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Abstract

Batch Normalization (BN) is a core and prevalent technique in accelerating the
training of deep neural networks and improving the generalization on Computer
Vision (CV) tasks. However, it fails to defend its position in Natural Language
Processing (NLP), which is dominated by Layer Normalization (LN). In this paper,
we are trying to answer why BN usually performs worse than LN in NLP tasks
with Transformer models. We find that the inconsistency between training and
inference of BN is the leading cause that results in the failure of BN in NLP.
We define Training Inference Discrepancy (TID) to quantitatively measure this
inconsistency and reveal that TID can indicate BN’s performance, supported by
extensive experiments, including image classification, neural machine translation,
language modeling, sequence labeling, and text classification tasks. We find that
BN can obtain much better test performance than LN when TID keeps small through
training. To suppress the explosion of TID, we propose Regularized BN (RBN) that
adds a simple regularization term to narrow the gap between batch statistics and
population statistics of BN. RBN improves the performance of BN consistently and
outperforms or is on par with LN on 17 out of 20 settings, involving ten datasets
and two common variants of Transformer1.

1 Introduction

Deep learning [19] has revolutionized Computer Vision (CV) [18] and Natural Language Processing
(NLP) [39]. Normalization layers are key components to stabilize and accelerate the training in
Deep Neural Networks (DNNs). In CV, Batch Normalization (BN) [15] is the default normalization
technique and reveals superior performance over other normalization techniques in image recognition
tasks by enforcing the input of a neuron to have zero mean and unit variance within a mini-batch
data. Furthermore, a growing number of theoretical works analyze the excellent properties of BN
in benefiting optimization [15, 34, 4, 12, 7, 8]. While BN almost dominates in CV with empirical
success and theoretical properties, Layer Normalization (LN) is the leading normalization technique
in NLP, especially for Transformer models that achieve the state-of-the-art performance on extensive
tasks, including machine translation [39], natural language understanding [9], text generation [32],
few shot learning [5], to name a few. As a direct substitute of LN, BN performs poorly in Transformer
for neural machine translation [36]. It remains elusive to explain the failure of BN in NLP community.
In this work, we are trying to take a step forward. Our contributions are summarized as follows:

1Our code is available at https://github.com/wjxts/RegularizedBN

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/wjxts/RegularizedBN


• We find that the inconsistency between training and inference leads to the failure of BN
in NLP, supported by our extensive experiments, including image classification, neural
machine translation, language modeling, sequence labeling, and text classification tasks.

• We define Training Inference Discrepancy (TID) to quantitatively measure this inconsistency
and show that TID can serve as an indicator of BN’s performance. In particular, BN reaches
much better test performance than LN when TID keeps small through training, e.g., in image
recognition and language modeling tasks.

• We propose Regularized BN (RBN) that adds a regularization term in BN to penalize and
reduce the TID when the TID of BN is large. We reveal the optimization advantages of RBN
over LN by exploring the layer-wise training dynamics of Transformer.

• We empirically show that RBN can exceed or match the performance of LN, sometimes with
a large margin, on 17 out of 20 settings, involving ten datasets and two common variants of
Transformer. Besides, RBN introduces no extra computation at inference compared to LN.

2 Related Work
Analyses of BN’s Success As BN becomes an indispensable component in deep neural networks
deployed in CV tasks, a bunch of works explore the theoretical reasons behind its success. From
the view of optimization, the original BN paper [15] argues that BN can reduce internal covariate
shift and thus stabilize the training, while Santurkar et al. [34] debate that BN could smooth the loss
landscape and thus enable training of neural network with larger learning rate [4]. Daneshmand
et al. [7, 8] prove that a stack of randomized linear layers and BN layers will endow the intermediate
features of neural network with sufficient numerical rank as depth increases, which is beneficial for
optimization and learning discriminative hierarchical features. Huang et al. [12] show that BN could
improve the layer-wise conditioning of the neural network optimization by exploring the spectrum of
Hessian matrix with block diagonal approximation [26]. From the view of generalization, Ioffe and
Szegedy [15], Luo et al. [23], Li et al. [20], Wu and Johnson [41] argue that BN serves as regularizer
which reduces over-fitting when its stochasticity is small and may have detrimental effect when it is
large [41]. Huang et al. [11] further propose Stochastic Normalization Disturbance (SND) to measure
such stochasticity and shows that large SND will hinder the training of neural networks.

