Supplementary for UniGAN: Reducing Mode Collapse in GANs using a Uniform Generator

Ziqi Pan, Li Niu* Liqing Zhang*
MoE Key Lab of Artificial Intelligence
Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai, China
\{panziqi_ai, ustcnewly\}@sjtu.edu.cn, zhang-lq@cs.sjtu.edu.cn

1 Proofs

We prove Theorem 1 (restated as Theorem 1) and its Corollary 1 (restated as Corollary 1), Theorem 2 (restated as Theorem 2) and Proposition 1 (restated as Proposition 1) in main text.

1.1 Proof of Theorem 1

Same as main text, let $\mathcal{P}_{\mathcal{M}}$ be the set of all distributions over a finite manifold \mathcal{M}. Given a distribution $p \in \mathcal{P}_{\mathcal{M}}$, we use p^{\prime} to denote its PDF. As we mentioned in main text, the differential entropy of q, \mathcal{H}_{q}, is maximized (i.e., $\mathcal{H}_{q}=\log m_{\mathcal{M}}$) only if q is the uniform distribution over \mathcal{M}. This can be seen directly from the following Jensen inequality due to the concavity of the log function:

$$
\begin{equation*}
\mathcal{H}_{q}=\int_{\operatorname{supp}\left(q^{\prime}\right)} \log \frac{1}{q^{\prime}(x)} \mathrm{d} q(x) \leqslant \log \left(\int_{\operatorname{supp}\left(q^{\prime}\right)} \frac{1}{q^{\prime}(x)} \mathrm{d} q(x)\right)=\log m_{\operatorname{supp}\left(q^{\prime}\right)} \leqslant \log m_{\mathcal{M}} \tag{1}
\end{equation*}
$$

where $m_{\operatorname{supp}\left(q^{\prime}\right)}$ and $m_{\mathcal{M}}$ is the measure of $\operatorname{supp}\left(q^{\prime}\right) \subset \mathcal{M}$ and \mathcal{M}, respectively, and the equality holds if and only if q^{\prime} is constant almost everywhere on $\operatorname{supp}\left(q^{\prime}\right)$, and $\operatorname{supp}\left(q^{\prime}\right)$ is almost equal to \mathcal{M}. We then prove the following Theorem 1

Theorem 1. For $q \in \mathcal{P}_{\mathcal{M}}$ that exhibits (ε, δ)-mode collapse, $0 \leqslant \mathcal{U}_{q} \leqslant \pi(\varepsilon, \delta)$, where $\pi(\varepsilon, \delta) \triangleq$ $\left(\frac{\delta}{\varepsilon}\right)^{\varepsilon}\left(\frac{1-\delta}{1-\varepsilon}\right)^{(1-\varepsilon)} \in[0,1)$. That is, a generative distribution that exhibits (ε, δ)-mode collapse at least exhibits $\pi(\varepsilon, \delta)$-mode collapse.

Proof. From Lemma 1 , we learn that \mathcal{H}_{q} is maximized if and only if q^{\prime} is constant almost everywhere on $\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}$ and q^{\prime} is constant almost everywhere on $\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}^{\prime}$. In such a case, let $q^{\prime}(x) \equiv \xi$ for almost every $x \in \operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}$ and $q^{\prime}(x) \equiv \xi^{\prime}$ for almost every $x \in \operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}^{\prime}$, then by plugging $q(\mathcal{S})=\int_{\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}} \mathrm{d} q(x)=\xi m$ and $q\left(\mathcal{S}^{\prime}\right)=\int_{\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}^{\prime}} \mathrm{d} q(x)=\xi^{\prime} m^{\prime}$ into Eq. 18), we have that

$$
\begin{equation*}
\mathcal{H}_{q} \leqslant q(\mathcal{S}) \log \frac{m}{q(\mathcal{S})}+q\left(\mathcal{S}^{\prime}\right) \log \frac{m^{\prime}}{q\left(\mathcal{S}^{\prime}\right)}=\xi m \log \frac{1}{\xi}+\xi^{\prime} m^{\prime} \log \frac{1}{\xi^{\prime}} \triangleq E\left(\xi, \xi^{\prime}, m, m^{\prime}\right) \tag{2}
\end{equation*}
$$

Construction of a linear programming problem Since $p(\mathcal{S})=\int_{\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}} \mathrm{d} p(x)=\frac{m}{m_{\mathcal{M}}} \geqslant \delta$, we have that $\delta m_{\mathcal{M}} \leqslant m \leqslant m_{\mathcal{M}}$. We also know that $0 \leqslant m^{\prime} \leqslant m_{\mathcal{M}}$ and $m+m^{\prime} \leqslant m_{\mathcal{M}}$. Since $q(\mathcal{S})=\xi m \leqslant \varepsilon$, we have that $\xi \leqslant \frac{\varepsilon}{m}$. Since $q(\mathcal{S})+q\left(\mathcal{S}^{\prime}\right)=1$, we have that $\xi m+\xi^{\prime} m^{\prime}=1$.

[^0]Therefore, we consider the following linear programming problem:

$$
\begin{align*}
& \max E\left(\xi, \xi^{\prime}, m, m^{\prime}\right), \quad \text { s.t. } \tag{3}\\
& \qquad \delta m_{\mathcal{M}} \leqslant m \leqslant m_{\mathcal{M}}, \quad 0 \leqslant m^{\prime} \leqslant m_{\mathcal{M}}, \quad m+m^{\prime} \leqslant m_{\mathcal{M}}, \quad 0 \leqslant \xi \leqslant \frac{\varepsilon}{m}, \quad \xi m+\xi^{\prime} m^{\prime}=1 \tag{4}
\end{align*}
$$

Solving the linear programming problem Considering two sets of solutions $\left(\xi, \xi_{1}^{\prime}, m, m_{1}^{\prime}\right)$ and $\left(\xi, \xi_{2}^{\prime}, m, m_{2}^{\prime}\right)$, where $m_{2}^{\prime} \geqslant m_{1}^{\prime}$. According to constraint (4), we have that $\xi_{1}^{\prime} m_{1}^{\prime}=\xi_{2}^{\prime} m_{2}^{\prime}$, which implies that $\xi_{1}^{\prime} \geqslant \xi_{2}^{\prime}$. Therefore, we have that

$$
\begin{equation*}
E\left(\xi, \xi_{2}^{\prime}, m, m_{2}^{\prime}\right)-E\left(\xi, \xi_{1}^{\prime}, m, m_{1}^{\prime}\right)=\xi_{1}^{\prime} m_{1}^{\prime}\left(\log \frac{1}{\xi_{2}^{\prime}}-\log \frac{1}{\xi_{1}^{\prime}}\right) \geqslant 0 \tag{5}
\end{equation*}
$$

hence according to constraint (4), the solution $\left(\xi, \xi^{\prime}, m, m^{\prime}\right)$ to the linear programming problem (Eq. (3)) satisfies $m+m^{\prime}=m_{\mathcal{M}}$. On the other hand, according to constraint $\xi m+\xi^{\prime} m^{\prime}=1$, we can rewrite the objective as $F\left(\xi, m, m^{\prime}\right) \triangleq E\left(\xi, \frac{1-\xi m}{m^{\prime}}, m, m^{\prime}\right)$. Since $\left(\log \frac{1}{\xi}\right)^{\prime}=-\frac{1}{\xi}$,

$$
\begin{equation*}
\frac{\partial F}{\partial \xi}=m\left(\log \frac{1}{\xi}-1\right)-\frac{m}{m^{\prime}} m^{\prime}\left(\log \frac{1}{\xi^{\prime}}-1\right)=m\left(\log \frac{1}{\xi}-\log \frac{1}{\xi^{\prime}}\right) \tag{6}
\end{equation*}
$$

Since

$$
\begin{equation*}
m^{\prime}\left(\xi^{\prime}-\xi\right)=1-\left(m+m^{\prime}\right) \xi=1-m_{\mathcal{M}} \xi \geqslant 1-\frac{\varepsilon m_{\mathcal{M}}}{m}=1-\frac{\varepsilon}{p(\mathcal{S})}>0 \tag{7}
\end{equation*}
$$

we have that $\xi^{\prime}>\xi$, i.e., $\frac{\partial F}{\partial \xi}>0$. Hence according to constraint (4), the solution $\left(\xi, \xi^{\prime}, m, m^{\prime}\right)$ to the linear programming problem (Eq. (3)) satisfies $\xi=\frac{\varepsilon}{m}$. Based on the above analysis, we have the following equivalent linear programming problem to Eq. (3) after simplifying

$$
\begin{align*}
& \max E\left(\xi, \xi^{\prime}, m, m^{\prime}\right), \quad \text { s.t. } \tag{8}\\
& \qquad \quad \delta m_{\mathcal{M}} \leqslant m \leqslant m_{\mathcal{M}}, \quad m+m^{\prime}=m_{\mathcal{M}}, \quad \xi=\frac{\varepsilon}{m}, \quad \xi m+\xi^{\prime} m^{\prime}=1 . \tag{9}
\end{align*}
$$

Therefore, the above linear programming problem (Eq. (8)) is equivalent to the maximum problem of the following function $G(m) \triangleq E\left(\frac{\varepsilon}{m}, \frac{1-\varepsilon}{m_{\mathcal{M}}-m}, m, m_{\mathcal{M}}-m\right)$,

$$
\begin{equation*}
\max G(m), \quad \delta m_{\mathcal{M}} \leqslant m \leqslant m_{\mathcal{M}} \tag{10}
\end{equation*}
$$

For $G^{\prime}(m)$, according to the chain rule of derivatives, we have that

$$
\begin{align*}
& G^{\prime}(m)=\frac{\partial E}{\partial \xi} \frac{\mathrm{~d} \xi}{\mathrm{~d} m}+\frac{\partial E}{\partial \xi^{\prime}} \frac{\mathrm{d} \xi^{\prime}}{\mathrm{d} m}+\frac{\partial E}{\partial m}+\frac{\partial E}{\partial m^{\prime}} \frac{\mathrm{d} m^{\prime}}{\mathrm{d} m} \tag{11}\\
& =m\left(\log \frac{1}{\xi}-1\right)\left(-\frac{\varepsilon}{m^{2}}\right)+m^{\prime}\left(\log \frac{1}{\xi^{\prime}}-1\right) \frac{1-\varepsilon}{\left(m_{\mathcal{M}}-m\right)^{2}}+\xi \log \frac{1}{\xi}-\xi^{\prime} \log \frac{1}{\xi^{\prime}} \tag{12}\\
& =-\xi\left(\log \frac{1}{\xi}-1\right)+\xi^{\prime}\left(\log \frac{1}{\xi^{\prime}}-1\right)+\xi \log \frac{1}{\xi}-\xi^{\prime} \log \frac{1}{\xi^{\prime}}=\xi-\xi^{\prime}<0, \tag{13}
\end{align*}
$$

therefore, we know that $G(m)$ is maximized at $m=\delta m_{\mathcal{M}}$, and the maximum of $G(m)$ is given as

$$
\begin{align*}
& G\left(\delta m_{\mathcal{M}}\right)=E\left(\frac{\varepsilon}{\delta m_{\mathcal{M}}}, \frac{1-\varepsilon}{(1-\delta) m_{\mathcal{M}}}, \delta m_{\mathcal{M}},(1-\delta) m_{\mathcal{M}}\right) \tag{14}\\
& =\varepsilon \log \frac{\delta m_{\mathcal{M}}}{\varepsilon}+(1-\varepsilon) \log \frac{(1-\delta) m_{\mathcal{M}}}{1-\varepsilon}=\varepsilon \log \frac{\delta}{\varepsilon}+(1-\varepsilon) \log \frac{1-\delta}{1-\varepsilon}+\log m_{\mathcal{M}} \tag{15}\\
& =\log \left\{\left(\frac{\delta}{\varepsilon}\right)^{\varepsilon}\left(\frac{1-\delta}{1-\varepsilon}\right)^{(1-\varepsilon)} m_{\mathcal{M}}\right\} . \tag{16}
\end{align*}
$$

By denoting $\pi(\varepsilon, \delta) \triangleq\left(\frac{\delta}{\varepsilon}\right)^{\varepsilon}\left(\frac{1-\delta}{1-\varepsilon}\right)^{(1-\varepsilon)}$, we have that $\mathcal{H}_{q} \leqslant \log \left(\pi(\varepsilon, \delta) m_{\mathcal{M}}\right)$.

Conclusion Obviously, $\pi(\varepsilon, \delta) \geqslant 0$, and we can verify that $\pi(\varepsilon, \delta)=0$ for $\varepsilon=0$. Since $\frac{\delta}{\varepsilon} \neq \frac{1-\delta}{1-\varepsilon}$, according to Jensen inequality, we have that

$$
\begin{equation*}
\log \pi(\varepsilon, \delta)=\varepsilon \log \frac{\delta}{\varepsilon}+(1-\varepsilon) \log \frac{1-\delta}{1-\varepsilon}<\log \left(\varepsilon \frac{\delta}{\varepsilon}+(1-\varepsilon) \frac{1-\delta}{1-\varepsilon}\right)=0 \tag{17}
\end{equation*}
$$

namely $0 \leqslant \pi(\varepsilon, \delta)<1$. For q that exhibits (ε, δ)-mode collapse, as aforementioned we know that $\mathcal{H}_{q} \in\left(-\infty, \log \left(\pi(\varepsilon, \delta) m_{\mathcal{M}}\right)\right]$, hence $0 \leqslant \mathcal{U}_{q} \leqslant \pi(\varepsilon, \delta)<1$, which completes the proof.
Lemma 1. Given a distribution $q \in \mathcal{P}_{\mathcal{M}}$ that exhibits (ε, δ)-mode collapse on $\mathcal{S} \subset \mathcal{M}$, namely $p(\mathcal{S}) \geqslant \delta$ and $q(\mathcal{S}) \leqslant \varepsilon$ where p is the ground-truth data distribution, we have that

$$
\begin{equation*}
\mathcal{H}_{q} \leqslant q(\mathcal{S}) \log \frac{m}{q(\mathcal{S})}+q\left(\mathcal{S}^{\prime}\right) \log \frac{m^{\prime}}{q\left(\mathcal{S}^{\prime}\right)} \tag{18}
\end{equation*}
$$

where \mathcal{S}^{\prime} is the complementary set of \mathcal{S} with respect to $\mathcal{M}, m \triangleq m_{\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}}$ and $m^{\prime} \triangleq m_{\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}^{\prime}}$, and the equality holds if and only if q^{\prime} is constant almost everywhere on $\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}$ and q^{\prime} is constant almost everywhere on $\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}^{\prime}$.

Proof. Given that

$$
\begin{equation*}
\mathcal{H}_{q}=\int_{\operatorname{supp}\left(q^{\prime}\right)} \log \frac{1}{q^{\prime}(x)} \mathrm{d} q(x)=\underbrace{\int_{\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}} \log \frac{1}{q^{\prime}(x)} \mathrm{d} q(x)}_{(1)}+\underbrace{\int_{\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}^{\prime}} \log \frac{1}{q^{\prime}(x)} \mathrm{d} q(x)}_{\text {(2) }}, \tag{19}
\end{equation*}
$$

we can derive according to the Jensen inequality that

$$
\begin{align*}
(1) & =q(\mathcal{S}) \int_{\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}} \log \frac{1}{q^{\prime}(x)} \mathrm{d} \frac{q(x)}{q(\mathcal{S})} \leqslant q(\mathcal{S}) \log \left(\int_{\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}} \frac{1}{q^{\prime}(x)} \mathrm{d} \frac{q(x)}{q(\mathcal{S})}\right) \tag{20}\\
& =q(\mathcal{S}) \log \left(\frac{1}{q(\mathcal{S})} \int_{\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}} \frac{1}{q^{\prime}(x)} \mathrm{d} q(x)\right)=q(\mathcal{S}) \log \frac{m}{q(\mathcal{S})} \tag{21}
\end{align*}
$$

where the equality holds if and only if q^{\prime} is constant almost everywhere on $\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}$. Similarly, we have that

$$
\begin{equation*}
(2) \leqslant q\left(\mathcal{S}^{\prime}\right) \log \frac{m^{\prime}}{q\left(\mathcal{S}^{\prime}\right)} \tag{22}
\end{equation*}
$$

where the equality holds if and only if q^{\prime} is constant almost everywhere on $\operatorname{supp}\left(q^{\prime}\right) \cap \mathcal{S}^{\prime}$. Combining Eq. (20)-(22) completes the proof.

1.2 Proof of Corollary 1

We prove Corollary 1 in main text, which is restated as the following Corollary 1 ;
Corollary 1. The following claims can be deduced from Theorem 1 .
(i) Let $u^{*}(\varepsilon, \delta)$ be the maximum uniform diversity that can be achieved for a generative distribution that exhibits (ε, δ)-mode collapse. Then $u^{*}\left(\varepsilon^{\prime}, \delta^{\prime}\right)<u^{*}(\varepsilon, \delta)$ holds for $\delta^{\prime}>\delta$ and $\varepsilon^{\prime}<\varepsilon$. Moreover, $\forall \xi>0, \exists \mu, \nu>0$, such that $u^{*}(\varepsilon, \delta)<\xi$ if $\varepsilon<\mu$ and $1-\delta<\nu$.
(ii) Let $q \in \mathcal{P}_{\mathcal{M}}$ be a generative distribution that exhibits u-mode collapse for any $u \in[0,1)$, then for any $\delta \in(0,1)$ and $\xi>0, q$ can exhibit (ε, δ)-mode collapse for $\delta-\varepsilon<\xi$.

Proof. From Theorem 1. we know that $u^{*}(\varepsilon, \delta)=\pi(\varepsilon, \delta)$. By denoting

$$
\begin{equation*}
F(\varepsilon, \delta) \triangleq \log \pi(\varepsilon, \delta)=\varepsilon \log \frac{\delta}{\varepsilon}+(1-\varepsilon) \log \frac{1-\delta}{1-\varepsilon} \tag{23}
\end{equation*}
$$

and using the fact that $\varepsilon<\delta$ and $1-\varepsilon>1-\delta$, we have that

$$
\begin{align*}
& \frac{\partial F}{\partial \varepsilon}=\log \frac{\delta}{\varepsilon}-\log \frac{1-\delta}{1-\varepsilon}>0 \tag{24}\\
& \frac{\partial F}{\partial \delta}=\frac{\varepsilon}{\delta}-\frac{1-\varepsilon}{1-\delta}<0 \tag{25}
\end{align*}
$$

Therefore, for $\delta^{\prime}>\delta$ and $\varepsilon^{\prime}<\varepsilon$, we have that $F\left(\varepsilon^{\prime}, \delta^{\prime}\right)<F(\varepsilon, \delta)$, namely $u^{*}\left(\varepsilon^{\prime}, \delta^{\prime}\right)<u^{*}(\varepsilon, \delta)$. Given $0<\xi<1$, we can verify that $\exists \mu=1, \nu=1-\xi$, such that for $\varepsilon<\mu$ and $1-\delta<\nu$,

$$
\begin{equation*}
\pi(\varepsilon, \delta)<\pi(\mu, 1-\nu)=\pi(1, \xi)=\xi \tag{26}
\end{equation*}
$$

On the other hand, $\pi(\varepsilon, \delta)<\xi$ always holds for $\xi \geqslant 1$. Hence the proof of Claim(i) is completed. To Claim(ii), we use contradictory. Assume that $\exists u \in[0,1), \delta \in(0,1), \xi>0$, such that $\forall \varepsilon>\delta-\xi, q$ cannot exhibit (ε, δ)-mode collapse, namely $u>\pi(\varepsilon, \delta)$. However, we can verify that $\pi(\varepsilon, \delta) \rightarrow 1$ as $\varepsilon \rightarrow \delta$, namely $\exists \varepsilon>\delta-\xi$, such that $\pi(\varepsilon, \delta)>u$, which contradicts the assumption. Therefore, the proof of Claim (ii) is completed.

