
Instance-optimal PAC Algorithms for Contextual
Bandits

Zhaoqi Li
Department of Statistics

University of Washington
zli9@uw.edu

Lillian Ratliff
Department of Electrical and Computer Engineering

University of Washington
ratliffl@uw.edu

Houssam Nassif
Amazon

houssamn@amazon.com

Kevin Jamieson
Allen School of Computer Science & Engineering

University of Washington
jamieson@cs.washington.edu

Lalit Jain
Foster School of Business
University of Washington

lalitj@uw.edu

Abstract

In the stochastic contextual bandit setting, regret-minimizing algorithms have
been extensively researched, but their instance-minimizing best-arm identification
counterparts remain seldom studied. In this work, we focus on the stochastic bandit
problem in the (✏, �)-PAC setting: given a policy class ⇧ the goal of the learner
is to return a policy ⇡ 2 ⇧ whose expected reward is within ✏ of the optimal
policy with probability greater than 1 � �. We characterize the first instance-
dependent PAC sample complexity of contextual bandits through a quantity ⇢⇧,
and provide matching upper and lower bounds in terms of ⇢⇧ for the agnostic and
linear contextual best-arm identification settings. We show that no algorithm can be
simultaneously minimax-optimal for regret minimization and instance-dependent
PAC for best-arm identification. Our main result is a new instance-optimal and
computationally efficient algorithm that relies on a polynomial number of calls to
an argmax oracle.

1 Introduction

We consider the stochastic contextual bandit problem in the PAC setting. Fix a distribution ⌫ over a
potentially countable1 set of contexts C. The action space is A, and for computational tractability,
we assume |A| is finite. We have a set of policies ⇧ of interest where each policy ⇡ 2 ⇧ is a map
from contexts to an action space ⇡ : C ! A. The reward function is r : C ⇥ A ! R. At each
time t = 1, 2, . . . a context ct ⇠ ⌫ arrives, the learner chooses an action at 2 A, and receives
reward rt := rt(ct, at) 2 R with E[rt|ct, at] = r(ct, at) 2 R. The value of a policy V (⇡) is the
expected reward from playing action ⇡(c) in context c: V (⇡) = Ec⇠⌫ [r(c,⇡(c))]. Given a collection
of policies ⇧, the objective is to identify the optimal policy ⇡⇤ := argmax⇡2⇧ V (⇡), with high
probability. Formally, for any ✏ > 0 and � 2 (0, 1), we seek to characterize the sample complexity of

1Assuming the set of contexts is countable versus uncountable is for presentation purposes only, since it
allow us the notational convenience of letting ⌫c denote the probability of context c arriving.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

identifying a policy ⇡ 2 ⇧ such that V (⇡) � V (⇡⇤)� ✏, with probability at least 1� �. That is, we
wish to minimize the total amount of interactions with the environment to learn an ✏-optimal policy.

We study both the agnostic setting, where ⇧ is an arbitrary set of policies with no assumed relationship
with the reward function r(c, a); and the realizable setting, where the policy class and the reward
function follow a linear structure, known as the linear contextual bandit problem. In both cases,
we are interested in instance-dependent sample complexity bounds. That is, the upper and lower
bounds we seek do not simply depend on coarse quantities like |⇧|, |A|, and 1/✏2, but more fine-
grained relationships between the context distribution ⌫, geometry of policies ⇧, and the reward
function r : C ⇥A ! R. Our motivation is that instance-dependent bounds describe the difficulty
of a particular problem instance, allowing optimal algorithms to adapt to the true difficulty of the
problem, whether easy or hard. We seek algorithms that take advantage of “easy” instances instead of
optimizing for the worst-case [23].

1.1 Related work

Minimax regret bounds for general policy classes The vast majority of research in contextual
bandits focuses on regret minimization. That is, for a time horizon T , the goal of the player is
to minimize E

hPT
t=1 r(ct,⇡⇤(ct))� r(ct, at)

i
. The landmark algorithm EXP4 for non-stochastic

multi-armed bandits [5] achieves a regret bound of
p
|A|T log(|⇧|). Unfortunately, the running time

of EXP4 is linear in |⇧| which is prohibitive for many problems of interest. The algorithms proposed
in [3, 11] achieve the same regret bound with a computational complexity that is only polynomial
in T and log(|⇧|). Both approaches can be used to obtain an ✏-optimal policy with probability at
least 1 � � using a sample complexity no more than |A| log(|⇧|/�)

✏2 . None of these works made any
assumption on the connection between the reward function r and the policy class ⇧ (i.e. the agnostic
setting).
Instance-dependent regret bounds for general policy classes The epoch-greedy algorithm
of [26] achieved the first instance-dependent bounds on regret with a coarse guarantee depend-
ing only on the minimum policy gap �pol := V (⇡⇤) � max⇡ 6=⇡⇤ V (⇡). In the pursuit of more
fine-grained regret bounds achievable by computationally efficient algorithms, many authors resort
to the realizability assumption [14–16, 34]. The learner knows a hypothesis class H where each
f 2 H is a map f : C ⇥ A ! R, and there exists an f

⇤
2 H such that r(c, a) = f

⇤(c, a) for all
(c, a) 2 C⇥A. Under this assumption, [16] proves lower and upper bounds on the instance-dependent
regret. Their bounds are in term of the uniform gap �uniform := minc2C mina2A r(c,⇡⇤(c))�r(c, a).
In general, for any policy class, they establish matching minimax lower and upper regret bounds of
the form min{

p
|A|T log(|H|), |A| log(|H|)

�uniform
Cpol
H

}, where Cpol
H

is the policy disagreement coefficient, a
parameter depending on the geometry of H and the context distribution ⌫. That is, these bounds hold
with respect to a worst-case family of instances parameterized by �uniform and Cpol

H
. Using the stan-

dard online-to-batch conversion, this translates to a sample complexity (i.e. the time required to find
an ✏-good policy with constant probability) of roughly |A| log(|H|)

✏ �uniform
Cpol
H

. We show in Corollary 2.16
that this sample complexity is at least as large as our bounds. Further, unlike our bounds below, this
sample complexity is unbounded as ✏ goes to 0. Recent work refines these kinds of regret bounds
further, and provides minimax regret bounds in terms of the decision-estimation coefficient [17].
Regret bounds for linear contextual bandits A special case of the realizable case assumes a
linear structure for H. Assume there exists a known feature map � : C ⇥A ! Rd and an unknown
✓⇤ 2 Rd such that the true reward function is given as r(c, a) = h�(c, a), ✓⇤i. For this setting,
popular optimism-based algorithms like LinUCB [27] and Thompson sampling [31, 33] achieve a
regret bound of min{d

p
T ,

d2

�uniform
} [1]. Appealing to the online-to-batch conversion, this translates

to a PAC guarantee of d2

✏ �uniform
. More precise instance-dependent upper bounds on regret match

instance-dependent lower bounds asymptotically as T ! 1 [19, 36]. These works are most similar
to our setting and have qualitatively similar style algorithms. However, both approaches rely on
asymptotics with large problem-dependent terms that may dominate the bounds in finite time. Our
work is focused on upper bounds that nearly match lower bounds for all finite times.

