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Abstract

Despite the significant progress that has been made in the training of Generative
Adversarial Networks (GANs), the mode collapse problem remains a major chal-
lenge in training GANs, which refers to a lack of diversity in generative samples. In
this paper, we propose a new type of generative diversity named uniform diversity,
which relates to a newly proposed type of mode collapse named u-mode collapse
where the generative samples distribute nonuniformly over the data manifold. From
a geometric perspective, we show that the uniform diversity is closely related with
the generator uniformity property, and the maximum uniform diversity is achieved
if the generator is uniform. To learn a uniform generator, we propose UniGAN, a
generative framework with a Normalizing Flow based generator and a simple yet
sample efficient generator uniformity regularization, which can be easily adapted
to any other generative framework. A new type of diversity metric named udiv is
also proposed to estimate the uniform diversity given a set of generative samples in
practice. Experimental results verify the effectiveness of our UniGAN in learning
a uniform generator and improving uniform diversity.

1 Introduction

Generative Adversarial Networks [1] (GANs) are a technique for unsupervised learning generative
models to capture an unknown data distribution. Given training samples, two modules, a generator
and a discriminator, contest with each other in form of a zero-sum game, where the generator aims to
produce realistic samples and the discriminator aims to distinguish generative samples from real data.
Though originally proposed as a generative model for unsupervised learning, GANs have also been
widely used in a variety of learning scenarios [2, 3, 4] due to not only their ability to learning highly
structured probability distributions but also their theoretical implications [1, 5, 6].

GANs training is notoriously difficult and is very sensitive to almost every aspect of its setup due to
the dynamic training paradigm [7, 8]. Despite significant progress [9, 10, 11, 12, 13, 14] have been
made in the training of GANs, the mode collapse [15] problem remains a major challenge in training
GANs, which refers to a lack of diversity in generative samples [15]. Existing methods reduce mode
collapse by modifying model architectures [3, 16, 15, 17, 18, 19, 20], proposing novel optimization
algorithms [21, 22, 23, 24, 25] and regularizations [26, 27, 28, 29], etc. Several works also provide
empirical explanations or formal analysis for mode collapse, including catastrophic forgetting [30] of
the discriminator, sample weighting [31], and binary hypothesis testing [15].

In this paper, we adopt the manifold hypothesis [32, 33] to formalize our analysis and develop our
framework named UniGAN for reducing mode collapse. The manifold hypothesis assumes that high
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dimensional data is concentrated on a lower dimensional manifold. First, this assumption provides us
prior knowledge about the unknown ground-truth data distribution p. Specifically, from the manifold
hypothesis, it is natural to adopt the uniform distribution over the data manifoldM where training
samples come from as the ground-truth data distribution p, since samples onM are equally accepted
as real samples for training GANs. Given that p is the uniform distribution overM, we propose the
uniform diversity of a generative distribution q with formalized definition that measures how close q
is to p by computing the differential entropy of q, considering that the uniform distribution gives the
minimum entropy. Recent work [34, 29] also deem that a diverse generator should yield a generative
distribution with lower entropy. To quantify the extent of mode collapse with respect to the uniform
diversity, we further propose the u-mode collapse, which is a new type of mode collapse compared to
the existing (ε, δ)-mode collapse [15]. We also present theoretical analysis showing that the u-mode
collapse is more generalized than the (ε, δ)-mode collapse and hence is more robust and efficient in
capturing mode collapse. Second, to maximize uniform diversity, based on the manifold hypothesis,
we derive the uniformity property of the generator, providing both formalized definition and intuitive
geometric interpretation. We also relate the generator uniformity to the uniform diversity, showing
that the maximum uniform diversity is achieved if the generator is sufficiently uniform.

To maximize uniform diversity, we propose a framework named UniGAN, which consists of a normal
discriminator, a Normalizing Flow [35, 36, 37] (NF) based generator, and a simple yet sample efficient
regularization for pursuing a uniform generator. NFs are generative models with specifically designed
architectures that are bijective and easy-to-invert. Hence we use an NF-based generator since these
favorable properties not only make the generator intrinsically satisfy the theoretical prerequisites for
maximizing uniform diversity, but also facilitate us to develop a generator uniformity regularization
in a sample efficient manner. Moreover, the regularization is simple and thus can be easily integrated
into any models, which makes our UniGAN easy to adapt to any generative frameworks. To realize
the computation of uniform diversity in practice, we also propose a new metric named udiv estimating
the uniform diversity of a given set of generative samples. Experimental results show that UniGAN is
effective on improving generator uniformity and uniform diversity. Our contributions are threefold:

• We propose a new type of generative diversity named uniform diversity and the associated
u-mode collapse that measures how close a generative distribution is to the data distribution
which we chose to be the uniform distribution over the data manifold based on the manifold
hypothesis. Theoretical analysis shows that u-mode collapse is a generalization of existing
(ε, δ)-mode collapse and is more robust and efficient in capturing mode collapse.