1.3 Proof of Theorem 2

We prove Theorem 2 in main text, which is restated as the following Theorem 2 ,
Theorem 2. Assume that the generator $g: \mathcal{Z} \rightarrow \mathcal{M}$ is a local diffeomorphism between $\mathcal{Z} \subset \mathbb{R}^{K}$ and $\mathcal{M} \subset \mathbb{R}^{D}$ with $K<D$, and the prior distribution $p_{z} \in \mathcal{P}_{\mathcal{Z}}$ is the uniform distribution over \mathcal{Z}. The uniform diversity of the generative distribution $q=g_{\#} p_{z}$ is maximized, if g is uniform.

Proof. The uniform diversity, $\mathcal{U}_{q}=\frac{e^{\mathcal{H}_{q}}}{m_{\mathcal{M}}}$, of the generative distribution q is maximized, if and only if \mathcal{H}_{q} is maximized. For $z \in \mathcal{Z}$, let $x=g(z)$, we have that

$$
\begin{align*}
\mathcal{H}_{q} & =-\int_{\operatorname{supp}\left(q^{\prime}\right)} \log q^{\prime}(x) \mathrm{d} q(x) \tag{27}\\
& =-\left.\int_{\operatorname{supp}\left(q^{\prime}\right)} \frac{p_{z}^{\prime}(z)}{\sqrt{\operatorname{det} J_{g}^{\top}(z) J_{g}(z)}} \log \frac{p_{z}^{\prime}(z)}{\sqrt{\operatorname{det} J_{g}^{\top}(z) J_{g}(z)}} \mathrm{d} V_{\mathcal{M}}\right|_{x} \tag{28}\\
& =-\int_{\mathcal{Z}} \frac{p_{z}^{\prime}(z)}{\sqrt{\operatorname{det} J_{g}^{\top}(z) J_{g}(z)}} \log \frac{p_{z}^{\prime}(z)}{\sqrt{\operatorname{det} J_{g}^{\top}(z) J_{g}(z)}}\left(\left.\sqrt{\operatorname{det} J_{g}^{\top}(z) J_{g}(z)} \mathrm{d} V_{\mathcal{Z}}\right|_{z}\right) \tag{29}\\
& =-\left.\int_{\mathcal{Z}} p_{z}^{\prime}(z) \log \frac{p_{z}^{\prime}(z)}{\sqrt{\operatorname{det} J_{g}^{\top}(z) J_{g}(z)}} \mathrm{d} V_{\mathcal{Z}}\right|_{z} \tag{30}\\
& =-\left.\int_{\mathcal{Z}} p_{z}^{\prime}(z) \log p_{z}^{\prime}(z) \mathrm{d} V_{\mathcal{Z}}\right|_{z}+\left.\int_{\mathcal{Z}} p_{z}^{\prime}(z) \log \sqrt{\operatorname{det} J_{g}^{\top}(z) J_{g}(z)} \mathrm{d} V_{\mathcal{Z}}\right|_{z} \tag{31}\\
& =\mathcal{H}_{p_{z}}+\left.p_{z}^{\prime} \int_{\mathcal{Z}} \log \sqrt{\operatorname{det} J_{g}^{\top}(z) J_{g}(z)} \mathrm{d} V_{\mathcal{Z}}\right|_{z} . \tag{32}
\end{align*}
$$

Note that p_{z}^{\prime} is constant over \mathcal{Z} since p_{z} is the uniform distribution over \mathcal{Z}. From Eq. 32, we learn that maximizing \mathcal{H}_{q} is equivalent to maximizing $\left.\int_{\mathcal{Z}} \log \sqrt{\operatorname{det} J_{g}^{\top}(z) J_{g}(z)} \mathrm{d} V_{\mathcal{Z}}\right|_{z}$. On the other hand, given that \mathcal{Z} is finite, we have that

$$
\begin{equation*}
\left.\int_{\mathcal{Z}} \mathrm{d} V_{\mathcal{Z}}\right|_{z}=m_{\mathcal{Z}} \tag{33}
\end{equation*}
$$

Therefore, according to Jensen inequality, we have that

$$
\begin{align*}
& \left.\int_{\mathcal{Z}} \log \sqrt{\operatorname{det} J_{g}^{\top}(z) J_{g}(z)} \mathrm{d} V_{\mathcal{Z}}\right|_{z} \leqslant m_{\mathcal{Z}} \log \left(\left.\frac{1}{m_{\mathcal{Z}}} \int_{\mathcal{Z}} \sqrt{\operatorname{det} J_{g}^{\top}(z) J_{g}(z)} \mathrm{d} V_{\mathcal{Z}}\right|_{z}\right) \tag{34}\\
& =m_{\mathcal{Z}} \log \left(\left.\frac{1}{m_{\mathcal{Z}}} \int_{\operatorname{supp}\left(q^{\prime}\right)} \mathrm{d} V_{\mathcal{M}}\right|_{x}\right)=m_{\mathcal{Z}} \log \frac{m_{\operatorname{supp}\left(q^{\prime}\right)}}{m_{\mathcal{Z}}} \tag{35}
\end{align*}
$$

where the equality holds if and only if $\operatorname{det} J_{g}^{\top} J_{g}$ is constant over \mathcal{Z}, which completes the proof.

1.4 Proof of Proposition 1

We prove Proposition 1 in main text, which is restated as the following Proposition 1. Recall that in main text, we use an NF-based generator $g: \mathcal{Z} \subset \mathbb{R}^{K} \rightarrow \mathbb{R}^{D}$ for arbitrary $K<D$ with a hierarchical architecture as follows

$$
\begin{equation*}
g=f_{L} \circ e_{L} \circ f_{L-1} \circ e_{L-1} \circ \cdots \circ f_{1} \circ e_{1} \tag{36}
\end{equation*}
$$

where $f_{i}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$ is a bijective and invertible NF module (e.g., coupling layers [1, 2, 3]) with tractable determinant of Jacobian, $e_{i}: \mathbb{R}^{K_{i-1}} \rightarrow \mathbb{R}^{K_{i}}$ boosts the dimensionality of the input feature x from K_{i-1} to K_{i} by simply padding $K_{i}-K_{i-1}$ zeros at the end of x [4], and the dimensionalities of hierarchical features satisfy $K=K_{0}<K_{1}<\cdots<K_{L}=D$. We also mentioned that the pseudo inverse of $g, g^{\dagger}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{K}$, is defined as

$$
\begin{equation*}
g^{\dagger}=e_{1}^{\dagger} \circ f_{1}^{-1} \circ \cdots \circ e_{L-1}^{\dagger} \circ f_{L-1}^{-1} \circ e_{L}^{\dagger} \circ f_{L}^{-1} \tag{37}
\end{equation*}
$$

where $f_{i}^{-1}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$ is the inverse of f_{i}, and $e_{i}^{\dagger}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i-1}}$ is the pseudo inverse of e_{i} that reduces the dimensionality of the input feature x from K_{i} to K_{i-1} by simply dropping $K_{i}-K_{i-1}$ zeros at the end of x. We then prove the following Proposition 1 ,
Proposition 1. $\forall z \in \mathcal{Z}, J_{g^{\dagger}}(g(z)) J_{g}(z)=I \in \mathbb{R}^{K \times K}$ holds, where I is the identity matrix.
Proof. Given $z_{0} \in \mathcal{Z}$ and $x_{L} \in g(\mathcal{Z})$, we denote that

$$
\begin{array}{ll}
\widetilde{z}_{l} \triangleq e_{l}\left(z_{l-1}\right), \quad z_{l} \triangleq f_{l}\left(\widetilde{z}_{l}\right), & 1 \leqslant l \leqslant L \\
x_{l-1} \triangleq e_{l}^{\dagger}\left(\widetilde{x}_{l}\right), \quad \widetilde{x}_{l}=f_{l}^{-1}\left(x_{l}\right), & 1 \leqslant l \leqslant L \tag{39}
\end{array}
$$

Therefore, we have that

$$
\begin{align*}
& J_{g}\left(z_{0}\right)=J_{f_{L}}\left(\widetilde{z}_{L}\right) J_{e_{L}}\left(z_{L-1}\right) J_{f_{L-1}}\left(\widetilde{z}_{L-1}\right) J_{e_{L-1}}\left(z_{L-2}\right) \cdots J_{f_{1}}\left(\widetilde{z}_{1}\right) J_{e_{1}}\left(z_{0}\right), \tag{40}\\
& J_{g^{\dagger}}\left(x_{L}\right)=J_{e_{1}^{\dagger}}\left(\widetilde{x}_{1}\right) J_{f_{1}^{-1}}\left(x_{1}\right) \cdots J_{e_{L-1}^{\dagger}}\left(\widetilde{x}_{L-1}\right) J_{f_{L-1}^{-1}}\left(x_{L-1}\right) J_{e_{L}^{\dagger}}\left(\widetilde{x}_{L}\right) J_{f_{L}^{-1}}\left(x_{L}\right) . \tag{41}
\end{align*}
$$

Since $e_{i}: \mathbb{R}^{K_{i-1}} \rightarrow \mathbb{R}^{K_{i}}$ and $e_{i}^{\dagger}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i-1}}$ are linear transformations, we have that

$$
\begin{equation*}
J_{e_{i}^{\dagger}} J_{e_{i}} \equiv I_{K_{i-1} \times K_{i}} I_{K_{i} \times K_{i-1}}=I_{K_{i-1} \times K_{i-1}}, \tag{42}
\end{equation*}
$$

where we denote $I_{m \times n}$ as an $m \times n$ identity matrix. On the other hand, for $x_{L}=g\left(z_{0}\right)$, we have

$$
\begin{equation*}
z_{L}=x_{L} \quad \Longrightarrow \quad \widetilde{z}_{L}=\widetilde{x}_{L} \quad \Longrightarrow \quad z_{L-1}=x_{L-1} \quad \Longrightarrow \quad \cdots \quad \Longrightarrow \quad z_{0}=x_{0} . \tag{43}
\end{equation*}
$$

Therefore, we have that $x_{i}=f_{i} \circ f_{i}^{-1}\left(x_{i}\right)=f_{i}\left(\widetilde{x}_{i}\right)=f\left(\widetilde{z}_{i}\right)$, which implies that

$$
\begin{equation*}
J_{f_{i}^{-1}}\left(x_{i}\right) J_{f_{i}}\left(\widetilde{z}_{i}\right)=I_{K_{i} \times K_{i}} \tag{44}
\end{equation*}
$$

Therefore, by plugging Eq. (42) and Eq. (44) into Eq. (40) and Eq. (41), we have that

$$
\begin{align*}
& J_{g^{\dagger}}(g(z)) J_{g}(z) \tag{45}\\
& =J_{e_{1}^{\dagger}}\left(\widetilde{x}_{1}\right) J_{f_{1}^{-1}}\left(x_{1}\right) \cdots J_{e_{L-1}^{\dagger}}\left(\widetilde{x}_{L-1}\right) J_{f_{L-1}^{-1}}\left(x_{L-1}\right) J_{e_{L}^{\dagger}}\left(\widetilde{x}_{L}\right) J_{f_{L}^{-1}}\left(x_{L}\right) \tag{46}\\
& \quad J_{f_{L}}\left(\widetilde{z}_{L}\right) J_{e_{L}}\left(z_{L-1}\right) J_{f_{L-1}}\left(\widetilde{z}_{L-1}\right) J_{e_{L-1}}\left(z_{L-2}\right) \cdots J_{f_{1}}\left(\widetilde{z}_{1}\right) J_{e_{1}}\left(z_{0}\right) \tag{47}\\
& =J_{e_{1}^{\dagger}}\left(\widetilde{x}_{1}\right) J_{f_{1}^{-1}}\left(x_{1}\right) \cdots J_{e_{L-1}^{\dagger}}\left(\widetilde{x}_{L-1}\right) J_{f_{L-1}^{-1}}\left(x_{L-1}\right) \tag{48}\\
& \tag{49}\\
& \quad J_{f_{L-1}}\left(\widetilde{z}_{L-1}\right) J_{e_{L-1}}\left(z_{L-2}\right) \cdots J_{f_{1}}\left(\widetilde{z}_{1}\right) J_{e_{1}}\left(z_{0}\right) \tag{50}\\
& =J_{e_{1}^{\dagger}}\left(\widetilde{x}_{1}\right) J_{f_{1}^{-1}}\left(x_{1}\right) \cdots J_{f_{1}}\left(\widetilde{z}_{1}\right) J_{e_{1}}\left(z_{0}\right) \tag{51}\\
& =J_{e_{1}^{\dagger}}\left(\widetilde{x}_{1}\right) J_{f_{1}^{-1}}\left(x_{1}\right) J_{f_{1}}\left(\widetilde{z}_{1}\right) J_{e_{1}}\left(z_{0}\right) \tag{52}\\
& =I_{K \times K},
\end{align*}
$$

which completes the proof.
For any matrix J, we adopt $\sigma^{*}(J)$ and $\sigma_{*}(J)$ to denote the maximum and the minimum singular value of J, respectively. Given $J_{g^{\dagger}} J_{g}=I$, we intuitively illustrate that $\sigma_{*}\left(J_{g}\right)=\frac{1}{\sigma^{*}\left(J_{g^{\dagger}}\right)}$ in the case of $u^{*} \in T_{g(z)} \mathcal{M}$ by using Fig. 4 in main text, where u^{*} gives the maximum singular value of $J_{g^{\dagger}}$ and \mathcal{M} is the generated manifold of g. However, it is notable that $\sigma_{*}\left(J_{g}\right)=\frac{1}{\sigma^{*}\left(J_{g^{\dagger}}\right)}$ does not universally hold in the case of $J_{g^{\dagger}} J_{g}=I$ as we mentioned in main text. For a toy example, consider $J_{g} \triangleq[a, b]^{\top} \in \mathbb{R}^{1 \times 2}$ and $J_{g^{\dagger}} \triangleq\left[\frac{1}{a}, 0\right] \in \mathbb{R}^{2 \times 1}$. We can then verify that $J_{g^{\dagger}} J_{g}=[1] \in \mathbb{R}^{1 \times 1}=I$. We know that $\mathcal{U}^{*} \triangleq\left\{[\alpha, 0]^{\top} \mid \alpha \in \mathbb{R}\right\}$ are all the vectors that give the maximum singular value of $J_{g^{\dagger}}$ and $T_{g(z)} \mathcal{M} \triangleq\{(\alpha a, \alpha b) \mid \alpha \in \mathbb{R}\}$, hence in the case of $b \neq 0$, we know that $\mathcal{U}^{*} \cap T_{g(z)} \mathcal{M}=\emptyset$, i.e., there does not exist a tangent vector that gives the maximum singular value of $J_{g^{\dagger}}$. On the other hand, we know that $\frac{1}{\sigma^{*}\left(J_{g^{\dagger}}\right)}=|a| \neq \sqrt{a^{2}+b^{2}}=\sigma_{*}\left(J_{g}\right)$ in the case of $b \neq 0$. Therefore, this toy example is an illustration that $\frac{1}{\sigma^{*}\left(J_{g^{\dagger}}\right)} \neq \sigma_{*}\left(J_{g}\right)$ can hold for $J_{g^{\dagger}}$ such that the maximum singular value can not be given by a vector from $T_{g(z)} \mathcal{M}$.

Figure 1: Illustration of the architecture of the i-th block $f_{i} \circ e_{i}: \mathbb{R}^{K_{i-1}} \rightarrow \mathbb{R}^{K_{i}}$, which consists of a dim increasing layer $e_{i}: \mathbb{R}^{K_{i-1}} \rightarrow \mathbb{R}^{K_{i}}$ and a flow layer $f_{i}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$. We use text (c, s) in red to denote a feature of shape $c \times s \times s$, where c and s are the number of channels and spatial size, respectively. Therefore, $K_{i}=c_{i} \times 2^{i} \times 2^{i}$. To understand the operating mechanism of the unsqueeze layer, we mark pixels of a feature by using different numbers, and the correspondence between pixels of the input and output feature is indicated by numbers. The squeeze layer is actually an invert of the unsqueeze layer. The split and concat deal with input features along the channel axis.

2 Implementation Details

We provide implementation details of our NF-based generator, the generator uniformity regularization and the udiv diversity metric that are briefly introduced in main text.