Recently, instance-dependent sample complexity results for reinforcement learning in the tabular and
linear function approximation settings have appeared [4, 39, 40]. As contextual bandits is a special
case of finite-horizon reinforcement learning with a horizon length of 1, their results immediately can

2

be applied here. However, the cost of this generality is that these algorithms have very large lower
order terms (i.e., problem-dependent factors that multiply a 1/✏ term) making them far from optimal
in our setting. Moreover, the leading order term of [39] cannot be related to our lower bounds.

PAC sample complexity for contextual bandits As we will describe, all contextual bandits with
an arbitrary policy class can be reduced to PAC learning for linear bandits. Once we made this reduc-
tion, our sample complexity analysis draws inspiration from the nearly instance-optimal algorithm
for linear best-arm identification [13]. The work in [10] provides a simple regret bound assuming a
kernel structure on the reward function, while their bound is minimax and they assume a lower bound
on eigenvalues of the covariance matrix of the context distribution. PAC sample complexity of linear
contextual bandits was also studied in [41], who shows a minimax guarantee sample complexity that
scales with d2

✏2 log(1/�). Similar to our work, [3] define their action sampling distribution as a convex
combination over policies. Our sampling distribution, as well as the optimal sampling distribution,
cannot be represented this way and is actually derived from the dual of the optimal experimental
design objective.

Contributions. In this work, our contributions include:

1. In the agnostic setting, we introduce a quantity ⇢⇧ that characterizes the instance-dependent
sample complexity of PAC learning for contextual bandits (see Equation 1). We show that ⇢⇧ appears
in information theoretic lower bound on the sample complexity of any PAC algorithm as ✏ ! 0
in Theorem 2.2. To ground this, we describe it carefully in the setting of the trivial policy class
(Section 2.2) and linear policy classes (Section 2.3).
2. We construct an instance on which any regret minimax-optimal algorithm necessarily has a sample
complexity that scales quadratically with the optimal sample complexity (Theorem 2.6). This shows
that no algorithm can be both regret minimax-optimal and instance-optimal PAC.
3. Finally, we propose Algorithm 3 whose sample complexity nearly matches the lower bound based
on ⇢⇧. By appealing to an argmax oracle, this algorithm has a runtime polynomial in ⇢⇧, 1/✏,
log(1/�), |A|, and log(|⇧|), assuming a unit cost of invoking the oracle.

2 Problem statement and main results

More formally, define Ft = �(c1, a1, r1, . . . , ct, at, rt) as the natural �-algebra filtration capturing
all observed random variables up to time t. For simplicity, we assume Gaussian noise in some of
our analysis. At each time t an algorithm defines a sampling rule Ft 7! A which defines at+1, an
{Ft}t�1-adapted stopping time ⌧ 2 N, and a selection rule Ft 7! ⇧ that is only called once at the
stopping time t = ⌧ .
Definition 2.1. Fix ✏ � 0 and � 2 (0, 1). We say an algorithm is (✏, �)-PAC for contextual bandits
with policy class ⇧, if for every instance, at the stopping time ⌧ 2 N with ⌧ < 1 almost surely, the
algorithm outputs b⇡ 2 ⇧ satisfying P(V (b⇡) � max⇡2⇧ V (⇡)� ✏) � 1� �.

The sample complexity of an (✏, �)-PAC algorithm for contextual bandits is the time at which the
algorithm stops and outputs b⇡. As we will discuss, the following quantity governs the sample
complexity :

⇢⇧,✏ := min
pc24A, 8c2C

max
⇡2⇧\⇡⇤

Ec⇠⌫

h⇣
1

pc,⇡(c)
+ 1

pc,⇡⇤(c)

⌘
1{⇡⇤(c) 6= ⇡(c)}

i

(Ec⇠⌫ [r(c,⇡⇤(c))� r(c,⇡(c))] _ ✏)2
. (1)

Here, for any countable set X we have that 4X = {p 2 R|X | :
P

x2X
px = 1, px � 0 8x 2 X}

so that pc for every c 2 C defines a probability distribution over actions A. In addition we use the
notation a _ b := max{a, b}. We begin with a necessary condition on the sample complexity for the
particular case of exact policy identification (✏ = 0).
Theorem 2.2 (Lower bound). Fix ✏ = 0 and � 2 (0, 1). Moreover, fix a contextual bandit instance
µ = (⌫, r) and a collection of policies ⇧. Then any (0, �)-PAC algorithm for contextual bandits
satisfies Eµ[⌧] � ⇢⇧,0 log(1/2.4�).

The proof of the lower bound follows from standard information theoretic arguments [24]. The
lower bound implicitly applies to learners that know the distribution ⌫ precisely. In practice, such
knowledge would never be available however the learner may have a large dataset of offline data.

3

Assumption 1. Prior to starting the game, the learning algorithm is given a large dataset of
contexts D = {ct}

T
t=1, where each ct is drawn IID from ⌫ for all t 2 [T], and T =

O(poly(1/✏, |A|, log(1/�), log(|⇧|))).

The above only assumes access to samples from the context distribution, not rewards or the value
function. Importantly, since C could be uncountable, we do not assume D covers the support of ⌫.
Assumption 1 is satisfied, for example, in an e-commerce setting where the context is the demographic
information about visitors to the site for which massive troves of historical data may be available.
Other works in PAC learning have made similar assumptions [20]. We would like our algorithm to be
computationally efficient in the sense that it makes a polynomial number of calls to what we refer to
as argmax oracle. Such an assumption is common in the contextual bandits literature [3, 11, 25].
Definition 2.3 (Argmax oracle (AMO)). The oracle AMO(⇧, {(ct, st)}nt=1) is an algorithm that
given contexts and cost vectors (c1, s1), · · · , (cn, sn) 2 C ⇥R|A|, returns argmax

⇡2⇧

Pn
t=1 st (⇡ (ct)).

The constrained argmax oracle C-AMO, given an upper bound l on the loss, returns
argmax

⇡2⇧

Pn
t=1 st (⇡ (ct)) subject to

Pn
t=1 st (⇡ (ct)) l.

In general we can implement AMO by calling to cost-sensitive classification [6, 11] and C-AMO

through a Lagrangian relaxation and a cost-sensitive classification oracle [2, 8]. Our algorithm uses
an argmax oracle as a subroutine at most polynomially in ✏

�1
, log(1/�), |A| and log(|⇧|). In this

sense, it is computationally efficient. The following sufficiency result holds for general ✏ � 0.
Theorem 2.4 (Upper bound). Fix ✏ � 0 and � 2 (0, 1). Under Assumption 1, there ex-
ists a computationally efficient (✏, �)-PAC algorithm for contextual bandits that satisfies ⌧

⇢⇧,✏ log(|⇧| log2(1/✏)/�) log(1/�✏), where �✏ = max{✏,min⇡2⇧\⇡⇤ V (⇡⇤) � V (⇡)}. Further-
more, this sample complexity never exceeds |A|(log(|⇧|)+log(1/�)) log(1/✏)

✏2 .

