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Abstract

Differential equations play important roles in modeling complex physical systems.
Recent advances present interesting research directions by combining differential
equations with neural networks. By including noise, stochastic differential equa-
tions (SDEs) allows us to model data with uncertainty and measure imprecision.
There are many variants of noises known to exist in many real-world data. For
example, previously white noises are idealized and induced by Brownian motions.
Nevertheless, there is a lack of machine learning models that can handle such
noises. In this paper, we introduce a generalized fractional white noise to existing
models and propose an efficient approximation of noise sample paths based on
classical integration methods and sparse Gaussian processes. Our experimental
results demonstrate that the proposed model can capture noise characteristics such
as continuity from various time series data, therefore improving model fittings over
existing models. We examine how we can apply our approach to score-based gen-
erative models, showing that there exists a case of our generalized noise resulting
in a better image generation measure.

1 Introduction

Differential equations center around modeling relations between functions and their rate of change,
playing important roles in many dynamical systems in physics, biology and finance. Incorporating
such a tool in machine learning not only helps us understand more about machine learning models [42,
66, 44], but also expands the range of applications [31, 12]. Recent work on neural ordinary
differential equations (neural ODEs) opens a new direction of connecting differential equations and
neural networks [11]. Extensions to stochastic differential equations (SDEs) is proposed for handling
noise in data or model uncertainty [83, 84, 54, 46].
Noises in data are often encountered in many real-world cases, and can directly affect model perfor-
mance. The importance of understanding the characteristics of noise in data has been emphasized
in a number of studies including: heteroscedastic noise modeling in time series analysis [82, 57],
volatility modeling in financial research and market simulation [40, 14]; the significance of colored
noise in neuroscience [20, 7, 4]. Rather than using traditional Brownian noises [5] in neural SDEs,
providing a capacity to model more generalized type of noises not only allows this framework to
extend to such applications but also retains the expressiveness from the representation powers of
neural networks. By learning noises together with the drift functions and diffusion functions of
SDEs, the models become more flexible as the drift functions and diffusion functions, in turn, will be
adjusted according to the learned noises. Although mathematical research on analyzing general white
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noise is well-developed [38, 33], it is still challenging to implement practically for machine learning
models like [54, 46].
In this paper, we introduce a novel class of white noises defined under a stochastic integral
form [38, 33] to existing neural SDE models [83, 84, 54, 46] which only consider noises generated
by Wiener process. The most prominent examples of such stochastic processes include fractional
Brownian motions (fBm) and multifractional Brownian motions (mBm) which are generalizations
of Brownian motions or Wiener processes. The importance of such processes is emphasized in
many applications from financial modeling [13, 28], to motion tracking in physical and biophysical
systems [29, 35, 41, 17]. Existing techniques on sampling these stochastic processes [18, 65]
prohibit models to scale up as they require to keep track of sample paths during SDE solves [54]. To
overcome this, we propose an approximation under numerical SDE solvers considering increments at
a time. That is, we first establish a discretized version of stochastic integrals to formulate distribution
over noise increments. The key approach is that we borrow the idea in sparse Gaussian process
literature [74, 37] to decouple the dependency between increments. Therefore, we can reparameterize
the increments to obtain an equivalent SDE which is easy to solve. To show the convergence of our
approximations to SDE solutions, we study the approximated covariance functions of underlying
stochastic processes to establish error bounds using rough path theory [56, 26] and existing sparse
Gaussian process bounds [8].

The contributions of this paper are threefold. First, we introduce a new type of neural SDEs with
general white noise. Second, we propose an approximation of that white noise, which is inspired
by approximation methods in Gaussian process research to obtain equivalent neural SDEs. Finally,
we demonstrate empirically that our approach can capture noise characteristics and provide insight
of how white noise affect learning score-based generative models as well as observe a setting that
improves baseline models.