2.1 The NF-based Generator

Given the architecture of our generator g as shown in Eq. (36), we refer to $f_{i} \circ e_{i}: \mathbb{R}^{K_{i-1}} \rightarrow \mathbb{R}^{K_{i}}$ as the i-th block layer, which consists of a dim increasing layer e_{i} and a flow layer f_{i}. We illustrate the architecture of a block layer as shown in Fig. 1. Given a feature of shape $K_{i-1} \triangleq c_{i-1} \times 2^{i-1} \times 2^{i-1}$, the dim increasing layer e_{i} promotes the dimensionality of the input feature and outputs a feature of shape $K_{i} \triangleq c_{i} \times 2^{i} \times 2^{i}$ by using a zero pad layer, a 1×1 convolution layer, and a unsqueeze layer. The zero pad layer pads $\left(4 c_{i}-c_{i-1}\right) \times 2^{i-1} \times 2^{i-1}$ zeros at the end of the input feature along the channel axis, obtaining an output feature of shape $4 c_{i} \times 2^{i-1} \times 2^{i-1}$ whose subfeatures of different channels are further mixed by the following 1×1 convolution layer. The final unsqueeze layer further increases the spatial size of the feature while decreasing the number of channels without changing the dimensionality of the feature, obtaining the output feature of shape $c_{i} \times 2^{i} \times 2^{i}$. In terms of the flow layer $f_{i}: \mathbb{R}^{c_{i} \times 2^{i} \times 2^{i}} \rightarrow \mathbb{R}^{c_{i} \times 2^{i} \times 2^{i}}$, it consists of several module layers, where a module layer consists of 1×1 convolutional layer, a Batch Normalization [5] (BN) layer, and an additive coupling layer [1, 2, 3]. All these layers do not change the dimensionality of features. In terms of an additive coupling layer $r: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$, for $y=r(x)$, the computation is given as

$$
\begin{align*}
& y_{1: \frac{K_{i}}{2}}=x_{1: \frac{K_{i}}{2}} \tag{53}\\
& y_{\frac{K_{i}}{2}+1: K_{i}}=x_{\frac{K_{i}}{2}+1: K_{i}}+n\left(x_{1: \frac{K_{i}}{2}}\right) \tag{54}
\end{align*}
$$

where we use $x_{a: b}$ to denote $\left[x_{a}, x_{a+1}, \cdots, x_{b}\right] \in \mathbb{R}^{b-a+1}$, and $n: \mathbb{R}^{\frac{K_{i}}{2}} \rightarrow \mathbb{R}^{\frac{K_{i}}{2}}$ (assume that K_{i} is even) can be any flexible nonlinear neural network. However, a notable issue is that $y_{1: \frac{k_{i}}{2}}$ remains the same as $x_{1: \frac{K_{i}}{2}}$, which limits the flexibility of r. To overcome this problem, inspired by [3], the 1×1 convolution layer and the BN layer before r are added. In terms of the nonlinear transformation n inside r, given the input feature $x_{1: \frac{K_{i}}{2}}$ of shape $\frac{c_{i}}{2} \times 2^{i} \times 2^{i}$, we first use a squeeze layer to reduce its spatial size, obtaining a feature of shape $2 c_{i} \times 2^{i-1} \times 2^{i-1}$, followed by using a 1×1 convolution
with a weight matrix of shape $h_{i-1} \times 2 c_{i}$ to obtain a feature of shape $h_{i-1} \times 2^{i-1} \times 2^{i-1}$, where we refer to h_{i} as the number of channels of hidden features of i-th block. We further perform upsampling on this feature by using a layer composed by a transposed convolution layer, a BN layer and a ReLU layer, obtaining a hidden feature of shape $h_{i} \times 2^{i} \times 2^{i}$. Finally, the hidden feature is transformed to the output feature of shape $c_{i} \times 2^{i} \times 2^{i}$ by using a 1×1 convolution layer with a weight matrix of shape $c_{i} \times h_{i}$. To stabilize training and reduce the amount of trainable parameters of our generator, for all 1×1 convolution layer with a weight matrix W of shape $h \times w$, we first randomly initialize a rotation matrix R of shape $s \times s$, where $s=\max \{h, w\}$, and then chose W to be the first h (resp., w) rows (resp., columns) of R in the case of $h \leqslant w$ (resp., $h>w$), and W is fixed during training.

Conditional generation The manifold hypothesis [6, 7, 8] assumes that high dimensional data is concentrated on a lower dimensional manifold. This assumption is natural for a set of images where the change between images is continuous, e.g., the change between human face images is continuous. We refer to such a case as continuous data mode. However, there also exists sets of images where the change between images can be drastic, e.g., for the MNIST [9] dataset, changes between images of different digits could be discontinuous and drastic. We refer to such a case as discrete data mode. Existing work [10, 11] summarize two different types of mode collapse: collapse to a subset of data modes, and collapse to a sub-manifold within the data distribution, which correspond to the discrete data mode and the continuous data mode, respectively. Given continuous data mode, it is reasonable that our proposed generator is applicable, since the generator is a continuous mapping. However, how to extend our generator to the setting of discrete data mode is a notable problem. In order to tackle this problem, we also extend our generator architecture to the conditional generation setting $\widetilde{g}(z ; y)$, where $z \in \mathbb{R}^{K}$ is the latent code, and $y \in \mathbb{N}$ is the category label. Given that $\widetilde{g}: \mathbb{R}^{K} \times \mathbb{N} \rightarrow \mathbb{R}^{D}$ is the conditional generator, our idea is to make $g_{y}: \mathbb{R}^{K} \rightarrow \mathbb{R}^{D}$ a continuous generator that adopts the same architecture as used in the case of continuous data mode, where $g_{y}(z) \triangleq \widetilde{g}(z ; y)$. Though this is similar to a multiple generator setting [12, 13, 14], we share model parameters between generators g_{y} corresponding to different category y. Specifically, let $g: \mathbb{R}^{K} \rightarrow \mathbb{R}^{D}$ be a continuous generator that uses an architecture as shown in Eq. (36), in addition to the generator, we firstly set up trainable category embeddings $C \in \mathbb{R}^{Y \times K}$ where Y is the number of categories, then modify e_{1} from a layer that increases dimensionality from K to K_{1} to a layer that increases dimensionality from $2 K$ to K_{1}. In such a case, the conditional generator $\tilde{g}: \mathbb{R}^{K} \times \mathbb{N} \rightarrow \mathbb{R}^{D}$ is defined as

$$
\begin{equation*}
\widetilde{g}(z ; y)=g\left(\operatorname{concat}\left(z, C_{y}\right)\right), \quad z \in \mathcal{Z}, y \in \mathbb{N}, \tag{55}
\end{equation*}
$$

where C_{y} is the y-th row of matrix C, i.e., the embedding of the y-th category, and concat $\left(z, C_{y}\right) \in$ $\mathbb{R}^{2 K}$ is a vector of length $2 K$ obtained by concatenating the latent code $z \in \mathbb{R}^{K}$ and $C_{y} \in \mathbb{R}^{K}$. Such a modification does not increase the amount of model parameters. During our training in practice, for datasets with known number of categories, e.g., MNIST that contains ten different categories of digits, we can set Y to the ground-truth number of category. For datasets without category labels, we can use labels automatically derived from clustering in the discriminator's feature space as proposed in [15]. Moreover, to ensure that different generators capture modes of different category, we employ a MAD-GAN [12] discriminator distinguishes the real and fake samples along with identifying the generator that generates the given fake sample. See our code provided in supplementary material.

2.2 The Generator Uniformity Regularization

Recall that the generator uniformity regularization is given in main text as

$$
\begin{equation*}
\mathcal{L}_{\text {gunif }} \triangleq \mathbb{E}_{z \sim p_{z}}\left\{\left(\operatorname{LT}_{g}(z)-a\right)^{2}+\left(\frac{1}{\operatorname{LT}_{g^{\dagger}}(g(z))}-a\right)^{2}\right\} \tag{56}
\end{equation*}
$$

where $\mathrm{LT}_{g}(z)$ gives the estimated spectral norm of J_{g} at z by using the Linearized Transpose (LT) technique, and a is the moving average of the minimum and the maximum singular values of J_{g}.

2.2.1 The Linearized Transpose Technique

We firstly present the detailed introduction to our proposed Linearized Transpose (LT) technique that estimates the spectral norm of the Jacobian J of a given mapping g in a sample efficient manner. We fundamentally use the fast approximation approach proposed in [16, 17, 18] in our LT process. Given

```
Algorithm 1 Linearized Transpose
Require: A mapping \(g: \mathbb{R}^{K} \rightarrow \mathbb{R}^{D}\), an input \(z \in \mathbb{R}^{K}\), power of iteration \(M\)
    procedure \(\mathrm{LT}_{g}(z ; M)\)
        Obtain \(x=g(z)\), meanwhile construct \(\widehat{g}_{z}\)
        Randomly sample \(\varepsilon \in \mathbb{R}^{D}\), then obtain \(z^{\prime}=\widehat{g}_{z}(\varepsilon) \in \mathbb{R}^{K}\)
        Randomly sample \(u, u^{\prime} \in \mathbb{R}^{D}\) and \(v \in \mathbb{R}^{K}\)
        for \(m=1\) to \(M\) do
            Update \(v \leftarrow \mathcal{P}_{\text {grad }}\left(z, \frac{u^{\top} x}{\|u\|_{2}}\right)\)
            Update \(u^{\prime} \leftarrow u, u \leftarrow \mathcal{P}_{\text {grad }}\left(\varepsilon, \frac{v^{\top} z^{\prime}}{\|v\|_{2}}\right)\)
        end for
        return estimated spectral norm \(u^{\top} u^{\prime}\)
    end procedure
```

a matrix $J \in \mathbb{R}^{D \times K}$, the fast approximation approach first randomly sample a vector $u \in \mathbb{R}^{D}$, then repeat the following update procedure several times

$$
\begin{equation*}
v \leftarrow \frac{J^{\top} u}{\left\|J^{\top} u\right\|_{2}}, \quad u \leftarrow \frac{J v}{\|J v\|_{2}} . \tag{57}
\end{equation*}
$$

Finally, the spectral norm σ^{*} of J can be effectively approximated as $\sigma^{*} \approx u^{\top} J v$. However, in our case the problem is that the matrix J is implicit and is inefficient to estimate, since it is the Jacobian of a nonlinear mapping g. Fortunately, we observe that an explicit J may be not necessary, since it is sufficient to perform fast approximation if we can estimate $J^{\top} u \in \mathbb{R}^{K}$ and $J v \in \mathbb{R}^{D}$ directly. We are also aware that the autograd $\mathcal{P}_{\text {grad }}$ of deep learning libraries [19, 20] can efficiently perform

$$
\begin{equation*}
\mathcal{P}_{\operatorname{grad}}\left(z, u^{\top} g(z)\right)=\sum_{i=1}^{D} \frac{\partial\left(u^{\top} g\right)_{i}}{\partial z}=J^{\top} u \in \mathbb{R}^{K} \tag{58}
\end{equation*}
$$

and produces accurate estimation. Such a method was also adopted in [21]. Based on Eq. (58], $J^{\top} u$ is tractable. Similarly, to obtain $J v$, we observe that a linear mapping \widehat{g} should be constructed where $J_{\widehat{g}}=J^{\top}$, where $J_{\widehat{g}}$ is the Jacobian of \widehat{g}. To see this, by exploiting Eq. (58), we have

$$
\begin{equation*}
\mathcal{P}_{\operatorname{grad}}\left(\varepsilon, v^{\top} \widehat{g}(\varepsilon)\right)=J_{\widehat{g}}^{\top} v=J v \tag{59}
\end{equation*}
$$

where $\varepsilon \in \mathbb{R}^{K}$ can be an arbitrary vector, since \widehat{g} is linear and hence $J_{\widehat{g}}$ is independent of ε. Hence we provide the formal definition of LT as
Definition 1 (Linearized transpose). Given a mapping $g: \mathbb{R}^{K} \rightarrow \mathbb{R}^{D}$, the linearized transpose of g at z, is a linear mapping $\widehat{g}_{z}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{K}$, such that

$$
\begin{equation*}
J_{\widehat{g}_{z}}=J_{g}^{\top}(z) \tag{60}
\end{equation*}
$$

Therefore, for generator g, as long as we are able to construct \hat{g}_{z}, we can apply the aforementioned fast approximation approach to estimate the spectral norm of $J_{g}(z)$ by using Eq. 58 and Eq. 59 and the LT algorithm for obtaining $\mathrm{LT}_{g}(z)$ is provided in Alg. 1 . Similarly, $\mathrm{LT}_{g^{\dagger}}(g(z))$ can be obtained as long as we are able to construct $\widehat{g^{\dagger}} g(z)$.

2.2.2 Construction of Linearized Transpose

As we mentioned in Section 2.2.1, to obtain $\operatorname{LT}_{g}(z)$ and $\mathrm{LT}_{g^{\dagger}}(g(z))$, the main task is to construct \widehat{g}_{z} and $\widehat{g^{\dagger}}{ }_{g(z)}$. We firstly provide the following Proposition 2 ,
Proposition 2. Given a mapping $f=f_{L} \circ f_{L-1} \circ \cdots \circ f_{1}$, we have

$$
\begin{equation*}
\widehat{f}_{z_{1}}=\widehat{f}_{1 z_{1}} \circ \widehat{f}_{2 z_{2}} \circ \cdots{\widehat{f_{L}}}_{z_{L}} \tag{61}
\end{equation*}
$$

where $z_{l+1}=f_{l}\left(z_{l}\right), 1 \leqslant l \leqslant L$.

Proof. By checking

$$
\begin{align*}
& J_{\widehat{f}_{z_{1}}}=J_{\widehat{f}_{1_{1}}} J_{\widehat{f}_{z_{z_{2}}}} \cdots J_{\widehat{f_{L} z_{L}}}=J_{f_{1}}^{\top}\left(z_{1}\right) J_{f_{2}}^{\top}\left(z_{2}\right) \cdots J_{f_{L}}^{\top}\left(z_{L}\right) \tag{62}\\
& =\left(J_{f_{L}}\left(z_{L}\right) \cdots J_{f_{2}}\left(z_{2}\right) J_{f_{1}}\left(z_{1}\right)\right)^{\top}=J_{f}^{\top}\left(z_{1}\right) \tag{63}
\end{align*}
$$

we learn that Eq. (61) gives the LT of f at z_{1} according to the Definition 1 of LT.

We then introduce how to construct \widehat{g}_{z} and $\widehat{g^{\dagger}}{ }_{g(z)}$. According to Eq. 36) and Eq. 37), by leveraging Proposition 2, we have

$$
\begin{align*}
& \widehat{g}=\widehat{e_{1}} \circ \widehat{f_{1}} \circ \cdots \circ \widehat{e_{L-1}} \circ \widehat{f_{L-1}} \circ \widehat{e_{L}} \circ \widehat{f_{L}}, \tag{64}\\
& \widehat{g^{\dagger}}=\widehat{f_{L}^{-1}} \circ \widehat{e_{L}^{\dagger}} \circ \widehat{f_{L-1}^{-1}} \circ \widehat{e_{L-1}^{\dagger}} \circ \cdots \circ \widehat{f_{1}^{-1}} \circ \widehat{e_{1}^{\dagger}}, \tag{65}
\end{align*}
$$

where we omit the dependencies of \widehat{g}_{z} (resp., $\widehat{g^{\dagger}} g(z)$) on $z($ resp., $g(z)$) to avoid redundancy. Hence we only need to construct $\widehat{e_{i}}, \widehat{e_{i}^{\dagger}}, \widehat{f_{i}}$ and $\widehat{f_{i}^{-1}}$.

LT of e_{i} As we introduced in Section 2.1 and illustrated in Fig. 1. we know that the dim increasing layer $e_{i}: \mathbb{R}^{K_{i-1}} \rightarrow \mathbb{R}^{K_{i}}$ is composed as

$$
\begin{equation*}
e_{i}=u \circ w \circ p, \tag{66}
\end{equation*}
$$

where $p: \mathbb{R}^{K_{i-1}} \rightarrow \mathbb{R}^{K_{i}}, w: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$ and $u: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$ are the zero pad layer, the 1×1 convolution layer, and the unsqueeze layer of e_{i}, respectively. From Proposition 2 we have

$$
\begin{equation*}
\widehat{e_{i}}=\widehat{p} \circ \widehat{w} \circ \widehat{u} . \tag{67}
\end{equation*}
$$

Since p pads $K_{i}-K_{i-1}$ zeros at the end of the input feature, we know that its Jacobian J_{p} is the identity matrix $I_{K_{i} \times K_{i-1}}$. Hence we can verify that $\widehat{p}=p^{\dagger}$, where $p^{\dagger}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i-1}}$ is the pseudo inverse of p which drops the last $K_{i}-K_{i-1}$ elements of the input feature, because $J_{p^{\dagger}}=I_{K_{i-1} \times K_{i}}$ and hence $J_{p^{\dagger}}=J_{p}^{\top}$. Regarding \widehat{w}, we can easily verify that it is the ConvTransposed layer with the same weight as w. Since the unsqueeze operation u only rearrange the elements of the input feature, we know that its Jacobian J_{u} is a permutation matrix $P \in \mathbb{R}^{K_{i} \times K_{i}}$. Hence we can verify that $\widehat{u}=u^{-1}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$, where u^{-1} is essentially the squeeze layer (i.e., the inverted operation of the unsqueeze layer), because $J_{u^{-1}}=P^{-1}=P^{\top}=J_{u}^{\top}$. Summarizing the above gives us $\widehat{e_{i}}$.

LT of $e_{i}^{\dagger} \quad$ Based on Eq. (66), we know that the pseudo inverse of $e_{i}, e_{i}^{\dagger}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i-1}}$, is given as

$$
\begin{equation*}
e_{i}^{\dagger}=p^{\dagger} \circ w^{-1} \circ u^{-1} \tag{68}
\end{equation*}
$$

where p^{\dagger} is the pseudo inverse of p and u^{-1} is the inverse of u (i.e., a squeeze layer) as mentioned above, and $w^{-1}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$ is the inverse of w which can be easily verified as a 1×1 convolution layer with weight W^{\top} where W is the weight matrix of w (note that W is a rotation matrix). From Proposition 2 we have

$$
\begin{equation*}
\widehat{e_{i}^{\dagger}}=\widehat{u^{-1}} \circ \widehat{w^{-1}} \circ \widehat{p^{\dagger}}, \tag{69}
\end{equation*}
$$

and we can know that $\widehat{u^{-1}}=u$ and $\widehat{p^{\dagger}}=p$ from what we discussed when we introduced the LT of e_{i}. In terms of $\widehat{w^{-1}}$, since w^{-1} is essentially a 1×1 convolution layer with weight W^{\top}, we know that $\widehat{w^{-1}}$ is a ConvTranspose layer with weight W^{\top}. Summarizing the above gives us \hat{e}_{i}^{\dagger}.