The second part of the theorem follows from the first, since ⇢⇧,✏ 2|A|/✏
2 by taking pc,a = 1/|A|

for all (c, a) 2 C ⇥A.

2.1 Inefficiency of low-regret algorithms

Computationally efficient algorithms are known to exist, such as ILOVETOCONBANDITS [3],
which achieve a minimax-optimal cumulative regret of

p
T |A| log(|⇧|/�). Inspecting the proof

in [3], one can extract a sample complexity of ✏�2
|A| log(|⇧|/�) from such results (which is also

minimax optimal for PAC). The previous section showed that the sample complexity of our algorithm,
Theorem 2.4, nearly matches the instance-dependent lower bound of Theorem 2.2. In other words,
our algorithm achieves a nearly optimal instance-dependent PAC sample complexity. However, it is
natural to wonder if perhaps with a tighter analysis, the minimax regret optimal algorithm in [3] also
obtains the instance-optimal PAC sample complexity. In this section, we show that this is not the case.
Indeed, we show that any algorithm that is minimax regret optimal must have a sample complexity
that is at least quadratic in the optimal PAC sample complexity of some instance.
Definition 2.5 (Hard instance). Fix m 2 N, � 2 (0, 1] and let C = [m] with uniform distribution,
A = {0, 1}. For i = 1, . . . ,m, let ⇡i(j) = 1{i = j} and define r(i, j) = �1{j = ⇡1(i)}. Then
V (⇡1) = � and V (⇡i) = �(1� 2/m) for all i 2 C \ {1}.

Note that for the hard instance, m = |⇧|. If observations are corrupted by N (0, 1) additive noise,
then a straightforward calculation shows that ⇢⇧,0 = 4/m

(2�/m)2 = m��2 for the hard instance.

Theorem 2.6. Fix � 2 (0, 1) and � 2 (0, 1]. We say an algorithm is an ↵-minimax regret algorithm
if for some ↵ > 0 and all T 2 N :

max
µ0

Eµ0

h TP
t=1

(rt(ct,⇡⇤(ct))�rt(ct, at))
i
= max

µ0

P
c,a

Eµ0 [Tc,a(T)](r(c,⇡⇤(c))�r(c, a))
p
↵|A|T

where the maximum is taken over all contextual bandit instances µ
0 = (⌫0, r0) and Tc,a(T) =PT

t=1 1{ct = c, at = a}. For any ↵-minimax regret algorithm, it is (0, �)-PAC if at a stopping
time ⌧ it outputs the optimal policy ⇡⇤ w. p. at least 1� �. Any ↵-minimax regret algorithm that is
(0, �)-PAC satisfies Eµ[⌧] � m

2��2 log2(1/2.4�)/4↵ for the instance µ = (⌫, r) defined in 2.5.

4

We point out that the minimax regret optimal rate takes ↵ = log(m) = log(|⇧|). Thus, taking � = 1
and � = 0.1, the minimax regret optimal algorithm has a PAC sample complexity of m2

/ log(m);
whereas the PAC sample complexity of our algorithm, Theorem 2.4, is just m log(m). That is,
algorithms with optimal minimax regret have a sample complexity that is at least nearly the optimal
PAC sample complexity squared. This demonstrates that no algorithm can simultaneously be minimax
regret optimal and obtain the optimal PAC sample complexity.

2.2 Trivial policy class

As a warm-up to discussing linear policy classes, let us consider the simplest policy class.
Definition 2.7 (Trivial policy class). Assume |C| < 1 and let ⇧ = {⇡(c) = a : (c, a) 2 C ⇥A} so
that |⇧| = |A|

|C|.

The trivial policy class has the flexibility to predict any action a 2 A individually for each c 2 C.
This allows us to show that ⇢⇧,0 maxc

2
⌫c

P
a0 ��2

c,a0 (see Appendix A.3). An immediate corollary
of Theorem 2.4 is obtained by simply noting that |⇧| = |A|

|C|.
Corollary 2.8 (Trivial class, upper). Fix ✏ > 0 and � 2 (0, 1). Let ⇧ be the trivial policy class applied
to some fixed C,A spaces. Then under Assumption 1 there exists a computationally efficient (✏, �)-PAC
algorithm for contextual bandits that satisfies ⌧ min{A✏

�2
,maxc

1
⌫c

P
a0 ��2

c,a0}(|C| log(|A|) +
log(1/�)) log(1/�✏), where �✏ = max{✏,min⇡2⇧\⇡⇤ V (⇡⇤)� V (⇡)}. Furthermore, this sample
complexity never exceeds |A|(|C| log(|A|)+log(1/�))

✏2 log(1/✏).

Ignoring log factors, the minimax sample complexity of the trivial class is just ✏�2
|A|(|C|+log(1/�)).

This is actually a somewhat surprising result, because it says lim�!0
E[⌧]

log(1/�) ! ✏
�2

|A| which
is independent of |C|. To see why this result is somewhat remarkable, if we played a best-arm
identification algorithm for each of the |C| contexts, then this would lead to a sample complexity of
✏
�2

|C| · |A| log(1/�). It is somewhat of a surprise that such a natural strategy is not optimal. For
intuition for why we can avoid the multiplicative |C|, note that to identify an ✏-good policy among
just two policies (⇡,⇡⇤) using uniform exploration requires just ✏�2

|A| log(1/�) samples. When we
have more than two policies, a union bound achieves the claimed result.

The minimax sample complexity of Corollary 2.8 (i.e., the second statement) is nearly tight:
Theorem 2.9 (Trivial class, lower). Fix ✏ > 0 and � 2 (0, 1/6). Let ⇧ be the trivial policy
class applied to some fixed C,A spaces. Moreover, fix a contextual bandit instance µ = (⌫, r)
and a collection of policies ⇧. Then any (0, �)-PAC algorithm for contextual bandits satisfies
Eµ[⌧] � maxc

1
⌫c

P
a �

�2
c,a log(1/2.4�). Furthermore, supµ Eµ[⌧] � ✏

�2
|A|(|C|+ log(1/�)).

2.3 Linear policy class

A particularly compelling model-class of policies is the set of linear policies.
Definition 2.10 (Linear policy class). Fix a feature map � : C ⇥A ! Rd and assume it is known to
the learner. Let ⇧ = {⇡(c) = argmaxa2Ah�(c, a), ✓i, 8✓ 2 Rd

}.