2 Related work

Differential equations and neural networks [11] presents neural ODEs using numerical method
in solving differential equations to learn parameters in neural networks. There are a number of
follow-up works aiming to improvements in different aspects including numerical solver and/or
training process [45, 43, 24, 90, 61], implicit termination [10], theoretical understanding [22, 60],
and extensions to graph neural networks [9]. Moreover, it has seen some applications in normalizing
flows [89, 31, 39] as well as in control [21, 59]. Modeling time series data is one of successful
practices of such models [12, 91]. Not close but related, work by [77] demonstrates excellent results
on image generation tasks. Like SDEs are a stochastic extension of differential equations, neural
SDEs are natural extensions of neural ODEs when incorporating uncertainty into models. However,
the formulation is not always straightforward. [83, 84] established theoretical aspects emphasizing
high expressiveness of a class of neural SDEs while [54, 46] present how to train neural SDEs
efficiently. Many advanced tools in stochastic analysis like rough paths [56] are incorporated into
differential equations, and therefore empowered machine learning models [49, 48, 64, 63].

SDEs and Gaussian process There are equivalences and connections between Gaussian processes
and linear time-invariant SDEs that [80] discusses to a large extent. [73] presents a faster learning
Gaussian process using filtering and smoothing methods [79]. Models of this research direction
often focus on spatial-temporal data and establish state-of-the-art results. [36, 88] learn differential
equations with Gaussian processes instead of neural networks. [19] considers a similar noise to ours
as filtered white noises, finding an analytic form of corresponding kernels in the same manner as [73].
Unlike our approach focusing on a generic procedure, this work studies a specific class of kernels.
Gaussian processes can be a tool to model posteriors over paths [1] or to match with densities from
Fokker-Planck-Kolmogorov equations [75]. [55] devises a variational inference to approximate
posterior inspired by work in sparse GP latent variables.

3 Background

3.1 White Noise

Brownian motion has a long history dated back from the observation of pollen in water in [5], then
was studied formally by Einstein [23]. In this paper, we focus on a generalization of Brownian
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dXt = µ(t,Xt)dt+ σ(t,Xt)dBt

Given inducing points

parameterized by
ν(t), ς(t),∆Wt

dXt = [µ(t,Xt) + σ(t,Xt)ν(t)]dt+ σ(t,Xt)ς(t)dWt

approximated by

Figure 1: Illustration of sample paths of Bt in neural SDEs. Left: Neural SDE with Bt =∫ t

0
f(s, t)dWs. Any increments of Bt are correlated. Right: Our approximation when a set of

inducing points for increments is given, the increments now are pairwise independent and are rewrit-
ten as a mean part ν(t), a variance part ς(t) and an increment of a new Wiener process, ∆Wt. Finally,
our approach solves an alternative SDE.

motions under Riemann-Liouville fractional integral defined by:

Bt =
1

Γ(h(t) + 1/2)

∫ t

0

(t− s)h(t)−
1/2dWs, (1)

where h(t) : R → (0, 1) is the Hurst exponent, Ws is a Brownian motion and Γ(·) is the Gamma
function. When h(t) is a constant H , this stochastic process resembles a fractional Brownian
motion (fBm). However, as noted in [58], it places a great emphasis on the origin (t = 0) and no
longer possesses power-law spectral density like in fBm. As we are interested in the case that h(t) is
a function of t, we emphasize more on the local variation of Hurst exponent than such properties. Our
formulation in (1) can be understood as a variant of multifractional Brownian motions (mBm) [69].
One of the goals in this paper is to learn h(t; θ) using a function approximator, for example, a neural
network with parameter θ.

Interpretation of Hurst exponent The stochastic process in (1) asymptotically shares some
properties with fBm and mBm [65] including long-range dependencies and self-similarity. We refer
our further analysis related to (1) as fBm or mBm. Here, long-range dependencies are defined for a
stochastic process if the sum of autocovariance function is unbounded (see Appendix A.4). Time
series analysis has a similar notion for fractional ARIMA models [78]. Deep learning approaches
also try to incorporate such long-range dependency to their models [32].
With the Hurst exponent h(t), Bt exhibits a long-range dependence when h(t) > 1/2. As h(t) = 1/2,
the stochastic process falls back to a Brownian motion which no longer has long-range dependency.
When h(t) < 1/2, the stochastic process is “rough”, anti-persistent, having irregularity. This
parameter also expresses Hölder continuity of stochastic processes [26]. If h(t) changes over time,
this means all of such characteristics happen locally.
Brownian motion, Bt, or Wiener process has a rich history in modeling physical system [67]. Black-
Scholes models [40], long-standing models in studying financial markets are based on Brownian
motions. However, recent work shows fBm is more suitable due to the irregularity of volatility [14].
Correlated noise [7] also can be found in fMRI data. Applications of fractional Brownian motions
can be found in [87] [15].