Training Inference Inconsistency of BN Normalizing along the batch dimension usually intro-
duces training inference inconsistency since mini-batch data is neither necessary nor desirable during
inference. BN uses population statistics, estimated by running average over mini-batch statistics,
for inference. The training inference inconsistency usually harms the performance of BN for small-
batch-size training since the estimation of population statistics could be inaccurate [40]. One way
to reduce the inconsistency between training and inference is to exploit the estimated population
statistics for normalization during training [14, 6, 45, 48, 47]. These works may outperform BN
when the batch size is small, where inaccurate estimation may be the main issue [15, 16], but they
usually work inferior to BN under moderate batch-size training [22]. Another way to reduce the
inconsistency is estimating corrected normalization statistics during inference only, either for domain
adaptation [21], corruption robustness [35, 29, 2], or small-batch-size training [37, 38]. We note that
a recent work [13] investigates the estimation shift problem of BN. Unlike this work that addresses
the accumulated estimation shift due to the stack of BNs for CNNs in CV tasks, our work pays more
attention to how the training inference inconsistency of BN correlates with its performances for
Transformers in NLP tasks. Besides, the estimation shift of BN defined in [13], which addresses the
differences between the estimated population statistics and the expected statistics, differs from our
TID of BN that addresses the differences between the mini-batch statistics and populations statistics.

Exploring the Failure of BN in Transformer Similar to our work, Power Normalization (PN) [36]
also investigates the reason behind the failure of BN in Transformers. Our work significantly differs
from PN [36] in the following facets. PN attributes the failure of BN to the unstable training of BN
incurred by fluctuated forward and backward batch statistics with outlier values, while we observe
that the training of BN is as good as LN and the inconsistency between training and inference of BN
matters more. Based on our observation, we propose a regularization term to reduce the TID of BN.
Compared with PN, which incorporates a layer-scale layer (root mean square layer normalization [49]
without affine transformation [43]), our method introduces no extra computation at inference. Besides,
we use a more reasonable index to measure inconsistency which is invariant to the scale of data.
Furthermore, we show that our RBN can improve the layer-wise training dynamics of LN, which
reveals the optimization advantages of RBN.
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Figure 1: Train loss, validation loss/BLEU of Transformer trained on IWSLT14 with BN and LN.
The training of TransformerBN is better than TransformerLN while the validation loss/BLEU of
TransformerBN underperforms that of TransformerLN after 8 epoch. At the end of the training,
TransformerBN falls behind TransformerLN with large BLEU scores. Lower loss and higher BLEU
scores indicate better performance. Based on the inconsistency of training and validation perfor-
mance of BN, we hypothesize that the training inference discrepancy of BN causes its performance
degradation.

3 Analyses of Training Inference Inconsistency in TransformerBN

3.1 Preliminary

Batch Normalization (BN) [15] is typically used to stabilize and accelerate DNN’s training. Let
x ∈ Rd denote the d-dimensional input to a neural network layer. During training, BN standardizes
each neuron/channel within m mini-batch data by2

x̂j = BNtrain(xj) =
xj − µB,j√

σ2
B,j

, j = 1, 2, ..., d, (1)

where µB,j = 1
m

∑m
i=1 x

(i)
j and σ2

B,j = 1
m

∑m
i=1(x

(i)
j − µB,j)

2 are the mini-batch mean and
variance for each neuron, respectively. Note that an extra small number ε is usually added to the
variance in practice to prevent numerical instability. During inference, the population mean µ and
variance σ2 of the layer input are required for BN to make a deterministic prediction [15] as:

x̂j = BNinf (xj) =
xj − µj√

σ2
j

, j = 1, 2, ..., d. (2)