We can consider two settings: the agnostic setting and the realizable setting. In the agnostic setting,
there is no assumed relationship between the true reward function r(c, a) and � : C ⇥A ! Rd. In
this case, Theorem 2.4 applies directly by taking a cover of ⇧.
Corollary 2.11 (Agnostic, upper bound). Fix ✏ � 0 and � 2 (0, 1). Let ⇧ be the linear pol-
icy class in Rd. Under Assumption 1 there exists a computationally efficient (✏, �)-PAC algo-
rithm for contextual bandits that satisfies ⌧ ⇢⇧,✏ · (d log(1/✏) + log(1/�)) log(1/�✏) where
�✏ = max{✏,min⇡2⇧\⇡⇤ V (⇡⇤) � V (⇡)}. Furthermore, this sample complexity never exceeds
|A|(d log(1/✏)+log(1/�))

✏2 log(1/✏).

Comparing to the lower bound of Theorem 2.2, the instance dependent upper bound of Corollary 2.11
matches up to a factor of the dimension and negligible log factors. In contrast to the “model-free” feel
of the agnostic case, we can also consider a “model-based” type setting, i.e. the realizable setting.

5

Definition 2.12 (Realizable). We say the linear policy class is realizable if there exists a ✓⇤ 2 Rd

such that r(c, a) = h�(c, a), ✓⇤i for all c 2 C and a 2 A. Thus, for any ⇡ 2 ⇧ we have V (⇡) =
Ec⇠⌫ [r(c,⇡(c))] = Ec⇠⌫ [h�(c,⇡(c)), ✓⇤i] = h�⇡, ✓⇤i with �⇡ := Ec⇠⌫ [�(c,⇡(c))]. Finally, at the
start of the game the learner knows this model.

The setting in Definition 2.12 is commonly referred to as the linear contextual bandit problem
[1]. Clearly, we have that ⇡⇤(c) = argmaxa2Ah�(c, a), ✓⇤i. We begin by defining a quantity
fundamental to our sample complexity results:

⇢lin,✏ := min
pc24A, 8c2C

max
⇡2⇧\⇡⇤

k�⇡ � �⇡⇤k
2
Ec⇠⌫ [

P
a2A pc,a�(c,a)�(c,a)>]�1

h�⇡⇤ � �⇡, ✓⇤i
2 _ ✏2

.

Theorem 2.13 (Realizable, lower bound). Fix ✏ = 0 and � 2 (0, 1). Let ⇧ be the linear policy class
in Rd and assume it is realizable (see Definitions 2.10 and 2.12). Any (0, �)-PAC algorithm in this
setting satisfies E[⌧] � ⇢lin,0 · log(1/2.4�).

We now state our nearly matching upper bound. However, in this case we note that the algorithm is
not computationally efficient.
Theorem 2.14 (Realizable, upper bound). Fix ✏ � 0 and � 2 (0, 1). Let ⇧ be the linear policy class
in Rd and assume it is realizable (see Definitions 2.10 and 2.12). Under Assumption 1 there exists an
(✏, �)-PAC algorithm (see Algorithm 1) for this setting satisfying

⌧ ⇢lin,✏ · (min{d log(1/✏), log(|⇧|)}+ log(1/�)) log(1/�✏)

where �✏ = max{✏, min
⇡2⇧\⇡⇤

h�⇡⇤��⇡, ✓⇤i} = max{✏, min
(c,a)2C⇥A:⇡⇤(c) 6=a

h�(c,⇡⇤(c))��(c, a), ✓⇤i}.

Furthermore, this sample complexity never exceeds d(d log(1/✏)+log(1/�)) log(1/✏)
✏2 .

We remark that the algorithm that achieves this upper bound is very different than popular optimism-
based algorithms for linear contextual bandits e.g., UCB or Thompson sampling [1]. Indeed, our
algorithm computes an experimental design and is related to instance-dependent linear bandit al-
gorithms developed for best-arm identification [9, 12, 13, 35] and regret minimization [19, 36]. To
our knowledge, Theorem 2.14 provides the first instance-dependent sample complexity for the PAC
setting of linear contextual bandits. The most relevant work to Theorem 2.14 is the work of [41]
which demonstrated a minimax sample complexity of d2/✏2 log(1/�). Also, we remark that the lower
and upper bounds in this section require an additive Gaussian noise.
Remark 2.15 (Agnostic vs. Realizable). Contrasting the above results, we note that the sample
complexity of the agnostic case is always bounded by |A|d/✏

2. whereas it never exceeds d2/✏2 for
the realizable case. This matches the intuition that when the number of actions is much larger than
the dimension, assuming realizability can significantly reduce the sample complexity.

2.4 Comparison to the Disagreement Coefficient

The work of [16] provides regret bounds in terms of instance-dependent quantities inspired by the
disagreement coefficient, a notion of complexity common in the active learning literature [18]. The
following corollary relates our sample complexity to these notions of disagreement coefficients.

Define the policy disagreement coefficient as

Cpol
⇧ (✏0) = sup

✏�✏0

Ec⇠⌫ [1{9⇡ 2 ⇧✏ : ⇡(c) 6= ⇡⇤(c)}]

✏

where ⇧✏ := {⇡ 2 ⇧ : P⌫(⇡(c) 6= ⇡⇤(c)) ✏} and the cost-sensitive disagreement coefficient as

Ccsc
⇧ (✏0) = sup

✏�✏0

Ec⇠⌫ [1{9⇡ 2 ⇧ : ⇡(c) 6= ⇡⇤(c),Ec⇠⌫ [r(c,⇡⇤(c))� r(c,⇡(c))] ✏}]

✏
.

The AdaCB algorithm of [16] achieves a regret of roughly RT =

O

⇣
min�

n
��uniformT,

|A| log(|⇧|)Cpol
⇧ (�)

�uniform

o⌘
or RT = O (min� {�T, |A| log(|⇧|)Ccsc

⇧ (�)}). Ob-
serve that at time T , given the outputs ⇡1,⇡2, · · · ,⇡T from AdaCB algorithm, one could return a
(randomized) policy ⇡̃ which on observing a context, samples from the empirical distribution over

6

the outputs. By Markov’s inequality we have ⇡̃, V (⇡⇤) � V (⇡̃) O(✏) with constant probability
for ✏ = RT

T . Therefore, an upper bound on the regret translates to a PAC sample complexity of
|A| log(|⇧|)
✏�uniform

Cpol
⇧ (✏/�uniform) or |A| log(|⇧|)

✏ Ccsc
⇧ (✏).

Finally, Corollary 2.16 shows that this sample complexity bound is at least as large as our upper
bound, see Appendix A.5 for the proof.
Corollary 2.16. Recall that �uniform := min

c2C

min
a2A

r(c,⇡⇤(c))� r(c, a). For any ✏0 > 0 we have that

1. ⇢⇧,✏0
2|A|

✏0�uniform
Cpol
⇧ (✏0/�uniform);

2. ⇢⇧,✏0
2|A|

✏0
Ccsc
⇧ (✏0).