• We derive the generator uniformity property that is closely related to uniform diversity, and
provide analysis showing that the maximum uniform diversity is achieved if the generator is
sufficiently uniform. A geometric interpretation is also provided.

• We propose UniGAN, a generative framework with an NF-based generator and a simple yet
sample efficient regularization on generator uniformity, which can be easily adapted to any
other generative framework. We also propose a new diversity metric named udiv estimating
the uniform diversity of a given set of generative samples. Experimental results verify the
effectiveness of our UniGAN in improving generator uniformity and uniform diversity.

2 Related Work

Reducing Mode Collapse A variety of methods have been proposed to mitigate the mode collapse
problem in the training of GANs, including modified architectures [3, 4, 16, 38, 15], optimization
algorithms [21, 22, 23, 39], and loss functions [34, 40, 26, 27, 28]. Several methods aim to maintain
a bijection between the latent and data space by learning an encoder that projects data back into the
latent space [3, 4, 16, 41, 42, 38]. For example, BiGANs/ALI [3, 4] and VEEGANs [41, 42] propose
to learn an encoder implicitly by making the discriminator to distinguish not only in data space but
jointly in data and latent space, and BicycleGAN [16] explicitly encourages reconstruction of both
latent codes and training data by combining VAEGAN [41, 42] and LRGAN [16]. Several methods
make hypothesis of weak generators [17, 18, 19] and weak discriminators [43, 44, 22, 9, 15, 20] for
mode collapse problem. For example, MAD-GAN [17] employs multiple generators to enforce that
different generators capture diverse modes, and PacGAN [15] reduces mode collapse by modifying
the discriminator to make decisions based on multiple rather than single samples from the same class,
either real or artificially generated. PacGAN also provide analysis on mode collapse by proposing a
formal definition of mode collapse, namely (ε, δ)-mode collapse from the view of binary hypothesis

2



testing. Similarly, VirtualGAN [45] is proposed to merge multiple samples into one before training
the discriminator. Another line of research reduces mode collapse by proposing novel optimization
algorithms. Inspired by boosting algorithms, AdaGAN [21] is proposed as an iterative meta-algorithm
where many potentially weak generators are greedily aggregated to form a strong composite generator.
The unrolled GAN [22] aims to reduce mode collapse and stabilize training of GANs by defining the
generator’s objective with respect to an unrolled optimization of the discriminator. The progressive
growing of GAN [23] aims to grow both the generator and discriminator progressively: starting from
a low resolution, then add new layers that model increasingly fine details as training progresses. The
BourGAN [24] replaces Gaussian with a Gaussian mixture for the prior latent distribution, since the
authors assume that the incompatibility between the prior latent distribution and the mode structure is
a cause of the mode collapse problem, which is also supported by the analysis of [46] from the view
of optimal transport. There are also some works propose to reduce mode collapse by proposing novel
regularizations. For example, MSGAN [40, 26] maximizes the ratio of the distance between samples
with respect to the distance between the corresponding latent codes to reduce mode collapse.

Isometry Learning For ease of practical implementation of our regularization on generator unifor-
mity, we turn to a special case of uniform generators, namely isometric generators whose Jacobians
are orthonormal (up to a constant) [47, 48, 49] (see Section 3.3), which is related to isometry learning.
Several methods are proposed to learn isometric generators. Following the definition of an isometry,
namely J>J = I where J is the Jacobian of the generator and I is an identity matrix, the authors of
LGAN [50] propose to constrain v>i vj = δij where vi is the approximated i-th column vector of J
and δij is the Kronecker delta. In StyleGAN2 [51], a regularization on path lengths of the generator
is proposed to encourage that a fixed-size step in latent space results in a fixed-magnitude change in
the generative image, which implicitly encourages the generator to be an isometry. For the task of
manifold learning, an algorithm named Riemannian relaxation is proposed to construct an isometric
mapping in [47]. However, this algorithm does not deal with high-dimensional input such as images,
as mentioned by [49]. In RaDOGAGA [49], for an autoencoder, an isometric decoder is learned by
injecting random noise to the latent code before reconstructing the input data. There are also several
methods [52] learn isometric mappings aided by traditional dimensionality reduction algorithms [53].