These population statistics {µ, σ2} are usually calculated as the running average of mini-batch
statistics over different training iteration t with an update factor α as follows:{

µ(t) = (1− α)µ(t−1) + αµ
(t)
B ,

(σ2)(t) = (1− α)(σ2)(t−1) + α(σ2
B)

(t).
(3)

The discrepancy of BN for normalization during training (using Eqn. 1) and inference (using Eqn. 2)
can produce stochasticity, since the population statistics of BN are estimated from the mini-batch
statistics that depend on the sampled mini-batch inputs. This discrepancy is believed to benefit the
generalization [15, 11] if the stochasticity is well controlled. However, this discrepancy usually harms
the performance of small-batch-size training [40] since the estimation of population statistics can
be inaccurate. To address this problem, a bunch of batch-free normalizations are proposed that use
consistent operations during training and inference, e.g., Layer Normalization (LN) [1].
Basic Observations To analyze the failure of BN in NLP tasks, we first plot the training loss
and validation loss/BLEU [31] of BN and LN on IWSLT14 (De-En) dataset with the original
Transformer model (see Figure 1). We observe that the training of TransformerBN is faster than
TransformerLN . The training nll_loss of BN is even smaller than that of LN, especially at the
beginning. However, validation loss/BLEU of BN is worse than that of LN after around the seventh
epoch. This phenomenon can not be attributed to over-fitting since BN introduces more stochasticity
than LN in the training phase. The inconsistency between training and inference of BN may play a
role.

2BN usually uses extra learnable scale and shift parameters [15] to recover the potentially reduced represen-
tation capacity, and we omit them since they are not relevant to our discussion.
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Figure 2: Top: The average deviation of batch mean µB (left figure) and batch variance σ2
B (right

figure) to population mean µ and population variance σ2 of all BN layers through training in
ResNet18 and TransformerBN . There are 21 BN layers in ResNet18 and 12 BN layers in the encoder
of TransformerBN . At the end of training, ResNet18 has mean/variance deviation of around 4%/4%
and those in TransformerBN are around 11%/13%. Large deviation of statistics hurts the performance
of TransformerBN . Bottom: Variance deviation of BN layers with different depths (left) at the end of
training and variance deviation over depth and training progress (right).

Since BN in ResNet18 also involves training inference inconsistency, we guess the degree of such
inconsistency has a difference between ResNet18 and TransformerBN . Therefore, we plot the
deviation of batch statistics to population statistics of BN in ResNet18 and TransformerBN in
Figure 2 (top) to make a comparison. ResNet18 is trained on CIFAR-10 [17] and accuracy will drop 2
percent if we replace BN with LN. We find that at the end of the training, TransformerBN has a much
bigger mean and variance deviation than ResNet18. Besides, the last several BN layers that are close
to the output in TransformerBN have large variance deviation (Figure 2 (bottom)), which negatively
impact the model output. Furthermore, the performance degradation of TransformerBN coincides
with the increase of variance deviation by comparing Figure 1 (right) and Figure 2 (bottom right).
Based on these observations, we hypothesize that the inconsistency between training and inference of
BN causes BN’s performance degradation in neural machine translation. We first mathematically
define the training inference discrepancy of BN in the next subsection.

3.2 Training Inference Discrepancy

By observing Eqns. 1 and 2, the normalized output during training can be calculated as:

xj − µB,j
σB,j

=

(
xj − µj
σj

+
µj − µB,j

σj

)
σj
σB,j

, j = 1, 2, ..., d, (4)

where σB,j > 0 and σj > 0 are the standard deviation for the j-th dimension. We can see µj−µB,j

σj

and σj

σB,j
can be viewed as random variables. Their magnitude can characterize the diversity of

mini-batch examples during training and indicate how hard the estimation of population statistics
is. We thus define the training inference discrepancy to quantitatively measure the inconsistency as
follows.