Moreover, for all ✏0 � 0 we have that ⇢⇧,✏0 < 1 whenever �pol := V (⇡⇤)�max⇡ 6=⇡⇤ V (⇡) > 0.

3 Optimal Algorithms for Contextual Bandits

3.1 Reduction to linear realizability and a simple elimination scheme

The astute reader may have noticed that if we ignore computation, Theorem 2.4 is actually an
immediate corollary of Theorem 2.14 by taking �(c, a) = vec(ece>a) 2 R|C|·|A| where ei is a
one-hot encoded vector so that r(c, a) = h�(c, a), ✓⇤i with ✓⇤ 2 R|C|·|A|. This observation is key
to our sample complexity results. Recalling �⇡ := Ec⇠⌫ [�(c,⇡(c))] (from Definition 2.12), we
have that V (⇡) = Ec⇠⌫ [r(c,⇡(c))] = Ec⇠⌫ [h�(c,⇡(c)), ✓⇤i] = h�⇡, ✓⇤i. We stress that C can be
uncountable, and thus we would never actually instantiate any of the vectors �(c, a).

For notational convenience, define the feasible set of (context, action) probability distributions as
⌦ =

n
w 2 �C⇥A : ⌫c =

P
a2A

wa,c

o
. Note that for each context, pc := {wc,a/⌫c}a2A 2 �A

defines a probability distribution over actions. Also define A(w) :=
P

c,a wc,a�(c, a)�(c, a)> for
any w 2 ⌦. Under this notation, recalling the right hand side from Theorems 2.13 and 2.14 we have

min
w2⌦

max
⇡2⇧\⇡⇤

k�⇡ � �⇡⇤k
2
A(w)�1

h�⇡⇤ � �⇡, ✓⇤i
2 _ ✏2

= min
pc24A, 8c2C

max
⇡2⇧\⇡⇤

k�⇡ � �⇡⇤k
2
Ec⇠⌫ [

P
a2A pc,a�(c,a)�(c,a)>]�1

h�⇡⇤ � �⇡, ✓⇤i
2 _ ✏2

To show that the sample complexity of Theorem 2.4 is a corollary of Theorem 2.14, it suffices to
show that equation (1) and the above display are equal. To see this, observe

k�⇡ � �⇡⇤k
2
A(w)�1 = kEc⇠⌫ [vec(ece>⇡(c))� vec(ece>⇡⇤(c)

)]k2A(w)�1

=
P

c,a
⌫2
c

wc,a
(1{⇡(c) = a}+ 1{⇡⇤(c) = a}� 21{⇡(c) = ⇡

0(c)})

= Ec⇠⌫

h⇣
1

pc,⇡(c)
+ 1

pc,⇡⇤(c)

⌘
1{⇡⇤(c) 6= ⇡(c)}

i
.

Due to this equivalence, the lower bound of Theorem 2.2 is also a corollary of Theorem 2.13. The
lower bound of Theorem 2.13 follows almost immediately from the lower bound argument in [13].

The conclusion of this section is that from a sample complexity analysis alone, all that is left is to
prove Theorem 2.14. In the next section we propose an algorithm that achieves this sample complexity
but assumes precise knowledge of the context distribution ⌫ (this is relaxed in following sections).
While the algorithm is highly impractical for a number of reasons, its analysis provides a great deal
of intuition and motivation for our final algorithm.

3.2 A simple, impractical, elimination-style algorithm

Algorithm 1 provides an initial elimination based method for the PAC-contextual bandit problem.
The algorithm runs in stages. Before the start of each stage ` 2 N, the algorithm defines a distribution
p
(`)
c 2 4A for each c 2 C. At each successive time t 2 [n`], it plays random action at ⇠ p

(`)
ct

in response to context ct ⇠ ⌫, and receives random reward rt with E[rt|ct, at] = h�(ct, at), ✓⇤i.
Observe that

E [�(ct, at)rt] = E
⇥
�(ct, at)�(ct, at)>✓⇤

⇤
=

P
c2C,a2A

w
(`)
c,a�(c, a)�(c, a)>✓⇤ = A(w(`))✓⇤

7

using the identity w
(`)
c,a := ⌫cp

(`)
c,a. Thus, if we set Ot = A(w(`))�1

�(ct, at)rt then E[Ot] = ✓⇤. A
straightforward calculation also shows that Cov(Ot) = A(w(`))�1 if rt is perturbed with additive
unit variance noise. Thus, an unbiased estimator of �(⇡,⇡⇤) := V (⇡⇤)� V (⇡) = h�⇡⇤ � �⇡, ✓⇤i

is simply h�⇡⇤ � �⇡,
1
n`

P
t Oti which has variance 1

n`
k�⇡⇤ � �⇡k

2
A(w(`))�1 . Intuitively, h�⇡⇤ �

�⇡,
1
n`

P
t Oti = h�⇡⇤ � �⇡, ✓⇤i ±

q
1
n`
k�⇡⇤ � �⇡k

2
A(w(`))�1 so we can safely conclude that a

policy ⇡ is sub-optimal (i.e., ⇡ 6= ⇡⇤) if there exists any policy ⇡
0 such that h�⇡0 � �⇡,

1
n`

P
t Oti �q

1
n`
k�⇡0 � �⇡k

2
A(w(`))�1 . This is the intuition behind Contextual RAGE (Algorithm 1), which

inherits its name from the best-arm identification algorithm of [13] that inspired its strategy.

However, while h�⇡⇤ � �⇡,
1
n`

P
t Oti is unbiased and has controlled variance, it is potentially

heavy-tailed because w
(`)
c,a can be arbitrarily small. Instead of trying to control w(`)

c,a and appealing to
Bernstein’s inequality, in line 7 we use the robust mean estimator of Catoni [28]. We can then show:
Lemma 3.1. ⇡⇤ 2 ⇧` and max⇡2⇧`h�⇡⇤ � �⇡, ✓

⇤
i 4✏` for all ` > 1 w.p. at least 1� �.

The lemma states that if ⇧` is the active set of policies still under consideration, the optimal policy ⇡⇤

is never discarded from ⇧`, and moreover, the quality of all policies remaining in ⇧` is getting better
and better. We are now ready to state the main sample complexity result, with proof in Appendix B.
Theorem 3.2. Fix any policy class ⇧ = {⇡ : C ! A}⇡, distribution over contexts ⌫, � 2 (0, 1),
✏ � 0, and feature map � : C ⇥ A ! Rd such that r(c, a) = h�(c, a), ✓⇤i (w.l.o.g. one can
always take �(c, a) = vec(ece>a)). With probability at least 1 � �, if �⇡ = Ec⇠⌫ [�(c,⇡(c))] and
⇡⇤ = argmax⇡h�⇡, ✓⇤i then Contextual-RAGE returns a policy b⇡ 2 ⇧ such that V (b⇡) � V (⇡⇤)� ✏

after taking at most

cmin
w2⌦

max
⇡2⇧

k�⇡ � �⇡⇤k
2
A(w)�1

(h�⇡⇤ � �⇡, ✓
⇤i _ ✏)2

log(log((� _ ✏)�1)|⇧|/�) log((� _ ✏)�1)

samples, where c is an absolute constant and � = min⇡2⇧\⇡⇤ V (⇡⇤)� V (⇡).

