Baseline samples around x1. (b) Baseline samples around x2.

(c) UniGAN samples around x1. (d) UniGAN samples around x2.

Figure 5: Qualitative results on FashionMNIST dataset.
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(a) Baseline samples around x1. (b) Baseline samples around x2.

(c) UniGAN samples around x1. (d) UniGAN samples around x2.

Figure 6: Qualitative results on colored FashionMNIST dataset.

32



(a) Baseline samples around x1. (b) Baseline samples around x2.

(c) UniGAN samples around x1. (d) UniGAN samples around x2.

Figure 7: Qualitative results on stacked-MNIST dataset with channel labels being 5, 7, 8, respectively.
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(a) Baseline samples around x1. (b) Baseline samples around x2.

(c) UniGAN samples around x1. (d) UniGAN samples around x2.

Figure 8: Qualitative results on CIFAR10 Ship dataset.
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(a) Baseline samples around x1. (b) Baseline samples around x2.

(c) UniGAN samples around x1. (d) UniGAN samples around x2.

Figure 9: Qualitative results on CelebA dataset.
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(a) Baseline samples around x1. (b) Baseline samples around x2.

(c) UniGAN samples around x1. (d) UniGAN samples around x2.

Figure 10: Qualitative results on FFHQ dataset.
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(a) Baseline samples around x1. (b) Baseline samples around x2.

(c) UniGAN samples around x1. (d) UniGAN samples around x2.

Figure 11: Qualitative results on AFHQ Cat dataset.
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(a) Baseline samples around x1. (b) Baseline samples around x2.

(c) UniGAN samples around x1. (d) UniGAN samples around x2.

Figure 12: Qualitative results on LSUN Car dataset.
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(a) Baseline samples around x1. (b) Baseline samples around x2.

(c) UniGAN samples around x1. (d) UniGAN samples around x2.

Figure 13: Qualitative results on LSUN Bedroom dataset.
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(a) Baseline samples around x1. (b) Baseline samples around x2.

(c) UniGAN samples around x1. (d) UniGAN samples around x2.

Figure 14: Qualitative results on LSUN Church dataset.
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