4



Definition 1 (Training Inference Discrepancy (TID)). Let pB be the distribution of batch data. Given
a mini-batch data X sampled from pB , we define the TID of its mean and variance (with respect to
model parameter θ) as:

Mean TID = EX∼pB
‖µB − µ‖2
‖σ‖2

Variance TID = EX∼pB
‖σB − σ‖2
‖σ‖2

(5)

In terms of computing the TID in practice, we add a small positive constant in the denominator to
avoid numerical instability. We save the checkpoint at the end of each epoch and before training. We
first estimate the population statistics by running forward propagation one epoch and then compute
mean and variance TID by another epoch.

We omit θ when it can be inferred from context without confusion. We compute the average mean and
variance TID of all BN layers in ResNet18 trained on CIFAR10 and that of TransformerBN trained
on IWSLT14 throughout training. At the end of the training, the average mean/variance TID of BN
in ResNet18 is approximately 0.8%/0.9%, while that in Transformer is around 2.8%/4.1%. TID in
Transformer is much larger than that in ResNet18. The trends are the same as basic observations in
Section 3.1. We will use Equation (5) to compute TID in the subsequent analysis due to its better
theoretical formulation (Equation (4)).

3.3 Comprehensive Validation

To further verify our hypothesis that large inconsistency between training and inference of BN
causes BN’s degraded performance, we conduct experiments on Neural Machine Translation (NMT),
Language Modeling (LM), Named Entity Recognition (NER), and Text Classification (TextCls) tasks.
We test both Post-Norm [39] and Pre-Norm [42] Transformers.

Experimental Setup We briefly illustrate the experimental settings. More detailed description can
be found in supplementary materials. For neural machine translation, we use IWSLT14 German-to-
English (De-En) and WMT16 English-to-German (En-De) datasets, following the settings in Shen
et al. [36]. Our code is based on fairseq [30]3. For language modeling, we conduct experiments
on PTB [28] and WikiText-103 (WT103) [27]. We follow the experimental settings in Shen et al.
[36], Ma et al. [24]. For named entity recognition, we choose CoNLL2003 (English) [33] and Resume
(Chinese) [50] datasets. We mainly follow the experimental settings in Yan et al. [44]. For text
classification, we select one small scale dataset (IMDB) [25] and three large scale datasets (Yelp,
DBPedia, Sogou News). We use the code4 and follow most configurations in Bhardwaj et al. [3].

Performance Result We first verify the inefficiency of BN compared to LN on four natural
language tasks. Results for Post-Norm and Pre-Norm Transformers are listed in Table 1. BN
performs much worse than LN on NMT, slightly worse on NER and TextCls tasks, but performs
much better on LM. Although BN performs worse in most cases, it has remarkable improvement over
LN on LM, raising the question: what contributes to the failure or success of BN?

Analyzing the Statistics of BN We compute the TID of the last BN layer in Table 1 and leave the
average TID of all BN layers in supplementary materials. The last BN layer, which is close to the
output, significantly impacts the model prediction. We observe that TID is highly correlated with
the performance gap between BN and LN. When TID is large, e.g., on WMT16, BN performs much
worse than LN. However, when the TID of BN is negligible, e.g., on PTB and WT103, BN performs
better than LN with a large margin. We select one dataset from each task with Pre-Norm Transformer
and define the total TID as the sum of mean and variance TID. At the end of the training, the total
TID of the last BN layer for WMT16/CoNLL/IMDB/WT103 is around 38%/16%/9%/5%, and the
performance gap is -2.1 BLEU scores/-1.1 F1 score/-0.1% accuracy/6.8 perplexity (PPL). Larger TID
tends to hurt BN’s performance.

To explore the quantitative relation between TID and performance gap, we substitute L = 3 ∼ 6
LN layers with BN layers from the bottom in the Post-Norm Transformer encoder on IWSLT14. As
L increases, the variance TID of the last BN layer grows, and the BLEU scores of TransformerBN

3https://github.com/pytorch/fairseq. MIT license.
4https://github.com/declare-lab/identifiable-transformers. Apache-2.0 license.
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Table 1: Results for performance and TID of last BN layer with Post-Norm (top) and Pre-Norm
(bottom) Transformers on four tasks containing ten datasets. We use BLEU scores (%)/perplexity/F1
score (%)/accuracy (%) to measure the model performance on neural machine translation/language
modeling/named entity recognition/text classification. "+" ("-") means the bigger (smaller) the better.
Post-LN means the Post-Norm Transformer with LN. Performance gap is the difference between
performance of BN and LN. Positive (Negative) Performance gap indicates BN performs better
(worse) than LN.