3.2 Background of Neural SDEs

Consider a dynamical system {Xt} whose dynamic evolution is governed by the following stochastic
differential equation

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (2)
where µ : [0, T ]×Rn → Rn is the drift and σ : [0, T ]×Rn → Rn×m is the diffusion. Both of those
functions are assumed to be well-behaved (i.e., smooth and linear growth) and are parameterized by
neural networks. Readers can refer to [80] for a gentle introduction of SDE in machine learning or
to [72] for advanced materials. [83, 84, 54, 46] are excellent starting points to be familiar with neural
SDEs.
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Back-propagation using optimize-then-discretize strategy This strategy is adopted in neural
ODEs, allowing to perform back-propagation in time [11]. Suppose we are interested in optimizing a
loss function L at the terminal state XT . This approach considers a variable ∂L/∂Xt. The dynamic
of this variable can be modeled by a differential equation leading to computing gradient by using
chain rules.

In neural SDEs, such a strategy requires a more careful treatment as [54] addresses the randomness in
∂L/∂Xt. Also, forward and backward SDEs need to share the same sample paths of Wiener process.

Model learning There are two main parameter estimation methods for Neural SDEs. The first
one is latent SDE [54] that follows a variational approach approximating posterior distributions by
a neural SDE which shares the same diffusion with priors. In this framework, the evidence lower
bounds are derived by applying the Girsanov theorem. Recently, [47] proposes SDE-GAN inspired
by generative neural networks [30]. In this paper, we mainly use the former in our experiments.
However, it is worth noting that there is no restriction to training with SDE-GAN as long as chosen
models satisfy our assumption.

3.3 Sparse Gaussian processes

We also give a brief introduction of sparse Gaussian processes which are known as scalable methods
for Gaussian processes. A Gaussian process (GP) [71] is defined by a set of random variables, any
finite number of which have a joint Gaussian distribution. Formally, a GP is completely specified by a
mean function m(·) which usually is set to be zero for prior and covariance function k(·, ·). We then
can denote a GP by f(x) ∼ GP(0, k(x, x′)). Learning or sampling from a Gaussian process usually
takes O(N3) with the number of data points N . Sparse Gaussian process methods [74, 37] introduce
a set of pseudo points (inducing points) u at locations Z which jointly follow a Gaussian distribution
with data points. The density function of f(x), p(f(x)) is then approximated by p(f(x)|u)p(u).
Here the mean and the variance of p(f(x)|u) can be computed as

m(x;u, Z) = α(x)⊤u, v2(x;Z) = k(x, x)− α(x)⊤k(Z,Z)α(x), (3)
where α(x) = k(Z,Z)−1k(Z, x). There is a growing interest in this approach because of its
scalability compared to traditional GPs [6, 3, 86, 37]. In this paper, we focus on the sampling
procedure where we first sample u ∼ N (0, k(Z,Z)), then sample f(x) ∼ p(f(x)|u).

4 Learning White Noises in Neural SDEs

This section presents our main model. We first approximate stochastic integrals using Stieltjes
approximations and then use sparse Gaussian processes to leverage dependencies between random
variables. We analyze the convergence to SDEs solutions for this approximation. Finally, we form an
equivalent SDE to our model (see Figure 1).

4.1 Neural SDEs with Bt

Consider a stochastic differential equation
dXt = µ(t,Xt)dt+ σ(t,Xt)dBt, t ∈ [0, T ], (4)

with µ : [0, T ] × Rn → Rn and σ : [0, T ] × Rn → Rn×m. Compared to (2), the noise coming
from Bt is an m-dimensional stochastic process, Bt =

∫ t

0
f(t, s)dWs from (1) as we denote

f(t, s) = 1
Γ(h(t)+1/2) (t− s)h(t)−1/2.