LT of f_{i} As we introduced in Section 2.1 and illustrated in Fig. 1 we know that the flow layer f_{i} consists of several module layers. Let q be a module layer of f_{i}, then q is composed as

$$
\begin{equation*}
q=w \circ b \circ r \tag{70}
\end{equation*}
$$

where $w: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}, b: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$ and $r: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$ are a 1×1 convolution layer, a BN layer, and an additive coupling layer, respectively. Therefore, in order to construct \widehat{f}_{i}, we only need to construct \widehat{w}, \widehat{b} and \widehat{r}, respectively. As we mentioned above, $\widehat{w}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$ is a ConvTransposed
layer with the same weight as w. In terms of the BN layer b, since we set b to the evaluation mode without tracking running statistics [5] when it comes to constructing LT, for $y=b(x)$, we have

$$
\begin{equation*}
y=\gamma \frac{x-\text { running_mean }}{\sqrt{\text { running_var }}}+\beta \tag{71}
\end{equation*}
$$

where γ, β are the learnable parameters of the BN layer b, and running_mean, running_var are the running statistics. Therefore, we know that the Jacobian $J_{b} \in \mathbb{R}^{K_{i} \times K_{i}}$ of b is diagonal, and hence \widehat{b} is b itself because $J_{\widehat{b}}=J_{b}=J_{b}^{\top}$. In terms of \widehat{r}, we can verify that for $x=\widehat{r}(y)$, the computation

$$
\begin{align*}
& x_{1: \frac{K_{i}}{2}}=y_{1: \frac{K_{i}}{2}}+\widehat{n}\left(y_{\frac{K_{i}}{2}+1: K_{i}}\right), \tag{72}\\
& x_{\frac{K_{i}}{2}+1: K_{i}}=y_{\frac{K_{i}}{2}+1: K_{i}}, \tag{73}
\end{align*}
$$

gives that $J_{\widehat{r}}=J_{r}^{\top}$, because

$$
J_{\widehat{r}}=\left[\begin{array}{cc}
I_{\frac{K_{i}}{2}} \times \frac{K_{i}}{2} & J_{\widehat{n}} \tag{74}\\
0 & I_{\frac{K_{i}}{2} \times \frac{K_{i}}{2}}
\end{array}\right]=\left[\begin{array}{cc}
I_{\frac{K_{i}}{2}}^{2} \times \frac{K_{i}}{2} & 0 \\
J_{n} & I_{\frac{K_{i}}{2} \times \frac{K_{i}}{2}}
\end{array}\right]^{\top}=J_{r}^{\top} .
$$

Therefore, we need to construct \widehat{n}. As we introduced in Section 2.1 and illustrated in Fig. 1 ,

$$
\begin{equation*}
n=c_{2} \circ \phi \circ b \circ v \circ c_{1} \circ u^{-1} \tag{75}
\end{equation*}
$$

where $u^{-1}: \mathbb{R}^{\frac{K_{i}}{2}} \rightarrow \mathbb{R}^{\frac{K_{i}}{2}}$ is the squeeze layer of $n, c_{1}: \mathbb{R}^{\frac{K_{i}}{2}} \rightarrow \mathbb{R}^{\widetilde{h}_{i-1}}$ and $c_{2}: \mathbb{R}^{\widetilde{h}_{i}} \rightarrow \mathbb{R}^{\frac{K_{i}}{2}}$ are the first and second 1×1 convolution layer of n respectively, $v: \mathbb{R}^{\widetilde{h}_{i-1}} \rightarrow \mathbb{R}^{\widetilde{h}_{i}}$ is the ConvTransposed layer of n, and $b, \phi: \mathbb{R}^{\widetilde{h}_{i}} \rightarrow \mathbb{R}^{\widetilde{h}_{i}}$ are the BN layer and the ReLU layer of n respectively, where we use $\widetilde{h}_{i} \triangleq h_{i} \times 2^{i} \times 2^{i}$ (see Section 2.1 and Fig. 11. Therefore, we have

$$
\begin{equation*}
\widehat{n}=\widehat{u^{-1}} \circ \widehat{c_{1}} \circ \widehat{v} \circ \widehat{b} \circ \widehat{\phi} \circ \widehat{c_{2}} \tag{76}
\end{equation*}
$$

where we know that $\widehat{u^{-1}}=u$ (i.e., a unsqueeze layer), $\widehat{c_{1}}$ (resp., $\widehat{c_{2}}$) is the ConvTransposed layer with the same weight as c_{1} (resp., c_{2}), and $\widehat{b}=b$. In terms of the LT \widehat{v} of the ConvTransposed layer v, we can verify that \widehat{v} is the convolution layer weight the same weight as v. In terms of the LT $\widehat{\phi}$ of the ReLU layer, since it is a elementwise activation layer, for $y=\phi(x)$, we know that

$$
J_{\phi}(x)=\left[\begin{array}{cccc}
\phi^{\prime}\left(x_{1}\right) & & & \tag{77}\\
& \phi^{\prime}\left(x_{2}\right) & & \\
& & \ddots & \\
& & & \phi^{\prime}\left(x_{\breve{h}_{i}}\right) .
\end{array}\right]
$$

Therefore, by denoting $\xi \triangleq\left[\phi^{\prime}\left(x_{1}\right), \phi^{\prime}\left(x_{2}\right), \cdots, \phi^{\prime}\left(x_{\widetilde{h}_{i}}\right)\right] \in \mathbb{R}^{\widetilde{h}_{i}}$, we know that

$$
\begin{equation*}
\widehat{\phi}(y)=\xi \otimes y \tag{78}
\end{equation*}
$$

gives the LT of ϕ, where \otimes is the elementwise multiplication. Summarizing the above gives us \widehat{f}_{i}.
LT of f_{i}^{-1} Since f_{i} consists of several module layers, f_{i}^{-1} is given based on the invert of module layers. Let $q: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$ be a module layer of f_{i}, based on Eq. 70, we know that the invert of q, $q^{-1}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$, is given as

$$
\begin{equation*}
q^{-1}=r^{-1} \circ b^{-1} \circ w^{-1} \tag{79}
\end{equation*}
$$

where $w^{-1}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$ is the invert of the 1×1 convolution layer $w, b^{-1}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$ is the invert of the BN layer b, and $r^{-1}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$ is the invert of the additive coupling layer r. As we mentioned above, w^{-1} is a 1×1 convolution layer with weight W^{\top} where W is the weight matrix of w. In terms of b^{-1}, according to Eq. 71], for $x=b^{-1}(y)$, we know that

$$
\begin{equation*}
x=\frac{(y-\beta) \sqrt{\text { running_var }}}{\gamma}+\text { running_mean. } \tag{80}
\end{equation*}
$$

```
Algorithm 2 Train UniGAN.
Require: Training samples \(\mathcal{D}=\left\{x^{(i)}\right\}_{i=1}^{N} \subset \mathbb{R}^{D}\), latent space \(\mathcal{Z} \subset \mathbb{R}^{K}\), generator \(g: \mathcal{Z} \rightarrow \mathbb{R}^{D}\),
    discriminator \(d: \mathbb{R}^{D} \rightarrow(0,1)\), model parameters \(\Theta_{g}, \Theta_{d}\), optimizers \(\rho_{g}, \rho_{d}\), uniform prior
    distribution \(p_{z}\) over \(\mathcal{Z}\), batch size \(B\), hyper-parameter \(\lambda_{\text {gunif }}\), frequency of regularization \(s\).
    Initialize steps of training \(i \leftarrow 1\)
    Randomly initialize the moving average \(a\)
    while not converge do
            /* Train discriminator \(d\). */
            Randomly sample \(\left\{x^{(i)} \in \mathcal{D}\right\}_{i=\overline{\bar{B}}}^{B}\)
            Randomly sample \(\left\{z^{(i)} \sim p_{z}\right\}_{i=1}^{\bar{B}}\), obtaining \(\left\{\widetilde{x}^{(i)}=g\left(z^{(i)}\right)\right\}_{i=1}^{B}\)
            Compute \(\mathcal{L}_{\text {disc }}=\frac{1}{B} \sum_{i=1}^{B} \log d\left(x^{(i)}\right)+\frac{1}{B} \sum_{i=1}^{B} \log \left(1-d\left(\widetilde{x}^{(i)}\right)\right)\)
            Update \(\Theta_{d} \leftarrow \rho_{d} \nabla_{d} \mathcal{L}_{\text {disc }}\)
            /* Train generator \(g\). */
            Randomly sample \(\left\{z^{(i)} \sim p_{z}\right\}_{i=1}^{B}\), obtaining \(\left\{\widetilde{x}^{(i)}=g\left(z^{(i)}\right)\right\}_{i=1}^{B}\)
            Compute \(\mathcal{L}_{\text {gen }}=\frac{1}{B} \sum_{i=1}^{B} \log d\left(\widetilde{x}^{(i)}\right)\)
            /* Apply the generator uniformity regularization. */
            if \(i \bmod s=0\) then
                if \(i / s \bmod 2=0\) then
                    Compute the maximum singular values \(\left\{\sigma^{(i)}=\operatorname{LT}_{g}\left(z^{(i)}\right)\right\}_{i=1}^{B}\)
                    else
                    Compute the minimum singular values \(\left\{\sigma^{(i)}=\frac{1}{\mathrm{LT}_{g^{\dagger}}\left(\widetilde{x}^{(i)}\right)}\right\}_{i=1}^{B}\)
                    end if
                    Compute \(\mathcal{L}_{\text {gunif }}=\frac{1}{B} \sum_{i=1}^{B}\left(\sigma^{(i)}-a\right)^{2}\)
                    Update \(\mathcal{L}_{\text {gen }} \leftarrow \mathcal{L}_{\text {gen }}+\lambda_{\text {gunif }} \mathcal{L}_{\text {gunif }}\)
                    Update \(a \leftarrow 0.99 a+0.01\left(\frac{1}{B} \sum_{i=1}^{B} \sigma^{(i)}\right)\)
            end if
            Update \(\Theta_{g} \leftarrow \rho_{g} \nabla_{g} \mathcal{L}_{\text {gen }}\)
            Update \(i \leftarrow i+1\)
    end while
```

In terms of r^{-1}, for $x=r^{-1}(y)$ we can verify that the computation gives by r^{-1} is as follows,

$$
\begin{align*}
& x_{1: \frac{K_{i}}{2}}=y_{1: \frac{K_{i}}{2}}, \tag{81}\\
& x_{\frac{K_{i}}{2}+1: K_{i}}=y_{\frac{K_{i}}{2}+1: K_{i}}-n\left(y_{1: \frac{K_{i}}{2}}\right) . \tag{82}
\end{align*}
$$

To construction $\widehat{q^{-1}}=\widehat{w^{-1}} \circ \widehat{b^{-1}} \circ \widehat{r^{-1}}$, we need to construct $\widehat{w^{-1}}, \widehat{b^{-1}}$ and \widehat{r}^{-1}. In terms of $\widehat{w^{-1}}$, as mentioned above, we know that it is a ConvTranspose layer with weight W^{\top}. In terms of $\widehat{b^{-1}}$, similar to obtaining \widehat{b} from b, we know that $\widehat{b^{-1}}$ is b^{-1} itself, since $J_{b^{-1}}$ is diagonal. In terms of $\widehat{r^{-1}}$, we can verify that for $y=\widehat{r^{-1}}(x)$, the computation

$$
\begin{align*}
& y_{1: \frac{K_{i}}{2}}=x_{1: \frac{K_{i}}{2}}-\widehat{n}\left(x_{\frac{K_{i}}{2}+1: K_{i}}\right), \tag{83}\\
& y_{\frac{K_{i}}{2}+1: K_{i}}=x_{\frac{K_{i}}{2}+1: K_{i}}, \tag{84}
\end{align*}
$$

gives that $J_{\widehat{r^{-1}}}=J_{r^{-1}}^{\top}$, because

$$
J_{\widehat{r}-1}=\left[\begin{array}{cc}
I_{\frac{K_{i}}{2} \times \frac{K_{i}}{2}} & -J_{\widehat{n}} \tag{85}\\
0 & I_{\frac{K_{i}}{2} \times \frac{K_{i}}{2}}
\end{array}\right]=\left[\begin{array}{cc}
I_{\frac{K_{i}}{2}} \times \frac{K_{i}}{2} & 0 \\
-J_{n} & I_{\frac{K_{i}}{2} \times \frac{K_{i}}{2}}
\end{array}\right]^{\top}=J_{r-1}^{\top} .
$$

The construction of \widehat{n} is already given as mentioned above. Summarizing the above gives us $\widehat{f_{i}^{-1}}$.

2.2.3 Training Algorithm

We then introduce the whole training Algorithm 2 of our UniGAN framework augmented with the aforementioned generator uniformity regularization $\mathcal{L}_{\text {gunif }}$ as in Eq. (56). The Algorithm 2 shows the training procedure of our UniGAN adapted for a vanilla GAN [22], and the algorithm can be adapted to other variants of GANs by replacing the method for training the generator and the discriminator.

Sample efficiency We show that our proposed $\mathcal{L}_{\text {gunif }}$ is superior in sample efficiency compared to other isometry learning methods. Given a generator $g: \mathcal{Z} \rightarrow \mathbb{R}^{D}$, the LGAN [8] proposes the following regularization

$$
\begin{equation*}
\mathcal{L}_{\text {lgan }}=\mathbb{E}_{z \sim p_{z}} \mathbb{E}_{i \in[K]} \mathbb{E}_{j \in[K]}\left(\left(\frac{g\left(z+\Delta_{i}\right)}{\varepsilon}\right)^{\top}\left(\frac{g\left(z+\Delta_{j}\right)}{\varepsilon}\right)-\delta_{i j}\right)^{2} \tag{86}
\end{equation*}
$$

to encourage an isometric generator, i.e., $J_{g}^{\top} J_{g}=I$, where we use $[K] \triangleq\{1,2, \cdots, K\}$, ε is a small positive real number, and Δ_{i} is a K-dimensional vector whose i-th element is ε and the other elements are zero. Therefore, $\frac{g\left(z+\Delta_{i}\right)}{\varepsilon}$ is the approximated i-th column vector of $J_{g}(z)$, and $\delta_{i j}$ is the Kronecker delta. By utilizing the automatic differentiation function of existing deep learning libraries like PyTorch [23], the StyleGAN2 [21] proposes the following path length regularization

$$
\begin{equation*}
\mathcal{L}_{\text {stylegan } 2}=\mathbb{E}_{z \sim p_{z}} \mathbb{E}_{y \sim \mathcal{N}(0,1)}\left(\left\|J_{g}^{\top}(z) y\right\|_{2}-a\right)^{2} \tag{87}
\end{equation*}
$$

where a is the moving average of $\left\|J_{g}^{\top}(z) y\right\|_{2}$. For $\mathcal{L}_{\text {lgan }}$ and $\mathcal{L}_{\text {stylegan } 2}$, we can observe that given a $z \sim p_{z}$, both regularizations lead to further sampling complexity, since $\mathcal{L}_{\text {lgan }}$ requires to sample i, j from $[k]$ while $\mathcal{L}_{\text {stylegan2 }}$ requires to sample y from $\mathcal{N}(0,1)$ over a high dimensional space \mathbb{R}^{D}. So to effectively encourage the generator g to be an isometry, the further sampling procedure should be sufficient for both regularizations. However, as shown in Eq. (56), our regularization $\mathcal{L}_{\text {gunif }}$ does not require any further sampling procedure given a $z \sim p_{z}$, since the LT technique does not require any sampling procedure given a $z \sim p_{z}$. Therefore, our $\mathcal{L}_{\text {gunif }}$ is superior in sample efficiency compared to $\mathcal{L}_{\text {lgan }}$ and $\mathcal{L}_{\text {stylegan2 }}$. We provide ablation study on sample efficiency in Section 3.2

Computational cost and memory usage Though our proposed LT is superior in sampling complexity as we mentioned above, a major concern is that how our LT performs in terms of computational cost and the memory usage. From Algorithm 1 , we learn that to obtain $\mathrm{LT}_{g}(z)$, we need to firstly compute $x=g(z)$ to obtain x. However, this does not increase the computational burden since we can incorporate this forward computation into the computation that generates fake samples when training the generator in Algorithm 2 . In terms of constructing LT, according to what we mentioned in Section 2.2.2, we learn that except for ReLU which requires recording the derivatives with respect to the input (i.e., ξ in Eq. $\sqrt{78}$) to construct LT, other LT constructions can be obtained directly without involving any additional process. However, due to the simplicity of ReLU, the computational cost of the ReLU derivatives is negligible, and the derivatives can be obtained while generating fake samples without additional computation. During training, we only record the ReLU derivatives of the current batch training samples, which leads to negligible memory usage. To obtain $\operatorname{LT}_{g^{\dagger}}(g(z))$, we only require a computation $z=g^{\dagger}(g(z))$ to map generated samples back to latent codes, no more extra computation is needed. We notice that our LT algorithm involves a hyper-parameter, i.e., power of iterations M, which can lead to different computational cost with different M. We provide ablation study on M in Section 3.2.

Lazy regularization Similar to [21], we also adopt a lazy regularization strategy when we apply the generator uniformity regularization. Specifically, by changing the hyper-parameter frequency of regularization s, the computational cost of the $\mathcal{L}_{\text {gunif }}$ can be reduced since it can be computed less frequently than the main loss function [21]. We provide ablation study on s in Section 3.2

2.3 The udiv Diversity Metric

To realize the computation of uniform diversity in practice, we propose a new diversity metric named udiv estimating the uniform diversity of a given set of generative samples $\mathcal{X}=\left\{x^{(i)}\right\}_{i=1}^{N}$, where \mathcal{X} contains N samples coming from a generative distribution.

The sampling bias problem It is known that directly computing the entropy based on \mathcal{X} leads to biased results compared to the ground-truth entropy of q [24]. We firstly use a toy example to show this problem intuitively and introduce our idea to tackle this problem. Let $q \in \mathcal{P}_{[0,1]}$ be a distribution over the interval $[0,1]$ whose $\operatorname{PDF} q^{\prime}$ is defined as

$$
q^{\prime}(x)= \begin{cases}0.5, & 0 \leqslant x \leqslant 0.8 \tag{88}\\ 3.0, & 0.8<x \leqslant 1\end{cases}
$$

since $q([0,0.8])=0.4$ and $q((0.8,1])=0.6$, given \mathcal{X}, it is reasonable to assume that $\frac{2 N}{5}$ samples come from $[0,0.8]$ and $\frac{3 N}{5}$ samples come from $(0.8,1]$. Therefore, according to

$$
\begin{equation*}
\mathcal{H}_{q}=-\int_{0}^{1} q^{\prime}(x) \log q^{\prime}(x) \mathrm{d} x=\lim _{N \rightarrow \infty} \sum_{i=1}^{N} \frac{1}{N}\left(-q^{\prime}\left(\frac{i}{N}\right) \log q^{\prime}\left(\frac{i}{N}\right)\right) \tag{89}
\end{equation*}
$$

the approximated entropy based on \mathcal{X} is given as

$$
\begin{align*}
\mathcal{H}_{\mathcal{X}} & =\frac{1}{N} \sum_{i=1}^{N}\left(-q^{\prime}\left(x^{(i)}\right) \log q^{\prime}\left(x^{(i)}\right)\right) \tag{90}\\
& =\frac{1}{N}\left(\frac{2 N}{5}(-0.5 \log 0.5)+\frac{3 N}{5}(-3.0 \log 3.0)\right) \tag{91}\\
& =\frac{2}{5}(-0.5 \log 0.5)+\frac{3}{5}(-3.0 \log 3.0) \tag{92}\\
& \approx-1.83 \tag{93}
\end{align*}
$$

However, the ground-truth entropy \mathcal{H}_{q} is given as

$$
\begin{equation*}
\mathcal{H}_{q}=\int_{0}^{1}-q^{\prime}(x) \log q^{\prime}(x) \mathrm{d} x=0.8(-0.5 \log 0.5)+0.2(-3.0 \log 3.0) \approx-0.38 \tag{94}
\end{equation*}
$$