3 Methodology

We firstly propose the formal definitions of uniform diversity and the associated u-mode collapse in
Section 3.1, then relates the uniform diversity with the generator uniformity property in Section 3.2,
which motivates us to develop the UniGAN framework for reducing mode collapse in Section 3.3.

3.1 The Uniform Diversity and u-Mode Collapse

Let PM be the set of all distributions over a finite domainM. The uniform diversity of a distribution
q ∈ PM measures how close q is to the uniform distribution overM, which is defined as

Definition 1 (Uniform diversity). The uniform diversity of q ∈ PM is given as Uq , eHq

mM
∈ [0, 1],

where mM is the measure ofM andHq is the differential entropy of q, namely

Hq , −
∫
supp(q′)

log q′ (x) dq (x) , (1)

where supp (q′) , {x ∈M|q′ (x) 6= 0} is the support of q′. ForHq = −∞, we define Uq , 0.

Note that given a distribution p ∈ PM, we use p′ to denote its Probability Density Function (PDF).
We employ differential entropyHq in Definition 1 since it measures the uniformity of distribution q.
Specifically, from information theory [54] we know thatHq could be −∞ which corresponds to the
case where q is extremely nonuniform (e.g., q′ is a Dirac delta function where all probability mass
is concentrated on a single point), and Hq is upper bounded by logmM sinceM is finite, where
Hq = logmM achieves only if q is the uniform distribution overM (see supplementary). The more
uniform the q, the higher theHq . The uniform diversity Uq is further defined to normalize the range
ofHq to [0, 1]. Based on uniform diversity, the u-mode collapse is formally defined as
Definition 2 (u-mode collapse). We say that q ∈ PM exhibits u-mode collapse for 0 6 u < 1 if its
uniform diversity Uq is equal to u.
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(a) Feasible regions of (u, ε) given different δ. (b) The Venn diagram.

Figure 1: In Fig. 1(a), we illustrate the feasible region of (u, ε) for δ ∈ {0.5, 0.8, 0.9, 0.99} respec-
tively. Given δ, the corresponding π (ε, δ) curve with respect to ε is plotted, and the corresponding
feasible region of (u, ε) is shown as the shaded region under the curve. We also select four pairs of
(ε, δ) with increasing δ and decreasing ε, and then plot points Puε,δ that gives the maximum u for the
corresponding (ε, δ) to see how u-mode collapse changes as (ε, δ)-mode collapse gets more severe.
We also select a point Quε,δ to show that (ε, δ)-mode collapse could be mild while u-mode collapse is
severe. Different δ is represented by different color. In Fig. 1(b), a Venn diagram is used to show the
relationship between (ε, δ)-mode collapse and u-mode collapse.

The proposed u-mode collapse measures how far a distribution q ∈ PM deviates from the uniform
distribution overM. Lower u indicates more severe mode collapse, and for Uq = 1, q is sufficiently
uniform and does not exhibit u-mode collapse.

Connection to (ε, δ)-mode collapse Recently, another formal definition of mode collapse named
(ε, δ)-mode collapse is proposed in [15], which leads to a two-dimensional representation of the mode
collapse region of the pair of the data distribution p and a generative distribution q. We discuss how it
relates to our proposed u-mode collapse. Recall that (ε, δ)-mode collapse is formally defined as

Definition 3 ((ε, δ)-mode collapse, [15]). Given data distribution p ∈ PM, a generative distribution
q ∈ PM exhibits (ε, δ)-mode collapse for 0 6 ε < δ < 1 if there exists S ⊂M such that p (S) > δ
and q (S) 6 ε.

Given that the data distribution p is chosen as the uniform distribution overM, we show that u-mode
collapse is more generalized than (ε, δ)-mode collapse, and is more robust and efficient in capturing
mode collapse. We first present the following Theorem 1 (see supplementary for proof):

Theorem 1. For q ∈ PM that exhibits (ε, δ)-mode collapse, 0 6 Uq 6 π (ε, δ), where π (ε, δ) ,(
δ
ε

)ε ( 1−δ
1−ε

)(1−ε)
∈ [0, 1). That is, a generative distribution that exhibits (ε, δ)-mode collapse at

least exhibits π (ε, δ)-mode collapse.