We are interested in learning both the parameters of µ(t,Xt), σ(t,Xt) and that of f(t, s). Solving
SDEs in (4) is challenging since Bt is constructed from an integral. Direct sampling methods of
Bt (i.e., require computing Cholesky decomposition) are costly. Other approaches [65] use an
approximation of stochastic integral as a linear combination of random variables. However, the
number of these random variables prevents optimize-then-discretize methods to scale.
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4.2 Integral approximation
We use Stieltjes integration to approximate the integral in (1) by discretizing the interval [0, T ] with
0 = s1 < s2 < · · · < sN = T , i.e.,

Bt =

∫ t

0

f(t, s)dWs =

∫ T

0

1{s ∈ [0, t]}f(t, s)dWs ≈
N−1∑
i=1

1{si ∈ [0, t]}f(t, si)(Wsi+1
−Wsi)

=

N−1∑
i=1

1{si ∈ [0, t]}f(t, si)
√
∆si︸ ︷︷ ︸

gi(t)

ξi =

N−1∑
i=1

gi(t)ξi, (5)

where ξi are independently distributed standard normal random variables coming from Wsi+1
−Wsi ∼

N (0,∆si) with ∆si = si+1 − si, and 1{s ∈ [0, t]} is the indicator function. Note that this is a
reasonable approximation because Itô’s integrals, in general, converge in L2 when N goes to infinity.
Moreover, even if Wt has infinite variation, the probability of a sample path leading to the divergence
of approximation infinitely often is zero [72]. The discretization is also inevitable whenever it is
required to sample Bt.
In several numerical approaches, for example, Euler-Maruyama [51], solving stochastic differential
equations involves approximating increments, dBt, by

∆Bt := Bt+∆t −Bt ≈
N−1∑
i=1

(gi(t+∆t)− gi(t))ξi =

N−1∑
i=1

∆gi(t)ξi, (6)

where ∆gi(t) = gi(t+∆t)− gi(t). Comparing to increments ∆Wt when solving (2), simulating
∆Wt is relatively simple as they are independent between each time step. On the other hand, there
exist dependencies between ∆Bt as

E[∆Bt∆Bt′ ]≈
N−1∑
i=1

N−1∑
j=1

gi(t)gj(t
′)E[ξiξj ] =

N−1∑
i=1

gi(t)gi(t
′) ̸= 0. (7)

Here, ξi, ξj ∼ N (0, 1), and E[ξiξj ] = 0 when i ̸= j. Our aim is to represent (6) in a way that is
simple to sample from but preserves the dependencies between ∆Bt.

4.3 Sampling increments with sparse Gaussian process
From the observation in (7), we devise a sampling method inspired by sparse Gaussian processes. In
particular, we consider a Gaussian process1 B′

t =
∆Bt

∆t for a fixed ∆t. In fact, ∆t is later used as
the time step of SDE solvers. Note that directly modeling ∆Bt in (6) is numerically unstable when
computing (7) with covariance matrices having small values.
Indeed, B′

t is a Gaussian process because at a given time t, B′
t is Gaussian with a zero mean. To

compute the covariance function k(t, s), we simply compute k(t, s) = E[B′
tB

′
s] − E[B′

t]E[B′
s] =

E[B′
tB

′
s] and follow the same step with (7)

k(t, s) = E[B′
tB

′
s] =

1

(∆t)2

N−1∑
i=1

gi(t)gi(s). (8)

To this end, we denote B′
t ∼ GP(0, k(t, s)). Sampling from a Gaussian process based on a full

covariance matrix is not scalable. To overcome this difficulty, we propose a sampling scheme based
on sparse-inducing GP [74]. The main idea of this method is to introduce a bottleneck as a summation
of the joint distribution of B′

t.
Define inducing-point locations as Z = {z1, . . . , zM} which spread across [0, T ]. The number of
inducing points, M , is much smaller than the number of discretization mesh of numerical solvers.
The inducing points u = (B′

z1 , . . . , B
′
zM ) are distributed as a multivariate Gaussian distribution, i.e.,

u ∼ N (0, k(Z,Z)). Following the description of sparse GPs in §3.3, p(B′
t) is approximated by

p(B′
t|u)p(u).

The sampling procedure of B′
t consists of two steps:

Step 1 : u = LZε, ε ∼ N (0, IM ), (9)

Step 2 : B′
t = m(t;u, Z) + v(t;Z)ξt, ξt ∼ N (0, 1). (10)

Here LZ is the Cholesky decomposition of k(Z,Z), IM is an M ×M identity matrix. m(·) and v(·)
are the conditional mean and variance taken from (3).