3.3 Towards a more efficient algorithm

One major issue with Algorithm 1 is that it explicitly maintains a set of policies ⇧` from round
to round. Since ⇧ could be exponential in |A|, this is a non-starter for any implementation. As a
motivation for our approach, we consider a non-elimination algorithm, Algorithm 2, as an intermediate
step. It does not maintain ⇧` and instead just solves the optimization problem (2) over ⇧. The
design computed in (2) is chosen to ensure that for all ⇡ 2 ⇧, |b�`�1(⇡, b⇡`�1) � �(⇡,⇡⇤)|
2✏`�1 + 1

4�(⇡,⇡⇤) with high probability (Lemma C.3). Equivalently, we estimate gaps up to a
constant factor for policies with �(⇡,⇡⇤) > ✏`, while our gap estimates are bounded by ✏` for those
policies satisfying �(⇡,⇡⇤) ✏`. This ensures that our choice of b⇡` is good enough, i.e. satisfies
V (⇡⇤)� V (b⇡`) ✏` with high probability. The full proof is in Appendix C.

Unfortunately, Algorithm 2 introduces additional problems. It is not clear whether solving (2) is
computationally efficient. Also, we need to find an estimator b�l that is computationally efficient even
if the policy space ⇧ is infinite. In addition, it requires precise knowledge of ⌫ to even define the
domain of distributions ⌦ optimized over, and store the solution w 2 C⇥A explicitly. But in general,
such precise knowledge will not be available and is only estimable using past data (Assumption 1).

3.4 An instance-optimal and computationally efficient algorithm.

In this section we provide Algorithm 3, which witnesses the guarantees of Theorem 2.14 for the
general agnostic contextual bandit problem. We now address the caveats of the previous approaches.

Access to Offline Data. By Assumption 1, we have access to a large amount of sampled offline
contexts D, where each ct 2 D is drawn IID from ⌫. Having access to D allows us to approximate
Ec⇠⌫ [·] with expectations over the empirical distribution Ec⇠⌫D [·], where ⌫D is the uniform distribu-
tion over historical data D. The number of offline contexts we need only scales logarithmically over
the size of the policy set ⇧, more specifically, poly(|A|, ✏

�1
, log(|⇧|), log(1/�)). We quantify the

precise number of samples needed in Appendix D.2.

8

Algorithm 1 Elimination Contextual RAGE
Input: ⇧, � : C ⇥A ! Rd, � 2 (0, 1)
1: Initialize ⇧1 = ⇧
2: for ` = 1, 2, · · · , dlog2(1/✏)e do
3: ✏` := 2�`

, �` := �/(2`2|⇧|)
4: Let n` be the minimum value s.t.:

min
w2⌦

max
⇡,⇡02⇧`

k�⇡ � �⇡0k2A(w)�1 log(1/�`)

n`
 ✏

2
`

with solution w
(`).

5: For each t 2 [n`], get ct ⇠ ⌫, pull at ⇠ p
(`)
ct ,

observe reward rt

6: Compute Ot = A(w(`))�1
�(ct, at)rt.

7: For ⇡,⇡0 2 ⇧`

b�`(⇡,⇡
0) = Cat({h�⇡ � �⇡0 , Oii}n`

i=1)

8: Update

⇧`+1 = ⇧`\{⇡0 2 ⇧l | max
⇡2⇧`

: b�`(⇡,⇡
0) > ✏`}

9: end for
Output: ⇧`+1

Algorithm 2 Non-elimination Contextual RAGE
Input: ⇧, � : C ⇥A ! Rd, � 2 (0, 1)
1: Initialize: b⇡0 2 ⇧ arbitrarily
2: for ` = 1, 2, · · · , dlog2(1/✏)e do
3: ✏` := 2�`, �` := �/(2`2|⇧|)
4: Let n` be the minimum value s.t.:

min
w2⌦

max
⇡2⇧

�1
4
b�l�1(⇡, b⇡l�1)

+

r
2k�⇡��b⇡l�1

k2
A(w)�1 log(1/�l)

n`
 ✏`. (2)

with solution w
(`)

5: For each t 2 [n`], get ct ⇠ ⌫, pull at ⇠ p
(`)
ct ,

observe reward rt

6: Compute Ot = A(w(`))�1
�(ct, at)rt.

7: For each ⇡ 2 ⇧, let

b�`(⇡, b⇡`�1) = Cat({h�⇡ � �b⇡`�1 , Oii}n`
i=1).

8: Set b⇡` := argmin⇡2⇧
b�`(⇡, b⇡`�1) (3)

9: end for
Output: b⇡l

Computing the design efficiently. As described, the context space C may be infinite so maintaining
a distribution ! 2 ⌦ ⇢ �C⇥A is not possible. To overcome this issue, we consider the dual problem
of equation (2). We can remove the square root by noticing that 2pxy = min�>0 �x + y

� , and
introducing an additional minimization over the variable �⇡,⇡ 2 ⇧. Then, the dual problem becomes

max�2�⇧ minw2⌦ min�⇡�0
P

⇡2⇧ �⇡

⇣
�b�l�1(⇡, b⇡l�1) + �⇡

���⇡ � �b⇡l�1

��2
A(w)�1 +

log(1/�l)
2�⇡nl

⌘
.

(4)
Exchanging the order of the minimums on ! and �, somewhat surprisingly we have the close-form
expression (Lemma E.6)

min!2⌦
P

⇡2⇧ �⇡�⇡k�⇡ � �b⇡`�1
k
2
A(w)�1 = Ec⇠⌫

"✓P
a2A

q
(�� �)>t(c)a (b⇡l�1)

◆2
#
,

where for ⇡0
2 ⇧, t(c)a (⇡0) 2 {0, 1}|⇧| with [t(c)a (⇡0)]⇡ := 1{⇡(c) = a,⇡

0(c) 6= a} + 1{⇡(c) 6=
a,⇡

0(c) = a} and [�� �]⇡ := �⇡�⇡. Interestingly, this value is achieved at a sampling distribution
!, which is a non-linear function of � rather than a convex combination over policies (as in [3]).
Because we have an expectation over contexts, this expectation can be replaced by an empirical
estimate using historical data, thus avoiding any issues with an infinite context space. The final
algorithm utilizing these observations found is in Algorithm 3.