Task NMT (+) LM (-) NER (+) TextCls (+)

Datasets IWSLT14 WMT16 PTB WT103 Resume CoNLL IMDB Sogou DBPedia Yelp

Post-LN 35.5 27.3 53.2 20.9 94.8 91.3 84.1 94.6 97.5 93.3
Post-BN 34.0 25.0 45.9 17.2 94.5 90.9 84.0 94.3 97.5 93.3

Performance Gap -1.5 -2.3 7.3 3.7 -0.3 -0.4 -0.1 -0.3 0 0
Mean TID of BNlast 1.5% 4.2% 0.9% 1.8% 1.7% 4.2% 1.8% 1.8% 2.2% 3.1%
Var TID of BNlast 10.6% 17.9% 1.1% 2.0% 3.7% 9.5% 3.9% 4.3% 3.5% 4.0%

Pre-LN 35.5 27.3 54.5 24.6 94.0 91.0 84.1 94.5 97.5 93.3
Pre-BN 34.8 25.2 45.9 17.8 93.2 89.9 84.0 94.3 97.5 93.3

Performance Gap -0.7 -2.1 8.6 6.8 -0.8 -1.1 -0.1 -0.2 0 0
Mean TID of BNlast 3.4% 7.9% 1.6% 2.4% 9.6% 10.0% 2.9% 7.5% 3.9% 12.1%
Var TID of BNlast 4.6% 30.1% 1.7% 2.5% 6.5% 6.4% 6.2% 7.1% 3.3% 8.6%
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Figure 3: Left: Variance TID and BLEU gap between TransformerBN and TransformerLN when
replacing different numbers of LN layers with BN. Right: Variance TID and valid loss gap of
Post-Norm Transformer through training.

drops off. We plot the variance TID and BLEU gap between TransformerBN and TransformerLN in
Figure 3 (left). We can see that the two quantities are highly correlated.

In Figure 3 (right), we plot the variance TID of the last BN layer and the validation loss gap
between TransformerBN and TransformerLN on IWSLT14 through training. The validation loss
gap is calculated by subtracting loss of TransformerLN from TransformerBN . At the beginning of
training, BN performs better than LN. When the TID begins to explode, BN’s performance starts to
degrade.

Based on the results in Table 1 and observations in Figure 3, we argue that TID serves as an indicator
of BN’s performance in Transformers. Large TID hurts BN’s performance, while BN with small
TID performs better than LN due to its more efficient optimization (see experimental validation in
Section 4.3).

4 Suppressing High TID by RBN

In this section, we are devoted to reducing the TID of BN when it is large. If TID is suppressed, the
performance of BN will be improved and may exceed LN due to the training efficiency of BN.

4.1 Regularized Batch Normalization

Assume there are H layers of BN in a neural network. We denote the batch statistics and running
statistics of each layer by µiB , σiB , and µi, σi, i = 1 . . . , H . Assume the Cross-Entropy (CE) loss
with respect to the neural network parameters θ is denoted by L(θ). To avoid undesirable training

6



Table 2: Results for the performance of Post-Norm (top) and Pre-Norm (bottom) Transformers with
LN/BN/RBN. RBN consistently improves BN and could match or exceed LN on 17 out of 20 settings.