1This can be viewed as the “derivative” of Bt w.r.t. time. However, Bt is known as non-differentiable.
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The above is a complete sampling procedure for p(B′
t|u)p(u). Note that in our approximation, B′

t is
independent conditioned on that u are given. Therefore, we obtain the increment ∆Bt as

∆Bt = B′
t∆t = m(t;u)∆t+ v(t;u)∆tξt = m(t;u, Z)∆t+ v(t;Z)

√
∆t∆Wt. (11)

Here, we replace
√
∆tξt with increments of a (new) Brownian motion Wt since ξt are independent

for t ∈ [0, T ].

Remark One may consider an alternative approach where we use sparse approximation directly for
Bt with given kernel function k(t, s) ∝ |t|2ht,s + |s|ht,s − |t− s|2ht,s (see (16)), and can obtain a
similar form of increments. However, this kernel function is not differentiable w.r.t the parameters
of Hurst function. Our approach is to devise a “so-called” differentiation of Bt under discretization.
Note that this notion differs from the definition of the derivative of Bt in [52] in the sense of Schwartz
space. However, such a representation is not useful for a practical implementation.
Our approach shares a similarity with [49] on controlled differential equations driven by a signal, i.e.,
Xt. The signal Xt is approximated by linear interpolations which allows to compute the derivative
of Xt. We intentionally model the “derivative” of Bt by B′

t first, and then reconstruct the signal Bt

from B′
t.

4.4 Forming equivalent SDEs
To this end, we show that the increments ∆Bt can be represented with increments of a Wiener process,
∆Wt in (11). Here, the equivalence is under the assumption that the numerical procedure involves
only ∆Bt, i.e., Euler-Maruyama methods. Therefore, the original SDE in (4) is approximated by

dXt = (µ(t,Xt) + σ(t,Xt)ν(t;u, Z))dt+ σ(t,Xt)ς(t;Z)dWt, u ∼ N (0, k(Z,Z)). (12)
This is obtained by conversions, dt ≈ ∆t and dWt ≈ ∆Wt as we expand the diffusion term

σ(t,Xt)∆Bt = σ(t,Xt)(m(t;u, Z)∆t+ v(t;Z)
√
∆t∆Wt)

= σ(t,Xt)ν(t;u, Z)∆t+ σ(t,Xt)ς(t;Z)∆Wt

≈ σ(t,Xt)ν(t;u, Z)dt+ σ(t,Xt)ς(t;Z)dWt.

where ν(t;u, Z) = m(t;u, Z), and ς(t;Z) = v(t;Z)
√
∆t. The function ς(t;Z) induced from the

approximation of B′
t is now absorbed into the diffusion function while ν(t;u, Z) together with the

diffusion function now is added to the drift function. Note that ν(t;u, Z) and ς(t;Z) is conditioned
on the inducing point u. Therefore, at the initial time t = 0, we need to precompute u first.
Although (12) and (4) seem similar in terms of the expressiveness of drift functions and diffusion
functions, the drift function of (12) contains a randomness stemming from the sampling u in (9)
while that of (4) is deterministic. This can be understood that the dependency between ∆Bt is
translated into the drift functions. We can elucidate the difference via Algorithm 1 and Algorithm 2
in Appendix.
Note that ν(t;u, Z) and ς(t;Z) are associated with two types of discretizations: that of approximating
Stieltjes integral and that of SDE numerical solver.
One of the key advantages of this new SDE is that it can inherit all theory and practices of well-
established study of stochastic analysis for Brownian motion or Wiener process.The preliminary
results of Girsanov’s theorem, i.e. [34] cannot used in latent SDE [54]. Itô’s rules for fBm and mBm
can be found in [52] but hard to use in practice. On the other hand, our approach can work for any Bt

defined in (1).
Another benefit of our formulation is that the sampling procedure is simple, requiring only one ξt
at a time and avoids a multiplication of O(N) memory like [65]. This becomes significant as the
optimize-then-discretize method requires constructing the same sample paths of Bt in forward SDEs
and backward SDEs.