Theorem 1 fundamentally specifies the feasible region of three-dimensional representation (u, ε, δ),
which we illustrate in Fig. 1(a) using a two-dimensional diagram that shows the respective feasible
regions of (u, ε) for different δ. Based on Theorem 1, we then present the following corollaries:

Corollary 1. The following claims can be deduced from Theorem 1:

(i) Let u∗ (ε, δ) be the maximum uniform diversity that can be achieved for a generative
distribution that exhibits (ε, δ)-mode collapse. Then u∗ (ε′, δ′) < u∗ (ε, δ) holds for δ′ > δ
and ε′ < ε. Moreover, ∀ξ > 0, ∃µ, ν > 0, such that u∗ (ε, δ) < ξ if ε < µ and 1− δ < ν.

(ii) Let q ∈ PM be a generative distribution that exhibits u-mode collapse for any u ∈ [0, 1),
then for any δ ∈ (0, 1) and ξ > 0, q can exhibit (ε, δ)-mode collapse for δ − ε < ξ.
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(a) Both (ε, δ)- and u-mode collapse are severe. (b) Mild (ε, δ)- and severe u-mode collapse.

Figure 2: Illustrative distributions r, q over domain [0, 1]. For r and q, the corresponding PDFs r′
and q′ are plotted using colored solid lines, where the PDFs restricted to different sub-domains are
represented by different colors for each distribution. The PDF p′ of the uniform distribution p over
[0, 1] is plotted using black dashed line, where p′ ≡ 1. In Fig. 2(b), we use ∆0.995 (x) to denote the
Dirac delta function at 0.995. The mode collapse exhibited by each distribution are indicated.

See supplementary for proof. We provide intuitive explanations to aforementioned claims. In terms
of (ε, δ)-mode collapse, larger δ and smaller ε indicate more severe mode collapse [15], therefore, we
can learn from Claim (i) that as (ε, δ)-mode collapse becomes more severe, the maximum uniform
diversity that can be achieved decreases, i.e., u-mode collapse also becomes more severe. Moreover,
Claim (i) states that u-mode collapse can be sufficiently severe (i.e., u→ 0) as (ε, δ)-mode collapse
becomes sufficiently severe (i.e., ε→ 0, δ → 1). An illustrative example is given in Fig. 1(a), where
Puε,δ are points in feasible regions of (u, ε) given δ such that Puε,δ gives the maximum u that can be
achieved for the given (ε, δ). We can intuitively see that as δ increases and ε decreases, u decreases
for Puε,δ, and u can be sufficiently small as δ → 1 and ε→ 0. Meanwhile, Claim (ii) indicates that
distributions that exhibit severe u-mode collapse can exhibit mild (ε, δ)-mode collapse (i.e., ε ≈ δ),
as illustrated by the point Quε,δ shown in Fig. 1(a). Hence in summary, the u-mode collapse is severe
as long as the (ε, δ)-mode collapse is severe, however, the (ε, δ)-mode collapse could be mild while
the u-mode collapse is severe. The relationship between (ε, δ)-mode collapse and u-mode collapse
can be depicted using the Venn diagram as shown in Fig. 1(b). Specifically, while severe (ε, δ)-mode
collapse is covered by severe u-mode collapse, the (ε, δ)-mode collapse may not be able to identify
severe u-mode collapse effectively. Therefore, u-mode collapse can be regarded as a generalization
of (ε, δ)-mode collapse, and is more robust and effective in capturing mode collapse.

We also provide distributions r, q in Fig. 2 as illustrative examples of different mode collapses. Both
r and q are defined over domain [0, 1], i.e., r, q ∈ P[0,1]. We take r shown in Fig. 2(a) as an example
that exhibits severe (ε, δ)-mode collapse and severe u-mode collapse. By denoting S , [0.1, 1], we
can observe that r (S) = 0.01 meanwhile p (S) = 0.99, namely r exhibits (ε, δ)-mode collapse for
ε = 0.01 and δ = 0.99, which corresponds to a severe (ε, δ)-mode collapse since ε ≈ 0 and δ ≈ 1.
Regarding u-mode collapse, we can compute that u = 0.01, which corresponds to a severe u-mode
collapse since u ≈ 0. In Fig. 2(b), by denoting S , [0.99, 0.995) ∪ (0.995, 1], we can observe that
q (S) = 0 meanwhile p (S) = 0.01, hence q exhibits (ε, δ)-mode collapse for ε = 0 and δ = 0.01.
Regarding u-mode collapse, due to the infinity of Dirac delta function ∆0.995 (x) at x = 0.995, we
can compute that u = 0, since Hq = −∞. Therefore, q exhibits severe u-mode collapse but mild
(ε, δ)-mode collapse, since ε ≈ δ ≈ 0 and u = 0.