Task NMT (+) LM (-) NER (+) TextCls (+)

Datasets IWSLT14 WMT16 PTB WT103 Resume CoNLL IMDB Sogou DBPedia Yelp

Post-LN 35.5 27.3 53.2 20.9 94.8 91.3 84.1 94.6 97.5 93.3
Post-BN 34.0 25.0 45.9 17.2 94.5 90.9 84.0 94.3 97.5 93.3

Post-RBN 35.5 26.5 44.6 17.1 94.8 91.4 84.5 94.7 97.6 93.6

Pre-LN 35.5 27.3 54.5 24.6 94.0 91.0 84.1 94.5 97.5 93.3
Pre-BN 34.8 25.2 45.9 17.8 93.2 89.9 84.0 94.3 97.5 93.3

Pre-RBN 35.6 26.2 43.2 17.1 94.0 90.6 84.4 94.7 97.5 93.5

inference discrepancy, we pose the optimization as a constrained problem:

min
θ

L(θ)

s.t. EpBdµ(µiB , µi) ≤ εi, i = 1, . . . ,H

EpBdσ(σiB , σi) ≤ ηi, i = 1, . . . ,H

(6)

where dµ and dσ measure the inconsistency of mean and variance. This is equivalent to

min
θ

L(θ) +
H∑
i=1

λiEdµ(µiB , µi) + νiEdσ(σiB , σi) (7)

To simplify the problem, we set λi = λ, νi = ν, for i = 1, . . . ,H .
When handling batch data, we apply gradient-based optimization to the following loss (LB(θ) is the
batch CE loss):

LB(θ) +
H∑
i=1

λdµ(µ
i
B , µ

i) + νdσ(σ
i
B , σ

i)

In particular, we choose dµ (µB , µ) = ‖µB − µ‖22 and dσ (σB , σ) = ‖σB − σ‖22. The sensitivity
analysis of hyperparameter is given in Section 4.3. Since back propagating through the running
statistics µ and σ would trace back to the first batch of data which is impractical, we simply stop the
gradient of µ and σ in back propagation.

4.2 Experimental Result for RBN

We choose λ, ν both from {0, 0.01, 0.1, 1} by validation loss. Results are shown in Table 2. The
optimal hyperparameters are listed in supplementary materials.

Neural Machine Translation On IWSLT14 datasets, we see that RBN significantly improves BN
and can exceed LN with 0.1 BLEU scores with Pre-Norm Transformer and match LN with Post-Norm
Transformer. On WMT16 dataset, although RBN still falls behind LN, it could improve 1.5/1.0 BLEU
scores over BN in Post-Norm/Pre-Norm setting. The reason is that even though RBN can suppress a
large amount of TID, the remaining is still large since the original TID is huge. We speculate that the
high data diversity in WMT16 contributes to the explosive TID of BN, which is hard to remove. We
leave the verification as future work.

Language Modeling On Post-Norm Transformer, BN could boost the testing PPL of LN from
53.2 to 45.9 on PTB and from 20.9 to 17.2 on WikiText-103. Furthermore, substituting RBN for BN
improves the testing PPL to 44.6 on PTB and 17.1 on WikiText-103. On Pre-Norm Transformer, BN
elevates the testing PPL of LN from 54.5 to 45.9 on PTB and from 24.6 to 17.8 on WikiText-103.
Moreover, replacing BN with RBN improves the testing PPL to 43.2 on PTB and 17.1 on WikiText-
103. Overall, RBN exceeds LN with 8.6/3.8 testing PPL with Post-Norm Transformer and 11.3/7.5
testing PPL with Pre-Norm Transformer on PTB/WikiText-103.

Named Entity Recognition BN performs worse than LN on both Resume and CoNLL2003
datasets, especially for Pre-Norm Transformer. RBN improves BN in all settings, matches or exceeds
LN in three out of four settings. By taking the better performance of Post-Norm and Pre-Norm, RBN
matches the performance of LN on Resume and exceeds LN on CoNLL2003.
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Table 3: Results for the performance of Post-Norm (top) and Pre-Norm (bottom) Transformers with
PN/BRN/MABN/RBN.

