
A Environment Settings1

A.1 Meta world2

Here, we evaluate our model and other methods using the MT10 benchmark in Meta-world [1]. We3

use relative rewards based on the difference of achieved rewards between successive steps, where4

each step yields a reward as originally defined in Meta-world. The multi-task set in MT10 includes5

10 different environments such as reach, push, pick and place, open door, open drawer, close drawer,6

press button top-down, insert peg side, open window, and open box; each episode is set to have an7

individual configuration from 50 different positions of an object and goal.8

To generate offline RL datasets, we use the RL agents specifically trained on each task using the9

Soft actor-critic algorithm [2]. For each task, we build 3 different datasets in terms of their behavior10

quality including Medium-Replay (MR), Replay (RP), and Medium-Expert (ME). For MR, we use11

the partially trained agent (that succeeds in completing a given task first) as the medium policy. We12

collect all the data in an MR dataset until the medium policy is obtained in training. For ME, we use13

both expert data and suboptimal data; the former is generated by a well trained expert policy and14

the latter is generated by some policies whose quality is between the medium policy and the expert15

policy. For RP, we mix the datasets of MR and ME; so, RP corresponds to the datasets generated16

during a whole training procedure for each task.17

A.2 Drone navigation18

To evaluate the applicability of our model in complex problems, we conduct a case study with19

autonomous quad-copter drones in the Airsim simulator [3]. An agent has observations including20

lidar data, position, speed, and angle of rotation for drones. In addition, the agent conducts an action21

at every 500 milliseconds (timestep) and receives the observation data. Specifically, the drone agent22

manipulates the 3-dimensional acceleration for each timestep t, and receives rewards based on the23

goal distance, i.e.,24

reward =

{
∥Post−1 − Goal∥2 − ∥Post − Goal∥2
min(∥Post−1 − Goal∥2 − ∥Post − Goal∥2 − 0.1, 0) if collision.

(1)

When the goal is achieved, a new goal location is given. During given fixed timesteps in an episode,25

the agent learns to achieve as many goals as possible. If the agent collides with obstacles, the reward26

is subtracted by a given value to learn to avoid the collision.27

Indoor-pyramid Indoor-gt Indoor-cloud Indoor-complex

Figure 1: Drone navigation map settings

To build multi-task environments for drone navigation tasks, we use various maps [4] and dynamic28

wind patterns. Figure 1 shows the example rendering images of various maps. We also configure29

wind patterns with different velocity on the locations in maps.30

wind =

[
y√

(x2 + y2)
,

−x√
(x2 + y2)

, 0

]
(2)

where (x, y) is the location. We use 6 different tasks for drone navigation including indoor-complex,31

indoor-complex-wind, indoor-gt, indoor-gt-wind, indoor-cloud, and indoor-pyramid-wind. For ex-32

ample, indoor-complex denotes offline data sampled in the indoor-complex map with no wind, and33

indoor-complex-wind denotes offline data sampled in the indoor-complex map with wind. Notice that34

we do not include any wind data in the observation to simulate the multi-task environment with 635

different tasks.36

i



B Implementation37

In this section, we provide the implementation details of our model and each comparison method.38

Our model is implemented using Python v3.8, Jax v0.3.4, and Tensorflow v1.15, and is trained on a39

system of an Intel(R) Core(TM) i9-10940X processor and an NVIDIA RTX A6000 GPU.40

B.1 TD3+BC41

TD3+BC [5] is a state-of-the art offline RL algorithm, which incorporates a behavior cloning42

regularization term into the update steps of TD3. It induces the learned policy to mimic the actions43

found in the dataset. This algorithm is used as a baseline to compare our subtask embeddings with44

conventional multi-task RL methods that use the one-hot task encoding. For implementation, we45

adopt the open source (https://github.com/sfujim/TD3_BC). Our settings for hyperparameters are46

summarized in Table 1.

Hyperparameters Value
Actor network 3 full connected layers with 256 units
Critic network 3 full connected layers with 256 units
The number of critic networks 2
Activation function ReLU
Learning rate η 1 ∗ 10−4

Batch size m 1280
Iterations 1,000,000
Policy initialization He initialize
Optimizer Adam
Behavior regularizer coefficient α 2.5
Discounted factor γ 0.99
Target policy noise 0.2
Target policy clip 0.5
Policy delay 2
Polyak update coefficient 0.005

Table 1: Hyperparameter settings for TD3+BC
47

B.2 PCGrad48

PCGrad [6] is a gradient surgery-based multi-task RL algorithm. It uses a projection function that49

removes the directional conflicts between gradients for different tasks. For implementation, we use the50

open source (https://github.com/tianheyu927/PCGrad). The actor and critic models are implemented51

with 6-layer fully-connected feedforward neural networks. The number of hidden units of each layer52

is 160. The hyperparameter settings are same as those for TD3+BC in Table 1 except for the actor53

and critic network structure.54

B.3 Soft modularization55

Soft modularization [7] is a modular deep neural network architecture that is tailored with the base56

and routing networks particularly for multi-task RL. For implementation, we use the open source57

(https://github.com/RchalYang/Soft-Module). We use this method by adopting offline RL algorithms58

CQL [8]. The hyperparameter settings are summarized in Table 2, where other settings are same as in59

Table 1.