3.2 The Generator Uniformity Property

We now relate the uniform diversity to the property of the generator which we refer to as uniformity.
Let Z ⊂ RK be the latent space and g : Z → RD be the generator with K < D. From the manifold
hypothesis [32, 33], the image of g,M , g (Z) = {g (z) |z ∈ Z}, is assumed to be aK-dimensional
manifold residing in the ambient space RD, and g pushes forward the prior distribution pz ∈ PZ to a
generative distribution q ∈ PM that is denoted by q , g#pz . According to the definition of PDF, for
x = g (z) we have that

q′ (x) =
p′z (z) dVZ |z

dVM|x
, (2)
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Figure 3: Intuitive illustrations of the generator uniformity. We set up two generators g : Z →M
and g̃ : Z → M̃ with different uniformity, where both the latent space Z and the manifoldsM,M̃
are 2-dimensional. The coordinate lines of Z,M,M̃ are plotted, where the correspondence between
Z andM (resp., M̃) for g (resp., g̃) is indicated by the colors of coordinate lines.

where dVZ |z and dVM|x are the volume elements [55] of Z at z andM at x, respectively. Intuitively,
the probability density is the ratio of the probability mass p′z (z) dVZ |z to the volume dVM|x of the
region where that probability mass is concentrated. Assume that g is a local diffeomorphism [55], the
volume element dVM|x is given according to the Riemannian geometry [55] as

dVM|x =
√

detG (z)dVZ |z, (3)

where G (z) , J>g (z) Jg (z) ∈ RK×K is the matrix form of the Riemannian metric tensor [55], and
Jg (z) ∈ RD×K is the Jacobian of g at z. Therefore, by plugging Eq. (3) into Eq. (2), we arrive at

q′ (x) =
p′z (z)√

det J>g (z) Jg (z)
, x = g (z) , (4)

which is also known as the change of variables formula [36, 37, 35].

As aforementioned, the uniform diversity of a generative distribution q ∈ PM is maximized only if q
is the uniform distribution overM, which is equivalent to q′ being constant overM. For ease of
analysis, we assume that pz is the uniform distribution over Z , i.e., p′z is constant over Z . In such a
case, it is obvious that q′ is constant overM only if det J>g Jg is constant over Z . On this account,
we formalize the definition of the generator uniformity property as
Definition 4 (Generator uniformity). Given a generator g : Z →M that is a local diffeomorphism
between Z ⊂ RK andM⊂ RD with K < D, we say that g is uniform, if det J>g Jg is constant.

Obviously, the connection between the generator uniformity and a maximized uniform diversity can
be formalized as the following Theorem 2 (see supplementary for proof)
Theorem 2. Assume that the generator g : Z → M is a local diffeomorphism between Z ⊂ RK
andM⊂ RD with K < D, and the prior distribution pz ∈ PZ is the uniform distribution over Z .
The uniform diversity of the generative distribution q = g#pz is maximized, if g is uniform.

We provide intuitive illustrations for a better understanding of the generator uniformity property. In
Fig. 3, we set up two generators g, g̃ with different uniformity. The latent space Z is a 2-dimensional
Euclidean subspace, and we divide Z into even grid blocks by drawing coordinate lines along axes z1
and z2, respectively. The generator g (resp., g̃) pushes forward coordinate lines of Z to those ofM
(resp., M̃). Since the prior distribution pz ∈ PZ is the uniform distribution over Z and the area of
each grid block is equal, we know that each grid block of Z contains the same probability mass. So
each grid bock ofM (resp., M̃) also contains the same probability mass, since the coordinate lines
between Z andM (resp., M̃) correspond. For M̃, because the area of each grid block is equal, the
ratio of probability mass to the area, i.e., the probability density, for each grid block is equal too, i.e.,
the generative distribution is the uniform distribution over M̃. However, the probability density for
each grid blocks ofM is not equal, since the area of each grid block is not equal. Therefore, given
that each grid block contains the same probability mass, the equality of areas of grid blocks matters
regarding the uniformity of the generative distribution, and the “equality of areas of grid blocks” is
essentially an intuitive interpretation of the generator uniformity. We also explain how

√
det J>J
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relates to the area of a grid block. As shown in Fig. 3, for a grid block of M̃, if we consider ρ1 , ∂g̃
∂z1

and ρ2 , ∂g̃
∂z2

as two adjacent sides of that grid block, then the computation of

det
(
J>J

)
=

∣∣∣∣‖ρ1‖2 ρ1 · ρ2
ρ1 · ρ2 ‖ρ2‖2

∣∣∣∣ = (‖ρ1‖ ‖ρ2‖ sin θ)
2

= (Area (ρ1, ρ2))
2 (5)

implies that
√

det (J>J) actually gives the area of the parallelogram spanned by ρ1 and ρ2, namely
the area of the grid block, where θ is the angle between ρ1 and ρ2. Hence if det

(
J>J

)
is constant,

the area of each grid block is equal, and the generator is uniform since the “equality of areas of grid
blocks” is an intuitive interpretation of the generator uniformity, which coincides Definition 4.