Task NMT (+) LM (-) NER (+) TextCls (+)

Datasets IWSLT14 WMT16 PTB WT103 Resume CoNLL IMDB Sogou DBPedia Yelp

Post-PN-only 0 0 254.6 inf 94.4 67.1 84.2 90.6 97.1 89.6
Post-PN+LS 35.6 0 49.8 21.0 94.3 90.9 84.0 94.6 97.4 93.2
Post-BRN 35.3 25.8 45.1 17.3 93.6 89.9 83.6 94.5 97.5 93.3

Post-MABN 0 0 47.4 33.6 94.4 90.8 84.1 94.5 97.5 93.5
Post-RBN 35.5 26.5 44.6 17.1 94.8 91.4 84.5 94.7 97.6 93.6

Pre-PN-only 34.5 26.0 48.6 inf 5.0 11.1 84.2 94.4 97.4 93.3
Pre-PN+LS 35.6 27.2 59.8 20.9 93.3 54.1 83.3 94.4 97.3 93.4
Pre-BRN 35.2 25.3 45.7 17.5 94.1 91.1 84.3 94.5 97.4 93.4

Pre-MABN 35.0 26.8 48.7 inf 94.8 90.9 84.4 94.6 97.5 93.3
Pre-RBN 35.6 26.2 43.2 17.1 94.0 90.6 84.4 94.7 97.5 93.5
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Figure 4: Average Mean and Variance TID on WMT16/CoNLL/IMDB/WT103 for Pre-Norm Trans-
former with BN and RBN. RBN reduces the Mean and Variance TID of BN at the end of the training
and leads to better performance.

Text Classification We find that BN performs similar to/worse than LN on 4/4 settings. RBN
improves the performance of BN consistently and can match/exceed LN on 1/7 settings. RBN
improves BN with 0.3% accuracy on average, which shows the benefit of our regularization. We do
not intend to achieve the state-of-the-art performance but to verify the efficacy of RBN.

Comparison to BN’s Variants We compare our RBN with Power Normalization (PN) [36], Batch
Renormalization (BRN) [14], and Moving Averaing Batch Normaliazation (MABN) [45] in Table 3.
These methods incorporate population statistics of BN in training, which is beneficial for alleviating
training inference inconsistency of BN. PN and MABN are implemented by their official codes5.
BRN is implemented according to their paper [14]. The configurations of PN, BRN, and MABN are
given in supplementary materials. We highlight that PN incorporates layer scaling (LS) [49], which
is important for stabilizing training, as shown in the supplementary materials and official code of PN.
We thus report the results for PN only and PN with layer scaling (PN+LS). We can see that RBN
performs the best in most settings. PN and MABN is not stable without layer scaling, especially for
Post-Norm Transformers.

4.3 Analysis

Training Inference Inconsistency We compute the TID of the last BN layer (BNlast) in Ta-
ble 4 and plot the average TID of BN and RBN on WMT16, WT103, CoNLL2003, and IMDB
datasets for Pre-Norm Transformers through training in Figure 4. Figures of TID for other datasets
and Post-Norm Transformer can be found in supplementary materials. We can see that RBN re-
duces BN’s mean and variance TID at the end of training. On neural machine translation and
named entity recognition tasks, the original TID is large. RBN significantly decreases the TID of

5https://github.com/sIncerass/powernorm. GPL-3.0 license. https://github.com/megvii-model/MABN. MIT
license.
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Table 4: TID of the last BN/RBN layer in Post-Norm and Pre-Norm Transformers on various NLP
tasks. RBN reduces the TID of BN effectively.

Task NMT LM NER TextCls

Datasets IWSLT14 WMT16 PTB WT103 Resume CoNLL IMDB Sogou DBPedia Yelp

Post-Norm Transformer

Mean TID of BNlast 1.5% 4.2% 0.9% 1.8% 1.7% 4.2% 1.8% 1.8% 2.2% 3.1%
Mean TID of RBNlast 0.8% 2.3% 0.9% 1.8% 1.4% 1.9% 0.2% 0.2% 0.3% 0.2%

Var TID of BNlast 10.6% 17.9% 1.1% 2.0% 3.7% 9.5% 3.9% 4.3% 3.5% 4.0%
Var TID of RBNlast 6.7% 7.7% 1.1% 1.7% 3.0% 5.0% 1.2% 0.2% 0.3% 0.1%