Comparing Eq. (93) to Eq. (94), we learn that the estimated entropy based on \mathcal{X} is seriously biased compared to the ground-truth result. From Eq. (92) and Eq. (94), we observe that the bias is caused by the inaccuracy of the factors of $(-0.5 \log 0.5)$ and $(-3.0 \log 3.0)$, i.e., $\frac{2}{5}$ and $\frac{3}{5}$ respectively, in Eq. (92), because the ground-truth factors in Eq. (94) is 0.8 and 0.2 , respectively. We observe that

$$
\begin{equation*}
\frac{2}{5} / 0.5: \frac{3}{5} / 3.0=0.8: 0.2 \tag{95}
\end{equation*}
$$

therefore, if we compute the following weighted entropy based on \mathcal{X}, we have

$$
\begin{align*}
\widetilde{\mathcal{H}}_{\mathcal{X}} & =\frac{1}{N} \sum_{i=1}^{N}\left(-w^{(i)} q^{\prime}\left(x^{(i)}\right) \log q^{\prime}\left(x^{(i)}\right)\right) \tag{96}\\
& =\frac{1}{N}\left(\frac{2 N}{5} \times \frac{1}{0.5}(-0.5 \log 0.5)+\frac{3 N}{5} \times \frac{1}{3.0}(-3.0 \log 3.0)\right) \tag{97}\\
& =0.8(-0.5 \log 0.5)+0.2(-3.0 \log 3.0), \tag{98}
\end{align*}
$$

which gives the exact estimation of \mathcal{H}_{q}, where the weight $w^{(i)}=\frac{1}{q^{\prime}\left(x^{(i)}\right)}$.
The weighted estimation method Based on aforementioned analysis, we formalized our weighted estimation method for accurately estimating \mathcal{H}_{q} based on a set of generative samples $\mathcal{X}=\left\{x^{(i)}\right\}_{i=1}^{N}$. Let p_{i} be the estimated probability density of $x^{(i)}$, and ${\underset{\sim}{i}}_{i}$ be the weight of $x^{(i)}$ for computing entropy, then the weighted estimation of entropy based on $\mathcal{X}, \widetilde{\mathcal{H}}_{\mathcal{X}}$, is computed as

$$
\begin{equation*}
\widetilde{\mathcal{H}}_{\mathcal{X}}=-\sum_{i=1}^{N} w_{i} p_{i} \log p_{i}, \quad \text { s.t. } \sum_{i=1}^{N} p_{i} w_{i}=1, \sum_{i=1}^{N} w_{i}=N \tag{99}
\end{equation*}
$$

where the constrain is added to satisfy the property of a PDF, namely by regarding p_{i} and w_{i} as the probability density and the volume of the i-th region, the integral of probability densities $\sum_{i=1}^{N} p_{i} w_{i}$

```
Algorithm 3 The udiv metric.
Require: Generative samples \(\mathcal{X} \triangleq\left\{x^{(i)}\right\}_{i=1}^{N}\), KDE bandwidth \(0 \leqslant h_{1}<h_{2}<\cdots<h_{T}\), uniform
    kernel \(\psi_{h}\) where \(\psi_{h}\left(x ; x^{*}\right)= \begin{cases}1, & \left\|x-x^{*}\right\| \leqslant h \\ 0, & \text { otherwise } .\end{cases}\)
    procedure ent \((\mathcal{X}, h)\)
        Initialize probability densities \(p_{i} \leftarrow 0, i=1,2, \cdots, N\)
        for \(i=1,2, \cdots, N\) do
            Update \(p_{i} \leftarrow \sum_{j=1}^{N} \psi_{h}\left(x^{(i)} ; x^{(j)}\right)\)
        end for
        Normalize \(\log p_{i} \leftarrow \log p_{i}-2 \log N+\operatorname{logsumexp}\left(-\log p_{i}\right)\) to satisfy Eq. 100)
        Compute entropy \(e \leftarrow-\frac{1}{N_{e}} \sum_{i=1}^{N} \log p_{i}\) according to Eq. 101)
        Normalize entropy \(e \leftarrow \frac{e}{\log N}\)
        return \(e\)
    end procedure
    Compute normalized entropies \(\left\{e_{t} \leftarrow \operatorname{ent}\left(\mathcal{X}, h_{t}\right)\right\}_{t=1}^{T}\)
    Obtain the \(u d i v\) score \(u=\min \left\{e_{t}\right\}_{t=1}^{T}\)
```

should be equal to 1 , and the total volume $\sum_{i=1}^{N} w_{i}$ is N. As we mentioned above, $w_{i}: w_{j}=\frac{1}{p_{i}}: \frac{1}{p_{j}}$, hence from $\sum_{i=1}^{N} p_{i} w_{i}=1$ we have $w_{i}=\frac{1}{N p_{i}}$, and from $\sum_{i=1}^{N} w_{i}=N$ we have

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{1}{p_{i}}=N^{2} \tag{100}
\end{equation*}
$$

Therefore, from Jensen inequality we have

$$
\begin{equation*}
\widetilde{\mathcal{H}}_{\mathcal{X}}=-\sum_{i=1}^{N} w_{i} p_{i} \log p_{i}=-\sum_{i=1}^{N} \frac{1}{N} \log p_{i}=\sum_{i=1}^{N} \frac{1}{N} \log \frac{1}{p_{i}} \leqslant \log \left(\sum_{i=1}^{N} \frac{1}{N} \frac{1}{p_{i}}\right)=\log N \tag{101}
\end{equation*}
$$

where the equality holds if and only if $p_{1}=p_{2}=\cdots=p_{N}$, namely the probability distribution is a uniform distribution. Therefore, the entropy normalized to $[0,1]$ is given as $\mathcal{E}_{\mathcal{X}} \triangleq \frac{\widetilde{\mathcal{H}}_{\mathcal{X}}}{\log N}$.

The $\boldsymbol{u d i v}$ metric Given $\mathcal{X}=\left\{x^{(i)}\right\}_{i=1}^{N}$, we adopt the normalized weighted entropy $\mathcal{E}_{\mathcal{X}}$ as the udiv metric score that indicates the uniform diversity of \mathcal{X}. To estimate the probability density p_{i} of $x^{(i)}$ for computing $\mathcal{E}_{\mathcal{X}}$, we propose to use the Kernel Density Estimation [25] (KDE) technique, and the procedure for estimating the udiv metric score based on KDE is provided in Algorithm3. Since KDE involves selecting the kernel bandwidth [26], we know that $\mathcal{E}_{\mathcal{X}}$ is dependent on kernel bandwidth h. Specifically, for the uniform kernel ψ_{h} we adopt in Algorithm 3 we can verify that $h=0$ gives that $\psi_{h}\left(x ; x^{*}\right)$ is equal to 1 if and only if $x=x^{*}$, therefore, $p_{i}=1$ for all i and hence $\mathcal{E}_{\mathcal{X}}$ is maximized because all probability densities p_{i} are equal. On the other hand, for sufficiently large $h, \psi_{h}\left(x ; x^{*}\right)$ is always equal to 1 because $\left\|x^{(i)}-x^{(j)}\right\| \leqslant h$ always holds, therefore, $p_{i}=N$ for all i and hence $\mathcal{E}_{\mathcal{X}}$ is also maximized because all probability densities p_{i} are also equal. Hence we know that there exists h such that h gives the minimum of $\mathcal{E}_{\mathcal{X}}$, which we adopt as the udiv metric score.

3 Experimental Results

We provide addition results on the synthetic data manifold provided in main text, and provide results on simple datasets including MNIST [9], FashionMNIST [27] and their colored version [10], and CIFAR10 [28]. We also provide results on natural image datasets including CelebA [29], FFHQ [30], AFHQ [31] and LSUN [32]. All datasets are publicly available. We adapt our UniGAN for a variety of existing models that reduce mode collapse, including GAN [22], MSGAN [33, 34], PacGAN [11], BiGAN [35]/ALI [36], VEEGAN [37], MDGAN [38] and RegGAN [38]. Our experiments show that the generator uniformity is closely related with the uniform diversity, and also show the effectiveness of our proposed UniGAN framework in improving generator uniformity and uniform diversity.

Table 1: Architectural details for the generator and discriminator for the 2D synthetic data manifold sector. For the generator, since all features are vectors, the dim increasing layer $e_{i}: \mathbb{R}^{K_{i-1}} \rightarrow \mathbb{R}^{K_{i}}$ does not involve an unsqueeze layer but only consists of a zero pad layer and a 1×1 convolution layer, and the neural network $n: \mathbb{R}^{\frac{K_{i}}{2}} \rightarrow \mathbb{R}^{\frac{K_{i}}{2}}$ inside the additive coupling of a flow layer $f_{i}: \mathbb{R}^{K_{i}} \rightarrow \mathbb{R}^{K_{i}}$ is composed as "FC@ h_{i}, ReLU, FC@ $\frac{K_{i}}{2}$ ", where we use FC@ c to denote a fully connected layer with output shape c, and h_{i} is the shape of hidden features of the i-th block layer $f_{i} \circ e_{i}$, see Section 2.1 and Fig. 1. We denote the block layer with the shape of the output feature as c, the shape of hidden features as h, and the number of module layers as m as Block@c $\# h \# m$.

	Generator		Discriminator	
layers	output shape	layers	output shape	
Input noise $z \in \mathbb{R}^{2}$		Input sample $x \in \mathbb{R}^{2}$		
Block@1024\#1024\#3	1024	FC@1024, ReLU	1024	
		FC@1024, ReLU	1024	
		FC@1024, ReLU	1024	
	FC@1	1		
total number of parameters: 3.504 M	total number of parameters: 1.054 M			

Experimental settings We introduce shared setting across all datasets for conducting our experiments, while the settings specific to different datasets are introduced in the corresponding sections below. We use Adam [39] optimizer with fixed learning rate 10^{-4}, and all models are end-to-end trained with PyTorch [19] from scratch. We train 40, 000 steps with batch size of each step being 96 for all models. In terms of $\mathcal{L}_{\text {gunif }}$, we set $\lambda_{\text {gunif }}$ to 1.0 and frequency of regularization s to 4 , and the power of iteration M involved in LT is set to 2 . In terms of evaluating udiv, we randomly generate 1,000 samples, and 100 kernel bandwidths are selected from range $[0,1]$ with step 0.01 . In terms of evaluating the gunif metric indicating the generator uniformity, we first randomly sampling 1,000 latent codes $\left\{z^{(i)}\right\}_{i=1}^{1000}$, then compute the standard deviation of estimated $\left\{\log \operatorname{det} J^{\top} J\left(z^{(i)}\right)\right\}_{i=1}^{1000}$, where for each $z^{(i)}, \log \operatorname{det} J^{\top} J\left(z^{(i)}\right)$ is accurately computed by using the automatic differential function of PyTorch. We also show the correlation between the probability densities $\left\{p^{(i)}\right\}_{i=1}^{1000}$ and $\left\{\log \operatorname{det} J^{\top} J\left(z^{(i)}\right)\right\}_{i=1}^{1000}$, where $p^{(i)}$ is the probability density of $g\left(z^{(i)}\right)$ estimated by the method introduced in Algorithm 3 . In order to avoid randomness, experiments are run 10 times with random initialization, and for each experiment, we provide the p-value of the significant test or the confidence interval over multiple runs. Note that a p-value below 0.05 indicates significant differences between the baselines results and ours. In terms of the type of computing resources used, all experiments are done using a single NVIDIA RTX-2080Ti GPU

3.1 Synthetic Data Manifold

Experimental settings We provide architectural details of the generator and discriminator used for the 2D synthetic data manifold sector as in Tbl. 1. The generator g is composed of a block layer $f \circ e$, namely $g=f \circ e: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1024}$, where $e: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1024}$ is a dim increasing layer that boosts the dimensionality of the input feature from 2 to 1024 to permit a flow layer $f: \mathbb{R}^{1024} \rightarrow \mathbb{R}^{1024}$ that is a high dimensional nonlinear mapping with more expressive power. Given an output feature $x \in \mathbb{R}^{1024}$ of the generator, we directly drop the final 1022 elements of x, leaving $\widetilde{x}=\left[x_{1}, x_{2}\right] \in \mathbb{R}^{2}$ as the final 2 -dimensional generated sample, where x_{i} is the i-th element of x.

3.2 Image Datasets

Experimental settings We provide more experimental results on image datasets, including simple datasets such as MNIST [9], FashionMNIST [27] and their colored version [10], and CIFAR10 [28], and natural image datasets such as CelebA [29], FFHQ [30], AFHQ [31] and LSUN [32]. For simple datasets, architectural details for the generator and discriminator are shown in Tbl. 2, and the shape of image is img_nc $\times 32 \times 32$, where img_nc is 1 for grayscale image datasets including MNIST and FashionMNIST, and img_nc is 3 for RGB image datasets including colored MNIST, colored FashionMNIST, and CIFAR10. For natural image datasets, architectural details for the generator and

Table 2: Architectural details for the generator and discriminator for simple datasets. In terms of the generator, we denote the block layer with the number of output feature channels as c, the number of hidden feature channels as h, and the number of module layers as m as Block@c\#h\#m. Note that for the first layer Block@128\#128\#1, in order to reduce the amount of parameters, the upsampling scale of the unsqueeze layer inside the dim increasing layer is 4 instead of 2 , namely the unsqueeze layer reshapes the input feature of shape $2048 \times 1 \times 1$ into the output feature of shape $128 \times 4 \times 4$. In terms of the discriminator, Conv@c\#k\#s\#p denotes a convolution layer with output channels c, kernel size k, stride s, and padding p. We use LReLU to denote a leaky ReLU layer with negative slope 0.2 . The channels img_nc of the input image is 1 for grayscale images and 3 for RGB images.

Generator		Discriminator	
layers	output shape	layers	output shape
Input noise $z \in \mathbb{R}^{6}$		Input image $x \in \mathbb{R}^{\text {img_nc } \times 32 \times 32}$	
Block@128\#128\#1	$128 \times 4 \times 4$	Conv@32\#4\#2\#1, LReLU	$32 \times 16 \times 16$
Block@64\#64\#1	$64 \times 8 \times 8$	Conv@64\#4\#2\#1, BN, LReLU	$64 \times 8 \times 8$
Block@32\#32\#1	$32 \times 16 \times 16$	Conv@128\#4\#2\#1, BN, LReLU	$128 \times 4 \times 4$
Block@8\#16\#1	$8 \times 32 \times 32$	Conv@1\#4\#1\#0	1
total number of parameters: 0.280 M	total number of parameters: 0.188 M		

Table 3: Architectural details for the generator and discriminator for natural image datasets. We use a similar generator architecture as in Tbl. 2, and use a StyleGAN2 [21] discriminator.

Generator			Discriminator	
layers	output shape	layers		
Input noise $z \in \mathbb{R}^{64}$		Input image $x \in \mathbb{R}^{3 \times 64 \times 64}$		
Block@512\#512\#1	$512 \times 4 \times 4$	The StyleGAN2 [21] discriminator	1	
Block@256\#256\#3	$256 \times 8 \times 8$			
Block@128\#128\#3	$128 \times 16 \times 16$			
Block@64\#64\#3	$64 \times 32 \times 32$			
Block@16\#32\#3	$16 \times 64 \times 64$			
total number of parameters: 8.889 M	total number of parameters: 22.679 M			

discriminator are shown in Tbl. 33, and the shape of image is $3 \times 64 \times 64$. Similar to the settings for the 2D synthetic data manifold sector, we increase the dimensionality of the intermediate features to be higher than the dimensionality of the image to improve the expressive power of the generator, and obtain the generated sample by dropping redundant channels of the output feature of the generator. In terms of the setting of generation, for simple datasets, we extend our UniGAN framework to a setting of categorical generation as we mentioned in Section 2.1. because all these datasets contain images of different classes with known category labels. In terms of natural image datasets, we use a normal generation setting. For datasets including only a single category, i.e., CelebA and FFHQ, we directly use the whole dataset to train the model, and for datasets including multiple categories, i.e., AFHQ and LSUN, we train different models for each category respectively.

3.2.1 Quantitative Results

For explicit comparison, we first provide quantitative results on a variety of metrics as in Tbl. 4.16 For simple datasets involving discrete modes, we adopt metrics that measure the model performance regarding covering different modes, including Inception Score [38, 40], Mode Score [38], Number of Modes [38, 10] and KL divergence between generated and ground-truth category distribution [10]. We also use metrics that measure the quality and diversity of generated samples, including $I v O M$ [10], Pairwise Distance [10], NDB [41] and JSD [41]. For natural image datasets, we measure the quality and diversity of generated samples by using the FID [42] and LPIPS [43] metrics. For both types of datasets, we evaluate the uniform diversity and generator uniformity by using the proposed udiv and gunif metric, respectively. In Tbl. 4 16, the comparisons are made between baseline models and our UniGANs, where \uparrow (resp., \downarrow) indicates that larger (resp., lower) values are better. For each metric, the first and the second rows give the results of baselines and the corresponding UniGANs, respectively,
we also provide the p-value of significant tests in the third row. For each baseline model, the better value among the baseline results and the corresponding UniGAN result is shown in bold.

From Tbl. $4 \|$ 16, we learn that our proposed UniGANs achieve similar performances to baselines in terms of existing metrics that measure quality and diversity of generated samples. However, the udiv and gunif scores indicate that our UniGANs significantly outperform baselines in terms of uniform diversity and generator uniformity, which also implies that the uniform diversity indeed corresponds to a new type of mode collapse that cannot be captured by existing metrics.

In Tbl. 17. we provide quantitative results on CelebA dataset with 128×128 resolution to verify the effectiveness of our method on high-resolution datasets. From Tbl. [17, we see that the performance of our method is similar to that on the 64×64 resolution datasets, namely by imposing the proposed generator uniformity regularization, our UniGANs outperform baselines in terms of the udiv and the gunif metrics, which shows the effectiveness of our method on the 128×128 CelebA dataset.

3.2.2 Qualitative Results

We provide qualitative results on each image dataset in Fig. $3 \sqrt{14}$ For each dataset, we first randomly sample a bunch of latent codes, then select z_{1} and z_{2} such that $\log \operatorname{det} J^{\top} J\left(z_{1}\right)$ and $\log \operatorname{det} J^{\top} J\left(z_{2}\right)$ give the minimum and maximum log det that can be achieved among all latent codes. Then, for z_{1}, we generate samples $x=g(z)$ around $x_{1}=g\left(z_{1}\right)$ by randomly sample z from $\mathcal{Z}_{1} \subset \mathcal{Z}$, where g is the generator, \mathcal{Z} is the latent space, and \mathcal{Z}_{1} is the latent subspace around z_{1} spanned by the 5 latent dimensions with the smallest Jacobian column vector norm. Similarly, we obtain generated samples $x=g(z)$ around $x_{2}=g\left(z_{2}\right)$ by randomly sample z from a subspace $\mathcal{Z}_{2} \subset \mathcal{Z}$ such that \mathcal{Z}_{2} is the latent subspace around z_{2} spanned by the 5 latent dimensions with the largest Jacobian column vector norm. We visualize generated samples in such a manner since it can intuitively show how generator uniformity is related with the uniform diversity, and how generator uniformity reduces mode collapse.

In Fig. 3. 14, the visualization of generated samples of baselines are shown in the top row. We found that for baselines, $\log \operatorname{det} J^{\top} J\left(z_{1}\right) \approx 0$, therefore the model tends to collapse on the subspace \mathcal{Z}_{1} around z_{1}, which leads to almost identical generated samples around x_{1}. Meanwhile for z_{2}, the value of $\log \operatorname{det} J^{\top} J\left(z_{2}\right)$ tends to be very large, which leads to drastic change of images when varying z in the subspace \mathcal{Z}_{2} around z_{2}, and the generative qualities are commonly inferior, especially for the generators trained on natural image datasets, see Fig. 9 . 14 We also found that estimated probability densities of samples around x_{1} and x_{2} commonly tend to be large and small respectively, which is also consistent with our analysis on the relationship between generator uniformity and uniform diversity provided in main text. In terms of qualitative results of our UniGANs provided in the bottom rows, we see that for latent codes varying in both \mathcal{Z}_{1} and \mathcal{Z}_{2}, the generators result in moderate change of generated images, therefore lead to a more smooth generation compared to baseline models. The qualitative results provided in Fig. 914 also demonstrate the generative quality of our UniGANs.