3.3 The UniGAN Framework

We introduce our UniGAN framework for reducing mode collapse based on aforementioned analysis
from a manifold view. Our goal is to maximize the uniform diversity of the generative distribution,
which can be done by pursuing a uniform generator, as indicated by Theorem 2. However, to apply
Theorem 2, we have to satisfy its prerequisite, i.e., the generator g should be a local diffeomorphism.
Moreover, constraining det J>g Jg to be constant involves not only computing the Jacobian Jg, but
also computing the determinant, both of which are computationally expensive. Hence it is nontrivial
to implement the generator uniformity constraint in practice.

Regarding the above problems, we propose to employ an NF-based generative model. On one hand,
NFs are intrinsically bijections, therefore, the diffeomorphism prerequisite of the generator g can be
satisfied. On the other hand, NFs are specifically designed architectures with tractable determinant of
Jacobian [35, 36, 37], which may ease the practical implementation of the constraint. Unfortunately,
the above advantages of NFs are at the cost of maintaining a latent space of as high a dimensionality
as the data space, which leads to over-parameterized models and very slow training. To overcome
this problem, we propose to use an NF-based generator g : Z ⊂ RK → RD for arbitrary K < D
with a hierarchical architecture as follows

g = fL ◦ eL ◦ fL−1 ◦ eL−1 ◦ · · · ◦ f1 ◦ e1, (6)

where fi : RKi → RKi is a bijective and invertible NF module (e.g., coupling layers [36, 37, 56]) with
tractable determinant of Jacobian, ei : RKi−1 → RKi boosts the dimensionality of the input feature x
from Ki−1 to Ki by simply padding Ki −Ki−1 zeros at the end of x [57], and the dimensionalities
of hierarchical features satisfy K = K0 < K1 < · · · < KL = D. See supplementary for a detailed
introduction. However, a notable issue is that det J>g Jg is intractable despite tractable determinants
of Jacobian for fi. Hence for ease of implementation, we turn to pursuing a special case of uniform
generators where the K singular values of Jg, {σj}Kj=1, are equal and constant over Z , considering
the fact that det J>g Jg = σ2

1σ
2
2 · · ·σ2

K . This is further realized by constraining the minimum and the
maximum singular values of Jg to be equal and constant over Z . Therefore, the main concern is how
to obtain the minimum and the maximum singular values of Jg .

We propose the Linearized Transpose (LT) technique to estimate the spectral norm of the Jacobian of
a given network in a sample efficient manner. Due to space limitation, we use LTg (z) to denote the
estimated spectral norm of Jg at z ∈ Z , and the detailed introduction of our proposed LT is provided
in supplementary. Since the spectral norm is essentially the maximum singular value, we know that
LTg (z) is the maximum singular value of Jg at z. To obtain the minimum singular value of Jg, we
propose to utilize the invertible property of fi, which makes it tractable to obtain the pseudo inverse
of g, g† : RD → RK , defined as

g† = e†1 ◦ f
−1
1 ◦ · · · ◦ e†L−1 ◦ f

−1
L−1 ◦ e

†
L ◦ f

−1
L , (7)

where f−1i : RKi → RKi is the inverse of fi, and e†i : RKi → RKi−1 is the pseudo inverse of ei that
reduces the dimensionality of the input feature x from Ki to Ki−1 by simply dropping Ki −Ki−1
elements at the end of x. Given g, g†, we can prove that (see supplementary)
Proposition 1. ∀z ∈ Z , Jg† (g (z)) Jg (z) = I ∈ RK×K holds, where I is the identity matrix.

Given the above Prop. 1, by denoting σ∗ (J) (resp., σ∗ (J)) as the maximum (resp., the minimum)
singular value of a given matrix J , we intuitively illustrate that σ∗ (Jg (z)) = 1

σ∗(Jg† (g(z)))
by using
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Figure 4: Illustration of the relationship between σ∗ (Jg) and σ∗ (Jh), where we use h , g†. Given
that u∗ ∈ Tg(z)M gives the maximum singular value of Jh, we have σ∗ (Jg) = 1

σ∗(Jh)
.