Computational analysis The evaluation of diffusion functions in (12) requires computing an aggre-
gate sum over discretization that scales linearly with the number of discretization points. It may cause
some overhead when computing Itô correction term during solving backward SDE [54]. Therefore,
Stratonovich SDEs are more efficient than Itô SDEs. One limitation of integral approximation is that
for a long interval [0, T ], one may need more discretized partitions to achieve desired approximation
accuracy.
On the computational cost of sparse GPs, we only need to perform the Cholesky decomposition at
the initial time of every SDE integration. This takes O(M3) with M the number of inducing points.
At a time t during solving SDEs, with the pre-computed LZ , sampling B′

t has O(N +M2) time
complexity as we perform matrix multiplications in (3).
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Limitation Currently, our model only considers fixed step sizes in SDE numerical solvers. Most
theoretical studies in stochastic analysis work for H > 1/4 (H > 1/3 in this study) to make sense of
stochastic integrals or SDE solutions [70]. The Euler-Maruyama update in our approach may not be
sufficiently good when the Hurst exponent is less than 1/2 as it is pointed out in [16]. Higher-order
solvers can be more accurate, requiring handing double integrals, i.e.,

∫ ∫
dBtdBs which we wish to

address in future work. Although this paper presents an initial theoretical justification of convergence
to solutions, the precise order of convergence is not clear yet. Therefore, for practical use, we
recommend avoiding using Hurst exponents with small values in our method.

4.5 Convergence analysis
The error of our approximation is composed of three main factors. The first is of SDE solvers.
Due to the assumption of fixed step sizes, only a few solvers, i.e., Euler-Maruyama, are applicable
with 1/2 strong convergence. Secondly, the discretization in Stieltjes approximations attributing
to the total error leads to the convergence in L2. The convergence of such approximations are
known. The approximation of noise from sparse GPs is unconventional in solving SDEs because
the approximation is in distributional sense rather than point-wise or path-wise. We will show the
convergence using rough path theory [56, 26] and sparse GPs bound from [8] for constant Hurst
H ∈ (1/3, 1/2).
We follow the notation in [39, 56, 26]. Let us denote the canonical lift of B as B = (B,B). Let
B̂ be the path corresponding to the sampling procedure in (9) and (10). Let X be the solution of
dXt = f(t,Xt)dBt and X̂ be the solution of dX̂ = f(t, X̂t)dB̂ where f : [0, T ] × Rn → Rn

is a bounded function that is four-times continuously differentiable. We assume that the initial
state follows a distribution p0 which is is continuous and strictly positive in Rn. Let us denote the
probability density distribution of the solution X at time t by pt(x); and that of the approximated
solution X̂ by p̂t(x).
Theorem 1 (Convergence of solutions given sparse GP approximation). With the Hurst exponent
of B, H ∈ (1/3, 1/2), assume that E[(B̂t − B̂t+τ )

2] ≤ L|τ |1/ϱ for any t ∈ [0, T ], and ϱ ∈ (1/2H, 3/2].
Then, for every α ∈ (1/3, 1/2ϱ), there exists a constant C such that

KL(p̂t∥pt) ≤ C sup
t∈[0,T ]

KL(B̂t∥Bt)
θ. (13)

Here, θ ∈ (0, 1/2 − ϱα) and KL(·∥·) is the Kullback-Leibler divergence.

This theorem says that if the distribution of B̂ converges to that of B in terms of the KL divergence,
their corresponding solutions converge in the same sense. Note that we make an assumption that
E[(B̂t − B̂t+τ )

2] ≤ L|τ |1/ϱ, ϱ > 1/2H which means that B̂ is less “rough” than B. This is a
reasonable assumption since B̂ suffers information loss from sparse GP approximations.
Our proof is done by (1) assessing the p-variation of B̂ to bound the distance in rough path space
between the canonical lifts of B and B̂ via [26, Corollary 10.6]; and (2) using the local Lipschitz
property of Itô-Lyons maps [26, Theorem 8.5] as we follow the technique in [39]. The complete
proof is provided in Appendix B along with necessary backgrounds and discussion.
According to [8], we can quantify the convergence of B̂ to B as its KL divergence can be bounded,
KL(B̂∥B) ≤ C

∑∞
i=M+1 λi. Here λi are eigenvalues in eigenvalue-eigenfunction pairs (λi, ϕi(·))

of Mercer’s theorem [62], k(x, x′) =
∑∞

i=1 λiϕi(x)ϕi(x
′). Recall M is the number of inducing

points. Therefore, the convergence of KL(B̂∥B) depends on the decaying rate of eigenvalues and
the number of inducing points. We empirically show the fast decaying rate of eigenvalues for finite
samples which also can be found in Appendix B.