3.2.3 Ablation Study

We firstly show that our hierarchical architecture design of our NF-based generator indeed accelerates training and greatly reduces the amount of model parameters. We set up a counterpart of our NF-based generator in the case of $K=D$, i.e., a Glow [3] generator, where K and D are the dimensionality of the latent space and data space, respectively. As we shown in Tbl. 3, for our UniGAN generator in the case of $K=64$ and $D=3 \times 64 \times 64$, the total amount of parameters of the generator is 8.889 M . However, for the Glow generator in the case of $K=D=3 \times 64 \times 64$, the total amount of generator parameters is 61.214 M , which is far larger than ours. We also found that the training time and the memory usage of a Glow generator is about 7 times that of ours. Note that all settings except for the dimensionalities are the same for the Glow generator and our UniGAN generator.

Sample efficiency We compare our proposed LT algorithm to existing methods including LGAN [8] and StyleGAN2 [21] regularizations (i.e., $\mathcal{L}_{\text {lgan }}$ and $\mathcal{L}_{\text {stylegan2 }}$ in Eq. 86p and Eq. (87) in terms of the sample efficiency on isometry learning. The results are shown in Fig. 2(a) For $\mathcal{L}_{\text {lgan }}$, we sample $1,2,3,4,5$ latent dimensions given each latent code z (see Eq. (86), while for $\mathcal{L}_{\text {stylegan2 }}$, we sample $1,2,3,4,5$ noises given each latent code z (see Eq. 87)). For both regularizations, the higher the sample counts, the better the results. Since our LT does not involve an additional sampling process given a latent code, the result is plotted as a single point. We learn that compared to $\mathcal{L}_{\text {stylegan2 }}$, the training time cost of $\mathcal{L}_{\text {lgan }}$ is superior, which is reasonable because $\mathcal{L}_{\text {lgan }}$ does not involve a second

Figure 2: Ablation study results on sample efficiency in isometry learning, frequency of regularization $\mathcal{L}_{\text {gunif }}$, power of iteration of LT, and hyper-parameter $\lambda_{\text {gunif }}$. The effectiveness of the regularization is reflected by the Jacobian orthogonality (i.e., y-axis) versus the singular value standard deviation (i.e., x-axis). The Jacobian orthogonality is measured by $\mathcal{O} \triangleq \mathbb{E}_{z \sim p_{z}} \frac{\sum_{i \neq j}\left|\left(J^{\top} J\right)_{i j}(z)\right|}{(K-1) \sum_{i=1}^{K}\left|\left(J^{\top} J\right)_{i i}(z)\right|}$, namely the ratio of the averaged absolute value of the non-diagonal elements of $J^{\top} J(z)$ to the averaged absolute value of the diagonal elements of $J^{\top} J(z)$, hence the lower the \mathcal{O}, the more orthogonal the Jacobian. On the other hand, an isometry corresponds to a Jacobian such that all singular values are the same. Hence the lower the \mathcal{O} and the lower the singular value std, the closer the generator to an isometry and the more effective the regularization. For each setting, we also show the training time per 100 batches t versus the memory usage m by marking $t @ m$ in the plot.
derivative computation procedure like $\mathcal{L}_{\text {stylegan2 }}$. However, because $\mathcal{L}_{\text {stylegan2 }}$ can reuse the same forward computation graph for different noises when computing second derivatives using PyTorch, the memory usage of $\mathcal{L}_{\text {stylegan2 }}$ is much lower than that of $\mathcal{L}_{\text {lgan }}$. Meanwhile for $\mathcal{L}_{\text {lgan }}$, different latent dimensions i cannot share forward computation process $\frac{g\left(z+\Delta_{i}\right)}{\varepsilon}$ (see Eq. (86)), therefore $\mathcal{L}_{\text {lgan }}$ requires considerable memory footprint as the number of sampled latent dimensions increases. We learn from Fig. 2(a) that our LT achieves the best performance on isometry learning at the minimum cost of memory usage and a lower cost of training time. Note that in our LT Algorithm 1 for iteration index m we only retain the computation graph of PyTorch for computing the second derivative at $m=M$, hence the second derivative computation is not involved for $m<M$, which greatly reduces the cost of training time compared to $\mathcal{L}_{\text {stylegan2 }}$ that also involves second derivative computation.

Frequency of regularization We provide ablation study on the frequency of regularization s for our generator uniformity regularization $\mathcal{L}_{\text {gunif }}$, see lazy regularization in Section 2.2 .3 . The results are provided in Fig. 2(b) We see that as s decreases (i.e., the regularization becomes more frequent), the result becomes better, which is reasonable. We see that as s decreases, the training time increases meanwhile the memory usage remains the same, and we can better trade-off between the effectiveness of the regularization and training time cost by selecting $s=5$.

Power of iteration We provide ablation study on the power of iteration M for our LT algorithm, see Algorithm 1 The results are provided in Fig. 2(c). As mentioned above, the computation graph of PyTorch of different iterations can be reused, therefore, the memory usage remain the same as M increases. It is reasonable that the training time increases as M increase, but we can still trade-off between the effectiveness of the regularization and training time cost by selecting $M=2$.

Hyper-parameter $\lambda_{\text {gunif }}$ We provide ablation study on the hyper-parameter $\lambda_{\text {gunif }}$ for $\mathcal{L}_{\text {gunif }}$ in Fig. $2(\mathrm{~d})$ Changing $\lambda_{\text {gunif }}$ does not lead to changes in training time or memory usage. We learn that compared to a model without involving $\mathcal{L}_{\text {gunif }}$, imposing $\mathcal{L}_{\text {gunif }}$ significantly improves performance on isometry learning, which verifies the effectiveness of our proposed regularization.

4 Limitations of Our Work

Our work adopts the manifold hypothesis that assumes that high dimensional data is concentrated on a lower dimensional manifold, and we propose to encourage the generator to be a local diffeomorphism between a K-dimensional latent space and a manifold residing in a high dimensional data space. To ease practical implementation, we encourage the generator to be an isometry whose Jacobian is an orthonormal matrix up to a constant. In such a case, the dimensionality K should be carefully chosen, because on one hand, a K lower than the ground-truth dimensionality of the data manifold may result in a generator that is unable to recover the manifold well, and on the other hand, a larger K may lead to a generator with many redundant latent dimensions which may affect the effectiveness of isometry learning and increase the computational cost. Hence how to automatically determine the value of K while learning the generator may be a notable research problem for future work.

Table 4: Quantitative comparison on MNIST dataset.

Metric	MSGAN	VEEGAN	MDGAN	RegGAN	GAN	BiGAN	PacGAN
Inception Score \uparrow	3.71	3.73	3.70	3.72	3.69	3.72	3.71
	3.72	3.73	3.72	3.70	3.72	3.71	3.72
	$7.8 e^{-2}$	$2.6 e^{-1}$	$2.2 e^{-2}$	$3.1 e^{-1}$	$3.2 e^{-2}$	$5.7 e^{-1}$	$3.5 e^{-1}$
Mode Score \uparrow	3.68	3.70	3.67	3.71	3.67	3.67	3.70
	3.69	3.71	3.69	3.72	3.65	3.69	3.71
	$9.2 e^{-1}$	$2.2 e^{-1}$	$3.2 e^{-2}$	$1.0 e^{-1}$	$6.1 e^{-2}$	$5.2 e^{-2}$	$2.5 e^{-1}$
Number of Modes \uparrow	10	10	10	10	10	10	10
	10	10	10	10	10	10	10
	$4.4 e^{-1}$	$2.9 e^{-1}$	$2.9 e^{-1}$	$1.8 e^{-1}$	$5.0 e^{-1}$	$5.9 e^{-1}$	$4.0 e^{-1}$
$K L$ Divergence \downarrow	0.07	0.08	0.07	0.06	0.07	0.05	0.06
	0.06	0.08	0.08	0.05	0.05	0.06	0.05
	$7.8 e^{-1}$	$2.6 e^{-1}$	$5.6 e^{-1}$	$1.4 e^{-1}$	$7.4 e^{-2}$	$3.8 e^{-1}$	$2.6 e^{-1}$
$I v O M \downarrow$	0.20	0.21	0.21	0.19	0.23	0.22	0.20
	0.19	0.22	0.20	0.20	0.21	0.21	0.21
	$1.7 e^{-1}$	$8.2 e^{-2}$	$5.7 e^{-1}$	$4.3 e^{-1}$	$3.7 e^{-1}$	$4.8 e^{-1}$	$2.1 e^{-1}$
Pairwise Distance \uparrow	0.11	0.10	0.12	0.15	0.13	0.11	0.11
	0.10	0.12	0.13	0.12	0.14	0.10	0.12
	$2.8 e^{-1}$	$1.3 e^{-1}$	$3.1 e^{-1}$	$8.6 e^{-2}$	$3.4 e^{-1}$	$7.3 e^{-1}$	$4.8 e^{-1}$
$N D B \downarrow$	20.9	20.2	22.0	20.3	21.3	20.9	20.8
	19.3	20.8	19.9	19.5	20.2	19.6	20.3
	$8.5 e^{-2}$	$2.5 e^{-1}$	$5.6 e^{-2}$	$2.9 e^{-1}$	$5.6 e^{-1}$	$9.2 e^{-2}$	$2.5 e^{-1}$
$J S D \downarrow$	0.13	0.14	0.13	0.12	0.13	0.11	0.12
	0.12	0.11	0.12	0.14	0.14	0.10	0.15
	$7.0 e^{-1}$	$9.3 e^{-2}$	$4.9 e^{-1}$	$3.6 e^{-1}$	$4.4 e^{-1}$	$1.4 e^{-1}$	$7.1 e^{-2}$
$u d i v \uparrow$	0.59	0.58	0.60	0.61	0.59	0.59	0.60
	0.66	0.67	0.67	0.66	0.68	0.68	0.67
	$2.1 e^{-5}$	$5.9 e^{-6}$	$9.7 e^{-6}$	$1.1 e^{-5}$	$8.4 e^{-6}$	$2.1 e^{-5}$	$7.9 e^{-5}$
gunif \downarrow	0.87	0.90	0.93	0.86	0.88	0.87	0.89
	0.62	0.59	0.63	0.61	0.60	0.59	0.61
	$8.6 e^{-5}$	$9.9 e^{-6}$	$5.0 e^{-5}$	$3.8 e^{-6}$	$6.5 e^{-5}$	$2.1 e^{-5}$	$8.1 e^{-6}$

Table 5: Quantitative comparison on colored MNIST dataset.

Metric	MSGAN	VEEGAN	MDGAN	RegGAN	GAN	BiGAN	PacGAN
Inception Score \uparrow	3.70	3.69	3.74	3.71	3.73	3.72	3.73
	3.73	3.72	3.72	3.75	3.72	3.73	3.72
	$5.7 e^{-2}$	$1.3 e^{-2}$	$1.4 e^{-1}$	$2.6 e^{-2}$	$1.0 e^{-1}$	$2.5 e^{-1}$	$4.7 e^{-1}$
Mode Score \uparrow	3.73	3.72	3.73	3.74	3.70	3.69	3.74
	3.70	3.73	3.71	3.72	3.73	3.70	3.69
	$1.4 e^{-1}$	$3.0 e^{-1}$	$2.4 e^{-2}$	$3.5 e^{-1}$	$6.6 e^{-2}$	$3.0 e^{-1}$	$1.2 e^{-2}$
Number of Modes \uparrow	10	10	10	10	10	10	10
	10	10	10	10	10	10	10
	$9.0 e^{-1}$	$4.1 e^{-2}$	$9.1 e^{-1}$	$8.9 e^{-1}$	$6.2 e^{-1}$	$6.3 e^{-1}$	$4.3 e^{-1}$
KL Divergence \downarrow	0.12	0.11	0.09	0.11	0.07	0.10	0.11
	0.13	0.10	0.07	0.12	0.06	0.12	0.12
	$1.1 e^{-1}$	$2.8 e^{-1}$	$3.7 e^{-2}$	$7.4 e^{-1}$	$2.0 e^{-1}$	$4.8 e^{-1}$	$3.1 e^{-2}$
$I v O M \downarrow$	0.56	0.54	0.58	0.55	0.53	0.56	0.55
	0.57	0.53	0.57	0.56	0.54	0.55	0.54
	$4.2 e^{-2}$	$8.1 e^{-1}$	$2.1 e^{-1}$	$7.5 e^{-1}$	$1.9 e^{-1}$	$2.2 e^{-1}$	$8.4 e^{-2}$
Pairwise Distance \uparrow	0.09	0.07	0.11	0.08	0.07	0.11	0.09
	0.10	0.09	0.10	0.07	0.10	0.10	0.10
	$8.7 e^{-2}$	$7.4 e^{-2}$	$3.7 e^{-1}$	$7.7 e^{-1}$	$4.5 e^{-1}$	$3.6 e^{-1}$	$4.8 e^{-1}$
$N D B \downarrow$	20.4	19.3	18.4	19.6	18.1	19.4	18.5
	18.2	19.5	18.3	19.0	17.9	20.0	18.1
	$2.1 e^{-1}$	$8.6 e^{-2}$	$4.7 e^{-1}$	$6.5 e^{-1}$	$9.2 e^{-2}$	$7.2 e^{-1}$	$3.7 e^{-1}$
$J S D \downarrow$	0.11	0.12	0.09	0.11	0.10	0.12	0.09
	0.09	0.10	0.10	0.12	0.09	0.10	0.11
	$1.6 e^{-1}$	$1.1 e^{-1}$	$2.9 e^{-1}$	$3.7 e^{-1}$	$3.1 e^{-1}$	$8.5 e^{-2}$	$4.7 e^{-1}$
$u d i v \uparrow$	0.65	0.63	0.67	0.64	0.65	0.66	0.64
	0.75	0.77	0.78	0.76	0.75	0.77	0.76
	$4.7 e^{-6}$	$2.2 e^{-5}$	$4.9 e^{-6}$	$9.7 e^{-6}$	$4.3 e^{-6}$	$3.1 e^{-6}$	$2.0 e^{-5}$
gunif \downarrow	0.93	0.87	0.89	0.91	0.92	0.90	0.89
	0.67	0.65	0.66	0.65	0.67	0.65	0.65
	$1.1 e^{-6}$	$7.8 e^{-5}$	$9.2 e^{-5}$	$2.8 e^{-5}$	$2.7 e^{-6}$	$9.5 e^{-5}$	$1.6 e^{-5}$

Table 6: Quantitative comparison on FashionMNIST dataset.

Metric	MSGAN	VEEGAN	MDGAN	RegGAN	GAN	BiGAN	PacGAN
Inception Score \uparrow	3.73	3.75	3.72	3.74	3.72	3.71	3.70
	3.71	3.73	3.75	3.76	3.74	3.70	3.76
	$2.8 e^{-1}$	$5.9 e^{-2}$	$3.7 e^{-1}$	$1.7 e^{-1}$	$6.8 e^{-1}$	$3.1 e^{-1}$	$2.5 e^{-2}$
Mode Score \uparrow	3.71	3.68	3.69	3.71	3.72	3.68	3.69
	3.72	3.69	3.70	3.69	3.70	3.71	3.72
	$1.6 e^{-1}$	$4.1 e^{-1}$	$4.3 e^{-1}$	$3.4 e^{-1}$	$2.0 e^{-1}$	$8.5 e^{-2}$	$3.2 e^{-1}$
Number of Modes \uparrow	10	10	10	10	10	10	10
	10	10	10	10	10	10	10
	$1.4 e^{-1}$	$8.2 e^{-1}$	$9.7 e^{-1}$	$8.7 e^{-1}$	$4.8 e^{-1}$	$9.4 e^{-2}$	$8.5 e^{-1}$
KL Divergence \downarrow	0.08	0.10	0.08	0.09	0.11	0.08	0.09
	0.07	0.11	0.06	0.07	0.09	0.07	0.10
	$3.2 e^{-1}$	$7.9 e^{-1}$	$1.4 e^{-1}$	$9.1 e^{-2}$	$1.5 e^{-1}$	$3.9 e^{-1}$	$8.5 e^{-1}$
$I v O M \downarrow$	0.21	0.20	0.23	0.22	0.21	0.20	0.21
	0.20	0.21	0.21	0.23	0.20	0.22	0.23
	$4.3 e^{-1}$	$9.0 e^{-2}$	$4.2 e^{-1}$	$1.7 e^{-1}$	$2.3 e^{-1}$	$4.4 e^{-1}$	$8.3 e^{-2}$
Pairwise Distance \uparrow	0.19	0.18	0.16	0.20	0.22	0.17	0.20
	0.20	0.21	0.19	0.18	0.19	0.18	0.19
	$9.4 e^{-2}$	$8.1 e^{-1}$	$7.8 e^{-1}$	$5.7 e^{-1}$	$3.8 e^{-1}$	$3.3 e^{-1}$	$1.9 e^{-1}$
$N D B \downarrow$	23.1	22.7	21.3	22.9	21.5	22.3	21.3
	21.6	21.0	21.4	20.8	22.3	21.8	20.0
	$2.2 e^{-1}$	$1.4 e^{-1}$	$9.4 e^{-2}$	$1.6 e^{-1}$	$7.4 e^{-1}$	$8.3 e^{-1}$	$1.5 e^{-1}$
$J S D \downarrow$	0.17	0.17	0.16	0.17	0.16	0.18	0.17
	0.19	0.15	0.14	0.14	0.17	0.16	0.15
	$3.6 e^{-1}$	$1.7 e^{-1}$	$9.6 e^{-2}$	$1.0 e^{-1}$	$2.8 e^{-1}$	$8.1 e^{-1}$	$8.4 e^{-2}$
$u d i v \uparrow$	0.65	0.64	0.64	0.65	0.63	0.65	0.65
	0.75	0.76	0.77	0.75	0.77	0.75	0.76
	$1.8 e^{-6}$	$5.0 e^{-6}$	$9.8 e^{-7}$	$2.0 e^{-5}$	$4.4 e^{-6}$	$6.2 e^{-5}$	$4.8 e^{-5}$
gunif \downarrow	1.09	1.05	1.07	1.08	1.07	1.09	1.07
	0.75	0.73	0.73	0.75	0.76	0.74	0.73
	$1.9 e^{-6}$	$8.2 e^{-5}$	$9.8 e^{-6}$	$1.2 e^{-5}$	$5.1 e^{-5}$	$1.7 e^{-5}$	$2.9 e^{-5}$

Table 7: Quantitative comparison on colored FashionMNIST dataset.