Fig. 4. However, the illustration of Fig. 4 is only applicable in the case where the maximum singular
value of Jg† (g (z)) can be given by a vector u∗ ∈ Tg(z)M⊂ RD that is on the tangent space ofM
at g (z), see supplementary for illustration. To tackle this problem, we observe that by encouraging

1

σ∗(Jg† (g(z)))
= σ∗ (Jg (z)), the maximum singular value of Jg† (g (z)) can be given by a vector

u∗ ∈ Tg(z)M. To see this, assume that ũ∗ ∈ RD gives the maximum singular value of Jg† (g (z)),

we have that 1

σ∗(Jg†)
= ‖ũ∗‖
‖Jg† ũ∗‖

6
‖JgJg† ũ∗‖
‖Jg†JgJg† ũ∗‖

=
‖JgJg† ũ∗‖
‖Jg† ũ∗‖

6 σ∗ (Jg), where the first equality

holds if and only if u∗ , JgJg† ũ
∗ ∈ Tg(z)M⊂ RD gives the maximum singular value of Jg† . So in

the case of 1

σ∗(Jg† (g(z)))
= σ∗ (Jg (z)), we have σ∗ (Jg (z)) = 1

σ∗(Jg† (g(z)))
from Fig. 4, and hence

σ∗ (Jg (z)) = σ∗ (Jg (z)), namely the minimum and the maximum singular values of Jg are equal.
Therefore, by letting a be the moving average of the maximum and the minimum singular values of
Jg , the regularization for the generator uniformity implemented in practice is formalized as

Lgunif , Ez∼pz

{
(LTg (z)− a)

2
+

(
1

LTg† (g (z))
− a
)2
}
, (8)

which is a simple yet sample efficient regularization due to the superior sample efficiency of LT (see
supplementary). We then combine the above NF-based generator and a normal discriminator into a
generative framework augmented using our generator uniformity regularization Lgunif , obtaining our
UniGAN whose objective function is as follows,

Lunigan = Lgan + λgunifLgunif , (9)

where Lgan is the original objective of GANs, and λgunif is the balancing hyper-parameter. Eq. (9)
also implies that Lgunif can be easily integrated into any models by appending Lgunif to the original
objective function, and our UniGAN can be adapted to any other generative framework by replacing
Lgan with the corresponding objective function.

4 Experiments

We show through experimental results that our proposed UniGAN framework is effective in learning
a uniform generator and improving uniform diversity of the generative distribution. To demonstrate
the adaptability of our UniGAN framework, we adapt UniGAN for a variety of existing models that
reduce mode collapse, including GAN [1], BiGAN [3]/ALI [4], MSGAN [40, 26], VEEGAN [38],
PacGAN [15], MDGAN [34] and RegGAN [34]. We also show that these models are inferior to ours
regarding uniform diversity. For intuitive demonstration, we firstly provide results on a toy synthetic
data manifold, then provide results on simple datasets including MNIST [58], FashionMNIST [59]
and their colored version [22], and CIFAR10 [60]. We also provide results on natural image datasets
including CelebA [61], FFHQ [62], AFHQ [63] and LSUN [64]. To implement the computation of
uniform diversity of a given set of generative samples in practice, we also propose a diversity metric
named udiv. Due to space limitation, the implementation details about our proposed udiv metric and
experiments can be found in supplementary.

8



(a) Msec. (b) Manifolds generated by different models.

Figure 5: For real samplesMsec in Fig. 5(a), we visualize training data in the top image, and show
the three major modes using heatmap as in the bottom image. We visualize manifolds generated by
different models in Fig. 5(b), where the top row visualizes results of baseline models, and the bottom
row visualizes results of UniGAN adapted to the corresponding baseline models.

Figure 6: Visualization of probability densities (top row) and log detJ>J (bottom row) of samples
generated by baseline methods. The probability densities are estimated by the method we introduced
in the udiv metric, see supplementary. Magnitudes of values are reflected by using heatmap.

We provide results in this section on synthetic datasets for the sake of intuitive understanding, while
leaving more results on other datasets in supplementary due to space limitation. We use a 2D synthetic
dataset sector which samples points from a sector data manifold

{
(x, y) |1 6

√
x2 + y2 6 2

}
in the

first quadrant. We set up three major modes to simulate unbalanced distribution of modes in real data.
Specifically, we use µr = 1.2, σr = 0.1 to obtain R1 ,

{
r(i) ∼ N (µr, σr) |r(i) ∈ [1, 2]

}N
i=1

, and

use µθ = π/4, σθ = π/2 to obtain Θ1 ,
{
θ(i) ∼ N (µθ, σθ) |θ(i) ∈ [0, π/2]

}N
i=1

, and then perform

polar transform, obtainingM1 ,
{(
x(i), y(i)

)}N
i=1

with x(i) = r(i) cos θ(i) and y(i) = r(i) sin θ(i)

as the first mode. Similarly, we use µr = 1.8, σr = 0.1 and µθ = 3π/20, σθ = π/20 to obtain the
second modeM2, and use µr = 1.8, σr = 0.1 and µθ = 7π/20, σθ = π/20 to obtain the third mode
M3. Finally, we obtainMsec , ∪3i=1Mi. See Fig. 5(a).