The main challenge is finding a solution to the design (5). First, we can reduce it to a saddle point
problem over (�, �) by considering only a dyadic sequence of n 2 {2k : k 2 N}. We use an
alternating ascent/descent method, with the caveat that � lives in a simplex, and � in a box. Both
spaces are defined over a potentially infinite set of policies ⇧ (in the worst case exponential in |C|).

To handle this, we use the Frank-Wolfe (FW) method on �. Referring to the iterates of FW as �t, FW
guarantees that the size of the support of �t in each iterate grows by at most 1. Thus, if initialized as a
1-sparse vector, we only need to maintain a sparse �

t in each iteration. Each iterate of FW computes
argmax

⇡2⇧
[r�h`(�, �, n)]⇡.

To do so, we show that we can appeal to a constrained argmax oracle (AMO) to run the Frank-Wolfe
algorithm, a similar approach to [3]. To optimize over � we use a gradient descent procedure. We
show that in each iterate, the support of � is contained in that of �, and we can quantify the number of
steps of gradient descent needed to find an ✏-good solution. Though hl(�, �, n) might not be convex
in �, we nevertheless are able to argue that it has a unique minima and that gradient descent converges
to this minima. We introduce our subroutine and further discuss the above claims in Appendix D.

9

Regularized Estimator. While Algorithms 1 and 2 use a robust mean estimator as in equation (3),
this estimator is impractical with a very large number of policies ⇧. Instead, we use a regularized IPS
estimator that can be computed using historical data and an argmax oracle.

Algorithm 3 Contextual Oracle-efficient Dualized Algorithm (CODA)
Input: policies ⇧ = {⇡ : C ! A}⇡ , feature map � : C ⇥A ! Rd, � 2 (0, 1), historical data D = {⌫s}s
1: initiate b⇡0 2 ⇧ arbitrarily, �0 = eb⇡0 , b�0(⇡), �0, �min, �max appropriately
2: for l = 1, 2, · · · do
3: ✏l = 2�l, �l = �/(l2|⇧|2)
4: Define

hl(�, �, n) =
P

⇡2⇧ �⇡

⇣
�b��l�1

l�1 (⇡, b⇡l�1) +
log(1/�l)

�⇡n

⌘
+ Ec⇠⌫D

h⇣P
a2A

q
(�� �)>t(c)a (b⇡l�1)

⌘2i
.

5: Let �l
, �

l
, nl = FW-GD(⇧, |A|, b⇡l�1, ✏l). These are the solutions to

n` := min{n 2 N : max
�2�⇧

min
�2[�min,�max]|⇧|

hl(�, �, n) ✏`} (5)

6: For i 2 [n`] get ci ⇠ ⌫, pull ai ⇠ p
(`)
ci where p

(`)
cs,as /

q
(�l � �l)>t

(cs)
as (b⇡l�1), observe rewards rs

7: For each ⇡ 2 ⇧, define the IPS estimator

b��l
l (⇡, b⇡l�1) =

nlX

s=1

rs

p
(`)
cs,as + [�l]⇡

(1{b⇡l�1(cs) = as}� 1{⇡(cs) = as})

8: set

b⇡l = argmin⇡2⇧
b��l

l (⇡, b⇡l�1) + Ec⇠⌫D

✓
[�l]⇡

p
(`)
c,a

+ [�l]⇡

p
(`)

c,a0

◆
1{b⇡l�1(c) 6= ⇡(c)}

�
+ log(1/�l)

[�l]⇡nl
(6)

9: end for
Output: b⇡l

Algorithm 3 puts all the pieces together and Theorem 3.3 shows our main result. Note that for
exposition purposes, we have omitted some additional regularization terms in the optimization prob-
lems that have no effect on the sample complexity, but ensure finite-time convergence. Appendix E
shows the full algorithm and the proof. In what follows, poly1(|A|, ✏

�1
, log(1/�)) · log(|⇧|) and

poly2(|A|, ✏
�1

, log(1/�), log(|⇧|)) are polynomials in their arguments.
Theorem 3.3. Fix set of policies ⇧, context distribution ⌫ and reward function r(c, a) 2 [0, 1]. With
probability at least 1��, provided a history D whose size exceeds poly1(|A|, ✏

�1
, log(1/�))·log(|⇧|),

Algorithm 3 returns a policy b⇡ satisfying V (⇡⇤)� V (b⇡) ✏ in a number of samples not exceeding
O(⇢⇤,✏ log(|⇧| log2(1/�✏)/�) log2(1/�✏) where �✏ := max{✏,min⇡2⇧ V (⇡⇤)� V (⇡)}.

In addition, Algorithm 3 is computationally efficient and requires at most
poly2(|A|, ✏

�1
, log(1/�), log(|⇧|)) calls to a constrained argmax oracle.

Conclusion. This work provides the first instance-dependent lower bounds for the (✏, �)-PAC
contextual bandit problem. One limitation of this work is that our analysis of Algorithm 3 does not
immediately extend to the realizable linear setting. That is, a computationally efficient algorithm
that achieves the same bound is not known to exist. In the general agnostic settings discussed in
this work, we proposed a computationally efficient algorithm. A second limitation is the assumption
that we have access to a large pool of offline data. Because it seems necessary to plan with some
information about the context distribution, it is not clear how one would completely remove such
an assumption and achieve the same sample complexity bounds. As with any recommender system,
there is the potential for unintended consequences from optimizing just a single metric. Moreover,
other potential pitfalls can arise, such as negative feedback loops, if our assumptions fail to hold in
real-world environments. Such consequences can be mitigated by tracking a diverse set of metrics.

Acknowledgement and Disclosure of Funding This work was supported, in part, by NSF award
1907907.

10

References
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. Advances in neural information processing systems, 24, 2011.

[2] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A
reductions approach to fair classification. In International Conference on Machine Learning,
pages 60–69. PMLR, 2018.

[3] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire.
Taming the monster: A fast and simple algorithm for contextual bandits. In International
Conference on Machine Learning, pages 1638–1646. PMLR, 2014.

[4] Aymen Al Marjani and Alexandre Proutiere. Adaptive sampling for best policy identification in
markov decision processes. In International Conference on Machine Learning, pages 7459–
7468. PMLR, 2021.

[5] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

[6] Alina Beygelzimer, Varsha Dani, Tom Hayes, John Langford, and Bianca Zadrozny. Error
limiting reductions between classification tasks. In Proceedings of the 22nd international
conference on Machine learning, pages 49–56, 2005.

[7] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

[8] Andrew Cotter, Maya Gupta, Heinrich Jiang, Nathan Srebro, Karthik Sridharan, Serena Wang,
Blake Woodworth, and Seungil You. Training well-generalizing classifiers for fairness metrics
and other data-dependent constraints. In International Conference on Machine Learning, pages
1397–1405. PMLR, 2019.