Metric	MSGAN	VEEGAN	MDGAN	RegGAN	GAN	BiGAN	PacGAN
Inception Score \uparrow	3.71	3.74	3.74	3.72	3.75	3.72	3.73
	3.74	3.75	3.73	3.74	3.77	3.75	3.69
	$3.2 e^{-1}$	$8.6 e^{-2}$	$3.5 e^{-1}$	$1.3 e^{-1}$	$3.2 e^{-1}$	$6.0 e^{-1}$	$7.3 e^{-1}$
Mode Score \uparrow	3.70	3.71	3.73	3.70	3.73	3.71	3.74
	3.72	3.75	3.71	3.71	3.72	3.72	3.69
	$2.0 e^{-1}$	$3.3 e^{-1}$	$1.4 e^{-1}$	$3.2 e^{-1}$	$3.8 e^{-1}$	$6.5 e^{-2}$	$1.9 e^{-1}$
Number of Modes \uparrow	10	10	10	10	10	10	10
	10	10	10	10	10	10	10
	$7.1 e^{-1}$	$4.2 e^{-1}$	$2.0 e^{-1}$	$3.4 e^{-1}$	$4.4 e^{-1}$	$8.0 e^{-1}$	$8.5 e^{-1}$
KL Divergence \downarrow	0.10	0.07	0.09	0.07	0.08	0.12	0.10
	0.11	0.08	0.08	0.08	0.12	0.09	0.08
	$2.8 e^{-1}$	$9.7 e^{-2}$	$3.4 e^{-1}$	$8.6 e^{-2}$	$4.8 e^{-1}$	$7.2 e^{-1}$	$3.7 e^{-1}$
$I \nu O M \downarrow$	1.21	1.23	1.19	1.20	1.22	1.22	1.21
	1.19	1.20	1.20	1.21	1.19	1.21	1.22
	$3.4 e^{-1}$	$5.4 e^{-1}$	$9.9 e^{-2}$	$4.5 e^{-1}$	$8.5 e^{-2}$	$1.1 e^{-1}$	$3.9 e^{-1}$
Pairwise Distance \uparrow	0.13	0.11	0.10	0.15	0.12	0.13	0.11
	0.12	0.13	0.13	0.14	0.13	0.11	0.12
	$2.4 e^{-1}$	$6.3 e^{-1}$	$3.1 e^{-1}$	$2.3 e^{-1}$	$3.7 e^{-1}$	$9.5 e^{-2}$	$5.1 e^{-1}$
$N D B \downarrow$	22.0	22.7	23.9	21.7	22.9	22.1	22.3
	21.2	22.1	21.3	22.2	23.1	23.0	21.9
	$5.1 e^{-1}$	$4.6 e^{-1}$	$3.3 e^{-2}$	$6.8 e^{-1}$	$2.4 e^{-1}$	$2.3 e^{-1}$	$2.1 e^{-1}$
$J S D \downarrow$	0.18	0.19	0.20	0.18	0.17	0.18	0.19
	0.19	0.17	0.18	0.19	0.19	0.17	0.20
	$4.8 e^{-1}$	$4.0 e^{-1}$	$3.1 e^{-1}$	$8.6 e^{-2}$	$9.5 e^{-2}$	$5.7 e^{-1}$	$3.6 e^{-1}$
$u d i v \uparrow$	0.51	0.49	0.50	0.51	0.52	0.50	0.50
	0.67	0.69	0.67	0.70	0.65	0.68	0.68
	$1.7 e^{-5}$	$2.9 e^{-5}$	$9.5 e^{-6}$	$1.5 e^{-5}$	$1.1 e^{-5}$	$7.0 e^{-5}$	$2.8 e^{-5}$
gunif \downarrow	1.24	1.28	1.19	1.23	1.22	1.18	1.20
	0.81	0.80	0.79	0.78	0.81	0.80	0.80
	$3.6 e^{-5}$	$1.4 e^{-5}$	$1.1 e^{-5}$	$3.9 e^{-5}$	$2.0 e^{-5}$	$2.1 e^{-5}$	$3.9 e^{-5}$

Table 8: Quantitative comparison on FashionMNIST and partial MNIST [44] dataset.

Metric	MSGAN	VEEGAN	MDGAN	RegGAN	GAN	BiGAN	PacGAN
Inception Score \uparrow	3.68	3.71	3.69	3.70	3.70	3.71	3.68
	3.69	3.69	3.70	3.68	3.71	3.70	3.69
	$8.4 e^{-1}$	$5.5 e^{-2}$	$9.0 e^{-2}$	$7.8 e^{-2}$	$8.6 e^{-2}$	$7.8 e^{-2}$	$6.2 e^{-1}$
Mode Score \uparrow	3.67	3.69	3.68	3.68	3.69	3.70	3.68
	3.68	3.68	3.69	3.66	3.70	3.69	3.67
	$4.4 e^{-1}$	$5.6 e^{-1}$	$9.8 e^{-2}$	$7.2 e^{-2}$	$5.4 e^{-2}$	$8.6 e^{-2}$	$6.5 e^{-1}$
Number of Modes \uparrow	11	11	11	11	11	11	11
	11	11	11	11	11	11	11
	$8.9 e^{-1}$	$6.5 e^{-1}$	$9.4 e^{-1}$	$8.7 e^{-1}$	$9.7 e^{-1}$	$8.8 e^{-1}$	$7.9 e^{-1}$
KL Divergence \downarrow	0.12	0.15	0.11	0.16	0.13	0.11	0.12
	0.13	0.12	0.10	0.15	0.12	0.10	0.14
	$6.5 e^{-2}$	$1.6 e^{-2}$	$5.0 e^{-1}$	$4.2 e^{-1}$	$3.9 e^{-1}$	$1.3 e^{-1}$	$7.8 e^{-2}$
$I v O M \downarrow$	1.24	1.22	1.21	1.23	1.21	1.23	1.22
	1.22	1.21	1.23	1.22	1.20	1.22	1.23
	$7.6 e^{-2}$	$6.2 e^{-2}$	$4.7 e^{-2}$	$7.5 e^{-1}$	$1.4 e^{-1}$	$8.5 e^{-2}$	$2.1 e^{-1}$
Pairwise Distance \uparrow	0.16	0.14	0.15	0.17	0.15	0.14	0.15
	0.15	0.15	0.17	0.16	0.14	0.16	0.14
	$9.8 e^{-2}$	$8.6 e^{-1}$	$4.9 e^{-2}$	$8.3 e^{-2}$	$1.5 e^{-1}$	$5.3 e^{-2}$	$8.4 e^{-1}$
$N D B \downarrow$	22.1	23.5	24.3	22.4	23.7	22.9	23.4
	22.8	23.2	23.1	23.3	23.5	22.4	23.6
	$6.4 e^{-2}$	$1.1 e^{-1}$	$5.3 e^{-1}$	$7.8 e^{-2}$	$4.1 e^{-1}$	$8.2 e^{-2}$	$9.1 e^{-2}$
$J S D \downarrow$	0.22	0.21	0.21	0.19	0.20	0.19	0.20
	0.20	0.19	0.22	0.20	0.21	0.18	0.19
	$5.2 e^{-2}$	$1.8 e^{-1}$	$7.3 e^{-2}$	$2.1 e^{-1}$	$4.2 e^{-2}$	$7.5 e^{-2}$	$1.7 e^{-1}$
$u d i v \uparrow$	0.48	0.47	0.48	0.46	0.49	0.45	0.47
	0.61	0.62	0.59	0.64	0.66	0.65	0.65
	$6.3 e^{-6}$	$8.8 e^{-7}$	$3.7 e^{-6}$	$8.2 e^{-6}$	$5.2 e^{-6}$	$1.7 e^{-6}$	$7.7 e^{-5}$
gunif \downarrow	1.28	1.31	1.27	1.30	1.29	1.27	1.26
	0.84	0.85	0.80	0.81	0.83	0.82	0.83
	$6.2 e^{-6}$	$8.7 e^{-7}$	$4.1 e^{-6}$	$8.1 e^{-5}$	$1.4 e^{-7}$	$6.9 e^{-6}$	$7.5 e^{-6}$

Table 9: Quantitative comparison on stacked-MNIST [37] dataset.

Metric	MSGAN	VEEGAN	MDGAN	RegGAN	GAN	BiGAN	PacGAN
Inception Score \uparrow	2.59	2.57	2.67	2.53	2.73	2.51	2.58
	2.64	2.62	2.59	2.58	2.68	2.57	2.62
	$2.1 e^{-2}$	$4.7 e^{-1}$	$8.1 e^{-2}$	$9.5 e^{-2}$	$1.7 e^{-1}$	$8.2 e^{-2}$	$2.8 e^{-1}$
Mode Score \uparrow	2.58	2.57	2.64	2.53	2.69	2.50	2.57
	2.62	2.61	2.58	2.55	2.67	2.55	2.61
	$6.2 e^{-2}$	$4.1 e^{-2}$	$3.1 e^{-1}$	$9.3 e^{-2}$	$3.8 e^{-1}$	$5.8 e^{-2}$	$3.7 e^{-2}$
Number of Modes \uparrow	979	980	980	981	980	988	984
	985	979	981	984	979	992	981
	$6.2 e^{-1}$	$8.7 e^{-1}$	$5.2 e^{-1}$	$7.4 e^{-1}$	$6.3 e^{-1}$	$8.1 e^{-1}$	$9.5 e^{-1}$
KL Divergence \downarrow	0.15	0.17	0.16	0.18	0.15	0.19	0.18
	0.16	0.16	0.18	0.17	0.16	0.17	0.17
	$1.3 e^{-1}$	$5.2 e^{-2}$	$7.2 e^{-2}$	$6.2 e^{-2}$	$7.2 e^{-2}$	$8.1 e^{-2}$	$9.1 e^{-2}$
$I v O M \downarrow$	1.32	1.31	1.29	1.34	1.30	1.32	1.35
	1.31	1.33	1.30	1.32	1.29	1.31	1.34
	$8.4 e^{-2}$	$9.7 e^{-2}$	$6.2 e^{-2}$	$1.1 e^{-1}$	$7.2 e^{-2}$	$4.2 e^{-1}$	$7.2 e^{-2}$
Pairwise Distance \uparrow	0.21		0.17	0.18	0.20	0.19	0.18
	0.23	0.19	0.17	0.17	0.19	0.20	0.19
	$5.2 e^{-2}$	$2.3 e^{-1}$	$6.8 e^{-2}$	$9.5 e^{-2}$	$4.2 e^{-2}$	$7.2 e^{-2}$	$1.5 e^{-1}$
$N D B \downarrow$	23.1	24.2	24.8	24.1	23.6	23.9	24.5
	23.4	24.1	23.9	24.3	23.8	23.4	24.0
	$8.5 e^{-2}$	$1.3 e^{-1}$	$5.3 e^{-2}$	$6.5 e^{-2}$	$7.2 e^{-2}$	$2.4 e^{-1}$	$5.8 e^{-2}$
$J S D \downarrow$	0.25	0.24	0.23	0.25	0.22	0.24	0.26
	0.24	0.26	0.21	0.24	0.25	0.23	0.25
	$7.2 e^{-2}$	$9.5 e^{-2}$	$2.6 e^{-1}$	$1.8 e^{-1}$	$8.3 e^{-2}$	$2.6 e^{-1}$	$1.8 e^{-1}$
$u d i v \uparrow$	0.42	0.41	0.39	0.45	0.44	0.46	0.44
	0.58	0.61	0.62	0.61	0.63	0.62	0.60
	$6.3 e^{-7}$	$4.1 e^{-6}$	$7.9 e^{-7}$	$5.7 e^{-6}$	$8.1 e^{-7}$	$5.2 e^{-7}$	$1.9 e^{-5}$
gunif \downarrow	1.34	1.39	1.35	1.41	1.38	1.29	1.34
	0.81	0.80	0.83	0.79	0.82	0.81	0.80
	$7.6 e^{-6}$	$2.3 e^{-5}$	$1.8 e^{-7}$	$9.2 e^{-7}$	$8.8 e^{-7}$	$9.3 e^{-7}$	$1.5 e^{-6}$

Table 10: Quantitative comparison on CIFAR10 dataset.

Metric	MSGAN	VEEGAN	MDGAN	RegGAN	GAN	BiGAN	PacGAN
Inception Score \uparrow	3.74	3.77	3.80	3.76	3.77	3.78	3.75
	3.78	3.78	3.74	3.77	3.79	3.76	3.77
	$9.5 e^{-2}$	$6.8 e^{-1}$	$1.7 e^{-1}$	$5.2 e^{-1}$	$1.4 e^{-1}$	$1.1 e^{-1}$	$3.1 e^{-1}$
Mode Score \uparrow	3.75	3.73	3.73	3.78	3.75	3.74	3.76
	3.73	3.74	3.78	3.75	3.76	3.78	3.77
	$3.2 e^{-1}$	$6.2 e^{-1}$	$4.9 e^{-2}$	$9.5 e^{-2}$	$2.5 e^{-1}$	$1.5 e^{-1}$	$5.6 e^{-1}$
Number of Modes \uparrow	10	10	10	10	10	10	10
	10	10	10	10	10	10	10
	$2.7 e^{-1}$	$9.9 e^{-1}$	$4.5 e^{-1}$	$7.4 e^{-2}$	$6.5 e^{-1}$	$6.1 e^{-1}$	$3.0 e^{-1}$
KL Divergence \downarrow	0.05	0.04	0.06	0.05	0.07	0.03	0.04
	0.07	0.03	0.05	0.04	0.06	0.04	0.03
	$8.8 e^{-2}$	$3.3 e^{-1}$	$6.9 e^{-1}$	$1.8 e^{-1}$	$4.9 e^{-2}$	$1.0 e^{-1}$	$8.3 e^{-1}$
$I v O M \downarrow$	0.20	0.19	0.20	0.23	0.22	0.19	0.20
	0.19	0.20	0.19	0.21	0.20	0.20	0.21
	$1.2 e^{-1}$	$5.4 e^{-1}$	$9.8 e^{-2}$	$1.6 e^{-1}$	$4.0 e^{-1}$	$8.5 e^{-2}$	$7.3 e^{-1}$
Pairwise Distance \uparrow	0.22	0.25	0.23	0.19	0.21	0.22	0.22
	0.23	0.23	0.24	0.20	0.22	0.23	0.20
	$5.3 e^{-1}$	$1.4 e^{-1}$	$4.5 e^{-1}$	$1.2 e^{-1}$	$9.6 e^{-2}$	$1.2 e^{-1}$	$1.0 e^{-1}$
$N D B \downarrow$	22.1	23.7	25.2	22.8	23.9	22.0	22.2
	21.8	24.5	22.6	21.0	21.9	23.5	23.8
	$4.0 e^{-1}$	$1.6 e^{-1}$	$1.2 e^{-1}$	$4.7 e^{-1}$	$9.1 e^{-2}$	$5.6 e^{-1}$	$1.2 e^{-1}$
$J S D \downarrow$	0.12	0.17	0.13	0.14	0.13	0.15	0.13
	0.14	0.12	0.11	0.15	0.12	0.14	0.16
	$6.2 e^{-1}$	$8.5 e^{-2}$	$6.8 e^{-1}$	$1.3 e^{-1}$	$4.1 e^{-1}$	$3.2 e^{-1}$	$1.9 e^{-1}$
$u d i v \uparrow$	0.61	0.58	0.65	0.61	0.60	0.62	0.61
	0.78	0.75	0.75	0.78	0.81	0.77	0.76
	$1.2 e^{-5}$	$6.1 e^{-9}$	$9.6 e^{-6}$	$9.1 e^{-6}$	$1.8 e^{-7}$	$4.7 e^{-5}$	$1.0 e^{-8}$
gunif \downarrow	12.87	14.15	14.32	15.12	14.12	13.94	15.51
	7.91	8.17	9.64	8.12	9.12	8.26	9.19
	$3.3 e^{-6}$	$9.8 e^{-7}$	$3.1 e^{-6}$	$4.6 e^{-5}$	$3.1 e^{-5}$	$2.4 e^{-6}$	$7.8 e^{-7}$

Table 11: Quantitative comparison on CelebA dataset.

Metric	MSGAN	VEEGAN	MDGAN	RegGAN	GAN	BiGAN	PacGAN
FID \downarrow	9.21	$\mathbf{1 1 . 2 4}$	$\mathbf{1 2 . 1 5}$	$\mathbf{1 2 . 9 2}$	8.53	11.82	$\mathbf{1 1 . 2 2}$
	$\mathbf{9 . 1 8}$	11.87	13.04	13.12	$\mathbf{8 . 2 2}$	$\mathbf{1 1 . 0 0}$	12.43
	$9.6 e^{-2}$	$1.8 e^{-1}$	$2.8 e^{-1}$	$1.3 e^{-1}$	$6.1 e^{-2}$	$8.0 e^{-2}$	$3.6 e^{-1}$
LPIPS \uparrow	$\mathbf{0 . 2 7}$	0.26	0.23	0.24	0.24	0.22	0.22
	$7.7 e^{-1}$	$1.4 e^{-1}$	$1.0 e^{-1}$	$7.5 e^{-2}$	$1.9 e^{-1}$	$9.9 e^{-2}$	$3.1 e^{-1}$
	0.71	0.73	0.72	0.74	0.72	0.75	0.73
udiv \uparrow	$\mathbf{0 . 8 5}$	$\mathbf{0 . 8 6}$	$\mathbf{0 . 8 5}$	$\mathbf{0 . 8 6}$	$\mathbf{0 . 8 3}$	$\mathbf{0 . 8 5}$	$\mathbf{0 . 8 6}$
	$1.1 e^{-6}$	$4.9 e^{-5}$	$5.2 e^{-9}$	$6.0 e^{-5}$	$1.0 e^{-4}$	$4.1 e^{-4}$	$1.6 e^{-7}$
gunif \downarrow	28.76	24.85	27.96	30.72	28.30	35.25	30.88
	$\mathbf{2 1 . 0 8}$	$\mathbf{2 0 . 2 2}$	$\mathbf{2 0 . 4 1}$	$\mathbf{2 4 . 2 2}$	$\mathbf{2 1 . 6 8}$	$\mathbf{2 1 . 0 8}$	$\mathbf{2 3 . 9 8}$
	$2.9 e^{-5}$	$1.5 e^{-5}$	$1.1 e^{-5}$	$9.8 e^{-6}$	$4.8 e^{-7}$	$3.5 e^{-9}$	$1.2 e^{-5}$

Table 12: Quantitative comparison on FFHQ dataset.