We train baseline models and the corresponding UniGAN adaptations on the proposed 2D synthetic
manifold sector. The manifolds generated by different models are intuitively visualized in Fig. 5(b).
From Fig. 5(b), we learn that for almost every baseline model, their generative samples lack uniform
diversity because we can intuitively observe that they distribute nonuniformly. Meanwhile, samples
generated by our UniGAN consistently distribute uniformly, hence our UniGAN outperforms baseline
models in terms of uniform diversity, and can better interpolate between training samples on the data
manifold compared to baseline models. We also provide quantitative comparison between baselines
and our UniGAN in terms of udiv and generator uniformity as shown in Tbl. 1. We see that compared
to baseline models, our UniGAN achieves a much higher udiv score and maintains lower variance of
log detJ>J , therefore, our UniGAN consistently outperforms baseline models in terms of generator
uniformity and uniform diversity of generative samples.
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Table 1: Quantitative comparison between different models on the uniform diversity and generator
uniformity for theMsec manifold. The uniform diversity and generator uniformity is measured by
the udiv score and the gunif score, respectively, where ↑ (resp., ↓) indicates that larger (resp., lower)
values are better. The gunif metric is gives as the Coefficient of Variation (CV) of log detJ>J over
latent space, which is a standardized measure of dispersion of a distribution. For each metric, the first
row and the second row give the results of baseline models and UniGAN adapted to the corresponding
baselines, respectively, and we also provide the p-value of significant test between results of baselines
and the corresponding UniGAN to avoid randomness in the third row. For each baseline model, the
better value among the baseline result and the corresponding UniGAN result is shown in bold.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

udiv ↑
0.46 0.82 0.52 0.75 0.50 0.80 0.78
0.91 0.93 0.93 0.91 0.90 0.93 0.93

2.07e−5 1.42e−10 8.62e−4 3.59e−3 6.43e−3 1.26e−4 2.90e−6

gunif ↓
0.25 0.20 0.25 0.22 0.26 0.20 0.21
0.01 0.02 0.02 0.02 0.01 0.01 0.02

1.65e−9 7.69e−13 4.02e−9 1.61e−7 6.91e−9 8.37e−9 6.46e−9

Table 2: Correlations between probability densities and the corresponding log detJ>J values for
each baseline model. The first and second rows represent the mean and the 90% confidence interval
of correlations over 10 runs with random initialization, respectively.

Metric MSGAN VEEGAN MDGAN RegGAN GAN BiGAN PacGAN

corr −0.80 −0.85 −0.81 −0.82 −0.82 −0.85 −0.83

±0.08 ±0.02 ±0.10 ±0.05 ±0.09 ±0.10 ±0.15

We further experimentally demonstrate that the uniform diversity is closely related with the generator
uniformity, which justifies our theoretical analysis in Sec. 3.2. Specifically, in Fig. 6, we visualize the
correspondences between the values of log detJ>J and the probability densities on the generated
manifold for different models trained on the 2D synthetic dataset sector. From Fig. 6, we learn that the
probability densities of generated samples and the corresponding values of log detJ>J are inversely
correlated, i.e., the higher the probability density, the lower the values of log det J>J . Quantitative
results provided in Tbl. 2 show that the correlation coefficients corr between the probability densities
and the values of log detJ>J are lower than −0.8 across all baselines, which indicates that they are
strongly negatively correlated and coincides with the intuitive illustration of the generator uniformity
in Fig. 3 and the analysis on the relationship between the generator uniformity and uniform diversity.

5 Conclusion

In this paper, we propose the uniform diversity, which is associated with a new type of mode collapse
named u-mode collapse where generative samples distribute nonuniformly over the data manifold,
and is closely related with the generator uniformity property. To maximize the uniform diversity, we
propose a simple yet effective generative framework named UniGAN with an NF-based generator
and a sample efficient regularization on the generator uniformity, which can be adapted to any other
framework. A new type of diversity metric named udiv is also proposed to estimate uniform diversity
in practice. Experimental results verify the effectiveness of our UniGAN framework.
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