4.6 Parameterizing white noise
The previous section concerns how to learn white noises in neural SDEs without providing concrete
forms of white noise. This section will show how it affects SDEs in general and discuss the
parameterization form of the Hurst exponent.
When the Hurst exponent h(t) is constant, say h(t) = H . There is a qualitative difference between
settings of H . Figure 2 shows how the Hurst parameter affects the model fit trained by Latent SDE.
With a smaller value (H = 0.3), sample paths are rough, producing more irregularity. When H = 0.8,
the model has smoother sample paths, and is more conservative as predictions depend on the past.
This parameter has a great influence on the uncertainty quantification of the models.
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fBm paths posterior

(a) H = 0.3

fBm paths posterior

(b) H = 0.8

Figure 2: Latent SDE with fBm for two settings: H = 0.3 and H = 0.8.

For the case that h(t) is function of t, any function approximators can work in general to model
h(t; θ). In our implementation, we use small neural networks. With the new representation in (12),
we can train the parameters of h(t; θ) together with the parameters of drift and diffusion. A more
general approach is that f(t, s) can accept either neural networks or kernel-based functions when we
do not consider normalization. However, their interpretation is not clear as that of mBm.

5 Experimental Results

This section will first justify how close the samples generated by our method are to true ones. We
then investigate the ability to learn the Hurst function for synthetic data and test our model for
real-world data. Finally, we examine the role of Hurst exponents in score-based generative models.
All experiments are implemented using PyTorch [68] with the library torchsde [54, 47]. Our source
code is available at this repository.

How to estimate Hurst from data? We follow [27] to empirically estimate Hurst exponent from
data. The key technique is based on the correlation of increment of Bt and estimates a ratio over
sliding windows which is an estimation of Hurst exponent.

5.1 Quality of approximate samples

Figure 3: Our estimation vs
true Hurst function.

We would like to investigate if our approximation of B′
t can pro-

duce the sample path of Bt that is close enough to those of the true
process. The true Hurst function is set as h(t) = 0.35 + 0.5t.The
samples from [65, 25] are used as a baseline. This experiment
runs 1000 samples. The estimations of the Hurst exponent for
two sampling techniques are in Figure 3. The Hurst estimation
corresponding to our samples is close to the true Hurst function.
It tends to overestimate the long-range dependency (h(t) > 1/2)
and underestimate the irregularity (h(t) < 1/2) in the samples.

5.2 Recovering Hurst function

(a) (b)

Figure 4: Synthetic data. (a): Comparison
between found Hurst vs. true Hurst. (b):
The posterior plot of our model which can
describe correctly uncertainty regions when
the noise is more irregular.

Next, we test our model with a synthetic data. Here
the data is generated from a SDE with a known solu-
tion:
dXt = αXtdt+ βdBt, X0 = x0, t ∈ [0, 2],

where Bt is a mBm given a fixed h(t) = 0.3 +
0.5sigmoid(7(1 − t)). According to Itô integrals
for mBm cases [52], the exact solution is Xt =
x0 exp(αt − 1

2β
2t2h(t) + βBt). We generate 100

data points for each sample path and obtain up to 5
sample paths. After training our model, we observe
that the obtained Hurst function can capture the dy-
namic similar to the true Hurst. As we increase the
number of sample paths (from 1 to 5), our learned
Hurst tends to approach the true Hurst. Figure 4 shows an example of our learned Hurst function
given 5 sample paths. We also provide the results for different Hurst functions and an ablation study
in Appendix C.3.
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(a) AMZN (b) AAPL (c) GOOGL (c) MSFT

Figure 5: Found Hurst functions in financial data.
5.3 Financial data

In this experiment, we compare the Hurst function found by our model with the time-dependent Hurst
estimation computed by [27].

Data set We collect two months (from September 26th, 2021 to October 23rd, 2021) of hourly data
from four stock indices Amazon (AMZN), Apple (APPL), Google (GOOGL), Microsoft (MSFT).
The data is retrieved from [85]. It is then standardized and split into the first 80% time points to train
and the remaining 20% to test.