Metric	MSGAN	VEEGAN	MDGAN	RegGAN	GAN	BiGAN	PacGAN
FID \downarrow	$\mathbf{1 4 . 7 3}$	12.84	13.05	15.68	11.27	$\mathbf{1 2 . 3 4}$	$\mathbf{1 3 . 3 9}$
	15.49	$\mathbf{1 1 . 0 3}$	$\mathbf{1 2 . 2 1}$	$\mathbf{1 4 . 8 9}$	$\mathbf{1 1 . 2 2}$	12.73	14.83
	$5.5 e^{-1}$	$8.1 e^{-2}$	$2.4 e^{-1}$	$1.9 e^{-1}$	$5.4 e^{-1}$	$7.3 e^{-1}$	$6.4 e^{-1}$
LPIPS \uparrow	$\mathbf{0 . 3 4}$	0.33	0.31	0.33	$\mathbf{0 . 3 0}$	0.30	0.28
	$\mathbf{0 . 2 7}$	$\mathbf{0 . 2 9}$	0.26	0.28			
	$1.2 e^{-1}$	$2.6 e^{-1}$	$7.2 e^{-2}$	$1.5 e^{-1}$	$9.7 e^{-1}$	$1.7 e^{-1}$	$2.4 e^{-1}$
udiv \uparrow	0.65	0.65	0.67	0.66	0.67	0.65	0.64
	$\mathbf{0 . 8 0}$	$\mathbf{0 . 7 9}$	$\mathbf{0 . 7 8}$	$\mathbf{0 . 7 9}$	$\mathbf{0 . 7 8}$	$\mathbf{0 . 8 1}$	$\mathbf{0 . 7 9}$
	$1.5 e^{-4}$	$7.6 e^{-5}$	$4.3 e^{-3}$	$1.1 e^{-8}$	$6.2 e^{-8}$	$3.1 e^{-7}$	$5.7 e^{-5}$
gunif \downarrow	34.78	33.04	32.19	30.88	36.06	33.30	35.69
	$\mathbf{2 7 . 1 1}$	$\mathbf{2 7 . 1 0}$	$\mathbf{2 5 . 9 0}$	$\mathbf{2 4 . 9 1}$	$\mathbf{2 5 . 8 7}$	$\mathbf{2 5 . 1 7}$	$\mathbf{2 6 . 5 1}$
	$8.0 e^{-5}$	$2.1 e^{-3}$	$6.2 e^{-5}$	$1.2 e^{-6}$	$7.1 e^{-5}$	$1.0 e^{-8}$	$7.1 e^{-4}$

Table 13: Quantitative comparison on AFHQ Cat dataset.

Metric	MSGAN	VEEGAN	MDGAN	RegGAN	GAN	BiGAN	PacGAN
FID \downarrow	26.91	$\mathbf{2 4 . 8 2}$	25.57	23.33	$\mathbf{2 3 . 2 8}$	23.69	$\mathbf{2 5 . 1 9}$
	$\mathbf{2 5 . 7 8}$	26.87	$\mathbf{2 5 . 3 8}$	$\mathbf{2 1 . 5 4}$	23.39	$\mathbf{2 1 . 3 4}$	26.89
	$7.7 e^{-2}$	$1.6 e^{-1}$	$2.7 e^{-1}$	$6.8 e^{-1}$	$1.6 e^{-1}$	$1.4 e^{-1}$	$6.9 e^{-2}$
LPIPS \uparrow	$\mathbf{0 . 3 9}$	0.38	$\mathbf{0 . 3 7}$	0.35	$\mathbf{0 . 3 6}$	$\mathbf{0 . 3 6}$	0.36
	$5.2 e^{-1}$	$1.7 e^{-1}$	$3.5 e^{-1}$	$1.2 e^{-1}$	$4.7 e^{-1}$	$9.1 e^{-2}$	$5.3 e^{-1}$
	0.67	0.64	0.70	0.68	0.65	0.66	0.69
udiv \uparrow	$\mathbf{0 . 7 9}$	$\mathbf{0 . 8 1}$	$\mathbf{0 . 8 1}$	$\mathbf{0 . 7 9}$	$\mathbf{0 . 8 0}$	$\mathbf{0 . 8 0}$	$\mathbf{0 . 7 8}$
	$8.4 e^{-7}$	$5.0 e^{-5}$	$3.2 e^{-5}$	$7.5 e^{-4}$	$8.1 e^{-7}$	$7.3 e^{-6}$	$2.6 e^{-7}$
gunif \downarrow	31.86	30.93	32.01	30.51	30.86	29.36	29.91
	$\mathbf{2 2 . 0 7}$	$\mathbf{2 3 . 3 8}$	$\mathbf{2 0 . 1 9}$	$\mathbf{1 9 . 2 4}$	$\mathbf{2 2 . 4 1}$	$\mathbf{2 3 . 5 9}$	$\mathbf{2 1 . 7 8}$
	$1.7 e^{-6}$	$3.6 e^{-4}$	$7.1 e^{-5}$	$8.1 e^{-7}$	$1.6 e^{-4}$	$1.4 e^{-5}$	$1.2 e^{-6}$

Table 14: Quantitative comparison on LSUN Car dataset.

Metric	MSGAN	VEEGAN	MDGAN	RegGAN	GAN	BiGAN	PacGAN
$F I D \downarrow$	16.81	12.54	14.90	12.45	9.16	14.23	12.56
	15.78	13.32	13.58	12.30	10.17	15.21	12.19
	$1.4 e^{-1}$	$9.4 e^{-2}$	$7.4 e^{-1}$	$8.1 e^{-2}$	$5.3 e^{-1}$	$3.6 e^{-1}$	$1.3 e^{-1}$
LPIPS \uparrow	0.48	0.44	0.45	0.45	0.46	0.46	0.45
	0.47	0.45	0.44	0.46	0.45	0.45	0.44
	$1.7 e^{-1}$	$8.4 e^{-2}$	$9.7 e^{-2}$	$1.5 e^{-1}$	$9.1 e^{-1}$	$1.4 e^{-1}$	$4.6 e^{-1}$
udiv \uparrow	0.41	0.43	0.47	0.42	0.45	0.46	0.45
	0.71	0.70	0.68	0.67	0.69	0.68	0.71
	$3.2 e^{-4}$	$4.4 e^{-7}$	$7.3 e^{-4}$	$1.1 e^{-7}$	$7.4 e^{-5}$	$8.7 e^{-4}$	$1.2 e^{-6}$
gunif \downarrow	43.48	42.77	41.82	39.32	42.77	40.21	41.32
	31.59	31.68	32.55	33.67	33.71	32.46	31.88
	$7.6 e^{-4}$	$2.7 e^{-8}$	$2.2 e^{-5}$	$1.1 e^{-5}$	$5.4 e^{-8}$	$3.0 e^{-6}$	$1.4 e^{-7}$

Table 15: Quantitative comparison on LSUN Bedroom dataset.

Metric	MSGAN	VEEGAN	MDGAN	RegGAN	GAN	BiGAN	PacGAN
FID \downarrow	$\mathbf{1 3 . 8 7}$	12.66	11.63	$\mathbf{1 0 . 9 3}$	$\mathbf{8 . 2 0}$	11.04	12.53
	14.21	$\mathbf{1 1 . 9 7}$	$\mathbf{1 0 . 6 7}$	11.66	8.96	$\mathbf{1 0 . 8 7}$	$\mathbf{1 1 . 8 7}$
	$3.7 e^{-2}$	$2.1 e^{-1}$	$1.0 e^{-1}$	$1.9 e^{-1}$	$2.9 e^{-1}$	$1.8 e^{-1}$	$5.3 e^{-1}$
LPIPS \uparrow	$\mathbf{0 . 4 9}$	0.48	$\mathbf{0 . 4 8}$	$\mathbf{0 . 4 6}$	0.45	0.46	0.46
	$3.4 e^{-1}$	$4.1 e^{-1}$	$3.8 e^{-1}$	$5.6 e^{-1}$	$5.0 e^{-1}$	$7.2 e^{-2}$	$1.1 e^{-1}$
	0.55	0.56	0.59	0.61	0.59	0.57	0.58
udiv \uparrow	$\mathbf{0 . 8 0}$	$\mathbf{0 . 8 1}$	$\mathbf{0 . 7 7}$	$\mathbf{0 . 7 8}$	$\mathbf{0 . 7 9}$	$\mathbf{0 . 8 0}$	$\mathbf{0 . 8 2}$
	$4.6 e^{-5}$	$8.5 e^{-6}$	$1.4 e^{-5}$	$5.5 e^{-7}$	$2.1 e^{-7}$	$6.0 e^{-4}$	$2.8 e^{-5}$
gunif \downarrow	35.69	36.12	34.91	35.81	33.17	36.97	33.87
	$\mathbf{2 3 . 8 7}$	$\mathbf{2 1 . 9 8}$	$\mathbf{2 5 . 0 0}$	$\mathbf{2 4 . 3 1}$	$\mathbf{2 2 . 9 5}$	$\mathbf{2 6 . 2 0}$	$\mathbf{2 4 . 0 1}$
	$5.7 e^{-7}$	$3.5 e^{-4}$	$1.4 e^{-7}$	$7.8 e^{-5}$	$4.3 e^{-7}$	$1.1 e^{-6}$	$3.5 e^{-6}$

Table 16: Quantitative comparison on LSUN Church dataset.

Metric	MSGAN	VEEGAN	MDGAN	RegGAN	GAN	BiGAN	PacGAN
FID \downarrow	15.23	13.92	$\mathbf{1 3 . 9 9}$	$\mathbf{1 2 . 8 7}$	10.39	$\mathbf{1 3 . 4 3}$	12.81
	$\mathbf{1 4 . 3 9}$	$\mathbf{1 3 . 0 9}$	14.87	15.93	$\mathbf{9 . 8 3}$	14.30	$\mathbf{1 1 . 0 8}$
	$1.7 e^{-1}$	$8.4 e^{-2}$	$3.7 e^{-1}$	$6.3 e^{-1}$	$8.0 e^{-1}$	$1.2 e^{-1}$	$8.7 e^{-2}$
\uparrow}{$\mathbf{0 . 4 7}$ 0.46 0.45 0.44 $\mathbf{0 . 4 5}$ 0.44 0.44 $\mathbf{0 . 4 6}$ $\mathbf{0 . 4 5}$ 0.44 $\mathbf{0 . 4 5}$ $\mathbf{0 . 4 5}$ 0.45 $1.8 e^{-1}$ $4.7 e^{-1}$ $3.3 e^{-1}$ $4.0 e^{-1}$ $5.2 e^{-1}$ $1.6 e^{-1}$ udiv \uparrow 0.63 0.66 0.64 0.63 0.65 0.65 $\mathbf{0 . 7 9}$ $\mathbf{0 . 8 1}$ $\mathbf{0 . 7 7}$ $\mathbf{0 . 8 0}$ $\mathbf{0 . 7 8}$ $\mathbf{0 . 7 9}$ $8.4 e^{-7}$ $8.0 e^{-4}$ $6.3 e^{-4}$ $4.8 e^{-7}$ $8.1 e^{-4}$ $3.5 e^{-8}$ gunif \downarrow 33.04 35.33 35.59 34.61 33.09 35.62 $\mathbf{2 5 . 5 5}$ $\mathbf{2 4 . 3 8}$ $\mathbf{2 4 . 4 1}$ $\mathbf{2 4 . 5 8}$ $\mathbf{2 5 . 8 4}$ $\mathbf{2 5 . 5 7}$ $7.4 e^{-8}$ $1.4 e^{-4}$ $1.7 e^{-8}$ $1.0 e^{-7}$ $6.8 e^{-5}$ $1.5 e^{-8}$}							

Table 17: Quantitative comparison on 128×128 CelebA dataset.

Metric	MSGAN	VEEGAN	MDGAN	RegGAN	GAN	BiGAN	PacGAN
FID \downarrow	$\mathbf{1 7 . 4 8}$	18.35	$\mathbf{1 7 . 5 3}$	$\mathbf{1 8 . 4 2}$	$\mathbf{1 6 . 3 8}$	16.79	16.94
	18.29	$\mathbf{1 8 . 2 1}$	17.66	20.05	17.45	$\mathbf{1 6 . 0 8}$	$\mathbf{1 6 . 4 2}$
LPIPS \uparrow	$\mathbf{0 . 3 8}$	0.36	0.37	$\mathbf{0 . 3 8}$	0.35	$\mathbf{0 . 3 7}$	0.36
	0.34	$\mathbf{0 . 3 7}$	$\mathbf{0 . 3 8}$	0.36	$\mathbf{0 . 3 5}$	0.36	$\mathbf{0 . 3 7}$
udiv \uparrow	0.35	0.39	0.38	0.36	0.38	0.40	0.36
	$\mathbf{0 . 4 6}$	$\mathbf{0 . 4 3}$	$\mathbf{0 . 4 7}$	$\mathbf{0 . 4 8}$	$\mathbf{0 . 4 9}$	$\mathbf{0 . 4 7}$	$\mathbf{0 . 4 5}$
gunif \downarrow	31.58	34.31	33.76	35.29	38.45	32.87	36.12
	$\mathbf{2 6 . 9 7}$	$\mathbf{2 5 . 6 2}$	$\mathbf{2 5 . 1 8}$	$\mathbf{2 6 . 8 3}$	$\mathbf{2 5 . 2 3}$	$\mathbf{2 6 . 3 4}$	$\mathbf{2 5 . 2 1}$

(a) Baseline samples around x_{1}.

(b) Baseline samples around x_{2}.

(c) UniGAN samples around x_{1}.

(d) UniGAN samples around x_{2}.

Figure 3: Qualitative results on MNIST dataset.

(a) Baseline samples around x_{1}
(b) Baseline samples around x_{2}

(c) UniGAN samples around x_{1}
(d) UniGAN samples around x_{2}.

Figure 4: Qualitative results on colored MNIST dataset.

(a) Baseline samples around x_{1}.

(b) Baseline samples around x_{2}

(c) UniGAN samples around x_{1}.

(d) UniGAN samples around x_{2}

Figure 5: Qualitative results on FashionMNIST dataset.

(a) Baseline samples around x_{1}.
(c) UniGAN samples around x_{1}

(d) UniGAN samples around x_{2}.

Figure 6: Qualitative results on colored FashionMNIST dataset.

(a) Baseline samples around x_{1}

(c) UniGAN samples around x_{1}.
(d) UniGAN samples around x_{2}.

Figure 7: Qualitative results on stacked-MNIST dataset with channel labels being 5, 7, 8, respectively.

Figure 8: Qualitative results on CIFAR10 Ship dataset.

(a) Baseline samples around x_{1}.
(b) Baseline samples around x_{2}.

(c) UniGAN samples around x_{1}.
(d) UniGAN samples around x_{2}.

Figure 9: Qualitative results on CelebA dataset.

(c) UniGAN samples around x_{1}.

(d) UniGAN samples around x_{2}.

Figure 10: Qualitative results on FFHQ dataset.

(a) Baseline samples around x_{1}
(c) UniGAN samples around x_{1}.

(d) UniGAN samples around x_{2}.

Figure 11: Qualitative results on AFHQ Cat dataset.

（a）Baseline samples around x_{1}

－	28			－	－5	2	408
韨	，	θ	违耍	［1］	41	4	5
\％	哏絊	［2）			910	建教，	4s
0		5 5	30		－	술⿵⿸⿻一丿工二殳斤	
	＋	\square	분	븐	䡃䢒		5
（1）	5		－	数耍	0	－	40］
	－	Q	C		－5	St	
2010							해느․

（c）UniGAN samples around x_{1} ．

（b）Baseline samples around x_{2}

Figure 12：Qualitative results on LSUN Car dataset．

(c) UniGAN samples around x_{1}.

(d) UniGAN samples around x_{2}.

Figure 13: Qualitative results on LSUN Bedroom dataset.

Figure 14: Qualitative results on LSUN Church dataset.

References

[1] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation. In ICLR Workshop, 2015.
[2] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In ICLR, 2017.
[3] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In NeurIPS, 2018.
[4] Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density estimation. In NeurIPS, 2020.
[5] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
[6] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis. In JAMS, 2016.
[7] Hang Shao, Abhishek Kumar, and P Thomas Fletcher. The riemannian geometry of deep generative models. In CVPR Workshop, 2018.
[8] Guo-Jun Qi, Liheng Zhang, Hao Hu, Marzieh Edraki, Jingdong Wang, and Xian-Sheng Hua. Global versus localized generative adversarial nets. In CVPR, 2018.
[9] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, 1998.
[10] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial networks. In ICLR, 2017.
[11] Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh. Pacgan: The power of two samples in generative adversarial networks. In NeurIPS, 2018.
[12] Arnab Ghosh, Viveka Kulharia, Vinay P Namboodiri, Philip HS Torr, and Puneet K Dokania. Multi-agent diverse generative adversarial networks. In CVPR, 2018.
[13] Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. Mgan: Training generative adversarial nets with multiple generators. In ICLR, 2018.
[14] Wei Li, Li Fan, Zhenyu Wang, Chao Ma, and Xiaohui Cui. Tackling mode collapse in multi-generator gans with orthogonal vectors. In Pattern Recognition, 2021.
[15] Steven Liu, Tongzhou Wang, David Bau, Jun-Yan Zhu, and Antonio Torralba. Diverse image generation via self-conditioned gans. In $C V P R, 2020$.
[16] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks. In ICLR, 2018.
[17] Gene H Golub and Henk A Van der Vorst. Eigenvalue computation in the 20th century. In JCAM, 2000.
[18] Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability of deep learning. In CORR, 2017.
[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. In NeurIPS, 2019.
[20] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th \{USENIX $\}$ symposium on operating systems design and implementation ($\{$ OSDI $\}$ 16), 2016.
[21] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and improving the image quality of stylegan. In $C V P R, 2020$.
[22] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.
[23] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NeurIPS, 2017.
[24] Mickael Zbili and Sylvain Rama. A quick and easy way to estimate entropy and mutual information for neuroscience. In Frontiers in Neuroinformatics, 2021.
[25] JooSeuk Kim and Clayton D Scott. Robust kernel density estimation. In JMLR, 2012.
[26] Berwin A Turlach. Bandwidth selection in kernel density estimation: A review. In CORE and Institut de Statistique, 1993.
[27] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. In arXiv, 2017.
[28] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Citeseer, 2009.
[29] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In ICCV, 2015.
[30] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In CVPR, 2019.
[31] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for multiple domains. In CVPR, 2020.
[32] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. In CORR, 2015.
[33] Qi Mao, Hsinying Lee, Hungyu Tseng, Siwei Ma, and Minghsuan Yang. Mode seeking generative adversarial networks for diverse image synthesis. In CVPR, 2019.
[34] Dingdong Yang, Seunghoon Hong, Yunseok Jang, Tianchen Zhao, and Honglak Lee. Diversity-sensitive conditional generative adversarial networks. In ICLR, 2019.
[35] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. In ICLR, 2017.
[36] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Arjovsky, and Aaron Courville. Adversarially learned inference. In ICLR, 2017.
[37] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles Sutton. Veegan: Reducing mode collapse in gans using implicit variational learning. In NeurIPS, 2017.
[38] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode regularized generative adversarial networks. In ICLR, 2017.
[39] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2014.
[40] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training gans. In NeurIPS, 2016.
[41] Eitan Richardson and Yair Weiss. On gans and gmms. In NeurIPS, 2018.
[42] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS, 2017.
[43] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018.
[44] Peilin Zhong, Yuchen Mo, Chang Xiao, Pengyu Chen, and Changxi Zheng. Rethinking generative mode coverage: A pointwise guaranteed approach. In NeurIPS, 2019.

[^0]: *Corresponding author