Pre-Norm Transformer

Mean TID of BNlast 3.4% 7.9% 1.6% 2.4% 9.6% 10.0% 2.9% 7.5% 3.9% 12.1%
Mean TID of RBNlast 3.2% 1.3% 1.6% 2.4% 4.5% 4.0% 0.7% 1.0% 1.1% 1.0%

Var TID of BNlast 4.6% 30.1% 1.7% 2.5% 6.5% 6.4% 6.2% 7.1% 3.3% 8.6%
Var TID of RBNlast 1.5% 12.1% 1.7% 2.4% 6.3% 5.6% 4.7% 0.4% 0.5% 0.5%
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Figure 6: C50% (top), and C80% (bottom) of input features of Transformer encoder layer 2/4/6. RBN
improves the C50% and C80% of LN, especially for deep layers (2 orders of magnitude at layer 6).

BN and improves BN’s performance by a clear margin. For language modeling and text clas-
sification tasks, RBN also reduces the moderate TID of BN and gets better PPL or accuracy.
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Figure 5: The BLEU scores on IWSLT14
with different mean (λ) and variance (ν)
discrepancy penalty of RBN.

Sensitivity to Hyperparameters We test different
penalty coefficients for RBN on neural machine transla-
tion with Pre-Norm Transformer. The results are shown
in Figure 5. Penalizing the mean and variance discrep-
ancy can both improve the performance of BN. Combin-
ing them with moderate coefficients achieves the best
performance.
Training Dynamics To show the optimization advan-
tages of RBN over LN, we explore the layer-wise train-
ing dynamics of LN and RBN in Pre-Norm Transformer
on IWSLT14. We refer the reader to Huang et al. [12] for
detailed analysis about the correlation between optimiza-
tion of neural network and layer-wise training dynamics.
We empirically observe that replacing LN with RBN
significantly improves the layer-wise conditioning [12]
of Transformer. We denote the intermediate embedding
in Transformer by X̃ ∈ RB×T×d, each X̃i,j,: ∈ Rd is a
word vector. We reshape X̃ to a sequence of word vectors to X = [x1,x2, . . . ,xBT ] ∈ RBT×d. We
assume BT > d which is satisfied in our experiments. We define the general condition number with
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Figure 7: Cmax of input features of Transformer encoder layer 2/4/6 through training.

respect to the percentage as Cp(X) = σ1

σdpde
, 0 < p ≤ 1. dae is the smallest integer that is larger

than or equal to a. Lower Cp(X) is usually associated with faster convergence of training. We plot
C50%, and C80% of input features of transformer encoder layer 2/4/6 in Figure 6. We can see that
RBN significantly reduces the C50% and C80% of LN, usually with orders of magnitude. We also
plot the layer-wise Cmax(X) = λmax((X

TX)
1
2 ) in Figure 7. Smaller Cmax usually permits higher

learning rates which leads to faster training and better generalization [10]. RBN has much smaller
Cmax than LN.

5 Conclusion and Limitation

In this paper, we defined Training Inference Discrepancy (TID) and showed that TID is a good
indicator of BN’s performance for Transformers, supported by comprehensive experiments. We
observed BN performs much better than LN when TID is negligible and proposed Regularized BN
(RBN) to alleviate TID when TID is large. Our RBN has theoretical advantages in optimization and
works empirically better by controlling the TID of BN when compared with LN. We hope our work
will facilitate a better understanding and application of BN in NLP.
Limitation. Our analyses on TID are almost empirical studies without theoretical guarantee. It
is better to further model the geometric distribution of word embedding, evolving along with the
training dynamics and information propagation, with theoretical derivation under mild assumptions.
Besides, our proposed RBN cannot entirely suppress huge TID in training large-scale datasets with
high diversity, leading to degraded performance. One possible direction is to combine RBN and LN
for both better optimization properties and small TID, as explored in [13, 46] for CV tasks.
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