Obtaining Hurst function Figure 5 compares our found Hurst functions and estimated Hurst
computed from [27]. Our obtained Hurst functions have bigger values than that of [27]. This
resembles the observation in the previous experiment. A common observation among these stocks
is that Hurst functions made some changes (bump up or drop) around the end of October. This
agrees with many analyses, for example, Amazon missed revenue expectations for the third quarter
or Apple revealed new products. The posterior plots for our model in each stock index are placed in
Appendix C.4.

Quantitative comparison We compare our model to two main baselines: Latent SDE with standard
Brownian motion [54] and Latent ODE [12]. We report three main comparison criteria: training
negative log-likelihood (training NLL), test negative log-likelihood (test NLL) and test root mean
square error (test RMSE). Overall, our model can fit training data well as our model outperforms
others in terms of training NLLs (see Appendix C.4). This is because our model can capture correctly
noise part while Latent SDE relies on less flexible Brownian noise. Still, it is not clear to identify
which model performs better in predictive tasks. However, our model produces more consistent
results with less variance.

5.4 Effect of Hurst exponent in score-based generative models

This experiment explores a different aspect by studying the effect of Hurst exponent in training
score-based generative models. Recent work [77] on generative models based on score functions and
SDEs presents impressive results on par with generative adversarial networks (GAN). We consider
the case where the perturbation in data is under a new SDE, dXt = − 1

2β(t)Xtdt+
√

β(t)dBt where
Bt =

∫ t

0
f(t, s)dWs. We derive the equivalent SDE (discussed more in Appendix C.5):

dXt =

[
−1

2
β(t)ς2(t;Z)Xt +

√
β(t)ν(t;u, Z)

]
dt+

√
β(t)ς(t;Z)dWt, u ∼ N (0, k(Z,Z)).

(14)

Varying Hurst exponents We investigate how different types of noise affect learning and sampling
in this model. We consider four scenarios of noise: (1) more anti-persistent as H = 0.3; (2) long-
range dependent with H = 0.8; (3) linearly increasing h(t); (4) linearly decreasing h(t). We only
consider the task of generating MNIST images [53]. Figure 6 shows example of generated images.
We observed that H > 1/2 is not favorable, and requires SDEs with long terminal time T . To
quantify the quality of generated images, we compute the negative log-likelihood (NLL) of a set of
out-of-sample images like in [76].

Discussion Although we do not present a way to find optimal h(t), we show that there is a setting
in which the NLL appears to be better (see Figure 7 a). That is, the NLL of decreasing Hurst setting is
3.79 (bits/dim) compared to 4.97 (bits/dim) of Brownian motion (H = 0.5). There exists work [50]
showing that signal-to-noise ratio (SNR) is the key to establishing an optimal strategy how to inject
noises. There is another work studying the best strategy for reverse variance [2]. In contrast to many
diffusion models, our approach has an additional term

√
β(t)ν(t;u) which is unrelated to Xt but is

included in the drift of the backward SDEs when generating data (see Figure 7 b). Moreover, our
approach can suggest a way to control the sample path of Bt in the way that we condition on inducing

9



H = 0.3 H = 0.8 increasing decreasing

Figure 6: Generated images from different configuration of Hurst.

(a) (b)
Figure 7: (a): Negative log likelihoods on a small batch of test set. (b): Additional drift√
β(t)ν(t;u, Z).

points u since B′
t is sampled from the conditional distribution p(B′

t|u). For example, we can follow
the variational inference of [37] to find the posterior q(u) for a designed objective, then sample B′

t
given q(u) instead of p(u).

6 Conclusion

In conclusion, this work presents a new class of neural SDEs with a generalization of white noise.
We propose an efficient approximate sampling approach for the noises so that neural SDEs can
be converted into convenient forms. The techniques used in this paper are relatively simple, and
related to Gaussian process (GP) research. Our experiments have verified the ability of our models
to learn noises from synthetic data to financial time-series as well as showcase an image generation
task. As mentioned earlier, our current work can be improved with higher-order solvers where the
double integrals require to model precisely. Prior work [52, 70] is a good starting point for such
an approach. Another promising direction is to extend neural controlled differential equations with
driving signals which are general GPs instead of Brownian motions. The closure property of GPs
under differentiation will be useful to develop this model.
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