[9] Rémy Degenne, Pierre Ménard, Xuedong Shang, and Michal Valko. Gamification of pure
exploration for linear bandits. In International Conference on Machine Learning, pages 2432–
2442. PMLR, 2020.

[10] Aniket Anand Deshmukh, Srinagesh Sharma, James W Cutler, Mark Moldwin, and Clayton
Scott. Simple regret minimization for contextual bandits. arXiv preprint arXiv:1810.07371,
2018.

[11] Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin,
and Tong Zhang. Efficient optimal learning for contextual bandits. In Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pages 169–178, 2011.

[12] Tanner Fiez, Sergio Gamez, Arick Chen, Houssam Nassif, and Lalit Jain. Adaptive experimental
design and counterfactual inference. In Workshops of Conference on Recommender Systems
(RecSys), 2022.

[13] Tanner Fiez, Lalit Jain, Kevin Jamieson, and Lillian Ratliff. Sequential experimental design for
transductive linear bandits. In Advances in Neural Information Processing Systems, 2019.

[14] Dylan Foster, Alekh Agarwal, Miroslav Dudik, Haipeng Luo, and Robert Schapire. Practical
contextual bandits with regression oracles. In International Conference on Machine Learning,
pages 1539–1548. PMLR, 2018.

[15] Dylan Foster and Alexander Rakhlin. Beyond ucb: Optimal and efficient contextual bandits
with regression oracles. In International Conference on Machine Learning, pages 3199–3210.
PMLR, 2020.

[16] Dylan Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-dependent
complexity of contextual bandits and reinforcement learning: A disagreement-based perspective.
In Conference on Learning Theory, pages 2059–2059. PMLR, 2021.

[17] Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity
of interactive decision making. arXiv preprint arXiv:2112.13487, 2021.

11

[18] Steve Hanneke et al. Theory of disagreement-based active learning. Foundations and Trends®
in Machine Learning, 7(2-3):131–309, 2014.

[19] Botao Hao, Tor Lattimore, and Csaba Szepesvari. Adaptive exploration in linear contextual
bandit. In International Conference on Artificial Intelligence and Statistics, pages 3536–3545.
PMLR, 2020.

[20] Tzu-Kuo Huang, Alekh Agarwal, Daniel J Hsu, John Langford, and Robert E Schapire. Efficient
and parsimonious agnostic active learning. Advances in Neural Information Processing Systems,
28, 2015.

[21] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Interna-
tional Conference on Machine Learning, pages 427–435. PMLR, 2013.

[22] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. On nonconvex
optimization for machine learning: Gradients, stochasticity, and saddle points. Journal of the
ACM (JACM), 68(2):1–29, 2021.

[23] Kwang-Sung Jun, Lalit Jain, Blake Mason, and Houssam Nassif. Improved confidence bounds
for the linear logistic model and applications to bandits. In International Conference on Machine
Learning (ICML), pages 5148–5157, 2021.

[24] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm
identification in multi-armed bandit models. The Journal of Machine Learning Research,
17(1):1–42, 2016.

[25] Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daumé III, and John Langford.
Active learning for cost-sensitive classification. In International Conference on Machine
Learning, pages 1915–1924. PMLR, 2017.

[26] John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side
information. Advances in neural information processing systems, 20, 2007.

[27] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661–670, 2010.

[28] Gábor Lugosi and Shahar Mendelson. Mean estimation and regression under heavy-tailed
distributions: A survey. Foundations of Computational Mathematics, 19(5):1145–1190, 2019.

[29] Shie Mannor and John N Tsitsiklis. Lower bounds on the sample complexity of exploration in
the multi-armed bandit problem. In Learning Theory and Kernel Machines, pages 418–432.
Springer, 2003.

[30] John Milnor and David W Weaver. Topology from the differentiable viewpoint, volume 21.
Princeton university press, 1997.

[31] Sareh Nabi, Houssam Nassif, Joseph Hong, Hamed Mamani, and Guido Imbens. Bayesian
meta-prior learning using Empirical Bayes. Management Science, 68(3):1737–1755, 2022.

[32] Fabian Pedregosa, Geoffrey Negiar, Armin Askari, and Martin Jaggi. Linearly convergent
frank-wolfe with backtracking line-search. In Proceedings of the 23rdInternational Conference
on Artificial Intelligence and Statistics, 2020.

[33] Daniel Russo. Simple bayesian algorithms for best arm identification. In Conference on
Learning Theory, pages 1417–1418, 2016.

[34] David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler optimal
algorithm for contextual bandits under realizability. Mathematics of Operations Research, 2021.

[35] Marta Soare, Alessandro Lazaric, and Rémi Munos. Best-arm identification in linear bandits.
Advances in Neural Information Processing Systems, 27, 2014.

12

[36] Andrea Tirinzoni, Matteo Pirotta, Marcello Restelli, and Alessandro Lazaric. An asymptotically
optimal primal-dual incremental algorithm for contextual linear bandits. Advances in Neural
Information Processing Systems, 33:1417–1427, 2020.

[37] Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

[38] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

[39] Andrew Wagenmaker and Kevin Jamieson. Instance-dependent near-optimal policy identifica-
tion in linear mdps via online experiment design. arXiv preprint arXiv:2207.02575, 2022.

[40] Andrew J Wagenmaker, Max Simchowitz, and Kevin Jamieson. Beyond no regret: Instance-
dependent pac reinforcement learning. In Conference on Learning Theory, pages 358–418.
PMLR, 2022.

[41] Andrea Zanette, Kefan Dong, Jonathan Lee, and Emma Brunskill. Design of experiments for
stochastic contextual linear bandits. Advances in Neural Information Processing Systems, 34,
2021.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Please see our conclusion.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Please see

our conclusion.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]

13

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Related work

	Problem statement and main results
	Inefficiency of low-regret algorithms
	Trivial policy class
	Linear policy class
	Comparison to the Disagreement Coefficient

	Optimal Algorithms for Contextual Bandits
	Reduction to linear realizability and a simple elimination scheme
	A simple, impractical, elimination-style algorithm
	Towards a more efficient algorithm
	An instance-optimal and computationally efficient algorithm.

	Lower Bound Results
	Proof of Theorem 2.2
	Proof of Theorem 2.6
	Trivial Class: Proof of Theorem 2.9
	Proofs of Linear Policy Class
	Proof for Corollary 2.16

	Contextual Rage Proofs Section 3.2
	Proof for sample complexity of Algorithm 2
	The FW-GD subroutine
	Proof of computational efficiency
	Quantify the offline data

	Proof of Theorem 3.3
	Intuition for convergence of duality gap
	Convergence analysis of FW-GD
	Statement of the convergence results
	Technical proofs
	Guarantees on gamma
	Convergence of Frank-Wolfe gap
	Connect the Frank-Wolfe gap to the duality gap

	Convergence of gradient descent
	Guarantees for strong concavity and local strong convexity
	Proof of strong duality

	Useful lemmas