Hyperparameter Value
Number of modular layers 3
Number of modules for each layer [4, 4, 4]
Number of module hidden units 256
Representation size 256

Table 2: Hyperparameter settings for Soft modularization
60

ii



B.4 SRTD and SRTD+ID61

The entire procedure of our SRTD+ID consists of 3-phases: (1) training subtask embeddings via62

skill-regularized task decomposition, (2) data augmentation by imaginary demonstrations, and (3)63

training an offline RL agent. We use the TD3+BC algorithm for training an offline RL agent on the64

subtask embedding space, and we use only given offline data without additional interaction. Given an65

offline dataset, we add imaginary demonstrations to increase the dataset in SRTD+ID. Specifically,66

our default setting for this augmentation is to use the data of imaginary demonstrations of half size to67

the offline dataset. The hyperparameter settings are summarized in Table 3.68

Hyperparameter Value
Skill encoder network qϕ 3 full connected layers with 256 units
Skill decoder network pϕ 3 full connected layers with 256 units
Task encoder network qθ 2 full connected layers with 256 units
Task decoder network pθ 2 full connected layers with 256 units
Latent dimensions 4
Activation function (for SRTD) ReLU
Learning rate (for SRTD) 1 ∗ 10−4

Batch size (for SRTD) 2048
Length of sub-trajectory n 4
Epochs 300
Network initialization He initialize
Optimizer Adam

Table 3: Hyperparameter settings for SRTD

Algorithm 1 implements the learning procedure of our proposed SRTD+ID.69

Algorithm 1 The entire procedure of SRTD+ID
Offline dataset D, subtask embedding parameter θ, skill embedding parameter ϕ, offline RL agent parameter ψ
Regulation hyperparameter λ, batch size m, learning rate η, policy πψ , critic Qψ
// Skill-regularized task decomposition
loop

Sample {dti , τti , sti−n:ti+n, ati−n:ti+n, rti−n:ti}mi=1 ∼ D
{bt1 , bt2 , ..., btm} = qϕ({dt1 , dt2 , ..., dtm}), {zt1 , zt2 , ..., ztm} = qθ({τt1 , τt2 , ..., τtm})
{b̃0, b̃1, ..., b̃n} ∼ PB = N (0, 1)

{z̃0, z̃1, ..., z̃n} ∼ PZ = N (0, 1)

LSE(ϕ) =
1
m

∑m
i=1

∑n−1
j=−n∥ati+j − pϕ(sti+j , bti )∥2 + LPR({bti}mi=1, {b̃i}mi=1)

LTE(θ) =
1
m

∑m
i=1

∑0
j=−n∥(sti+j+1, rti+j)− pθ(sti+j , ati+j , zti )∥2

LSR(θ) =
1
m

∑m
i=1 R̃(sti , ati ) · ∥qθ(τti )− qϕ(dti )∥2

LSRTE(θ) = LTE(θ) + LPR({zti}mi=1, {z̃i}mi=1)) + LSR(θ)

ϕ← ϕ+ η · ∇LSE , θ ← θ + η · ∇LSRTE
end loop
// Data augmentation by Imaginary demonstrations
loop

Sample {τti , st} ∼ D
ãt, (s̃t+1, r̃t) = pϕ(st, zt), pθ(st, ãt, zt) where zt = qθ(τt)

D = D ∪ {(st, ãt, s̃t+1, r̃t)}
end loop
// Train offline RL agent
loop

Sample {τt, st, at, rt, τt+1, st+1} ∼ D
∇LQ(ψ)←∇CRITICLOSS(ψ, ((st, qθ(τt)), at, rt, (st+1, qθ(τt+1))), πψ)

∇LACTOR(ψ)←∇ACTORLOSS(ψ, ((st, qθ(τt)), at, rt, (st+1, qθ(τt+1))), Qψ)

ψ ← ψ + η · (∇LQ +∇LACTOR)
end loop

iii



C Additional Experiments70

C.1 Visualization of subtask embeddings71

SRTD

TE

(MR 10, RP 0, ME 0) (MR 0, RP 10, ME 0) (MR 0, RP 0, ME 10)

Figure 2: Embedding maps of Skill-regularized task decomposition (SRTD) and task embedding (TE)

Figure 2 shows the embedding maps of the proposed model SRTD and TE in 3 different data72

configurations such as (MR 10, RP 0, ME 0), (MR 0, RP 10, ME 0), and (MR 0, RP 0, ME 10). Here,73

TE denotes a model with task embeddings where skill regularization is not used. A configuration74

(MR 10, RP 0, ME 0) denotes a mixed data setting where all 10 tasks are associated with the MR75

datasets, and the others follow the same naming convention.76

As shown, the embedding maps of SRTD (in the 2nd row) have more common subtask embeddings77

from different tasks than those of TE (in the 1st row). It is observed that for each color (task), we78

have more shared regions (subtask embeddings) where the dots of that color are overlapped with the79

dots of other colors. For example, the button-press-topdown-v2 task (the dark red-colored dot) has80

rarely shared regions in the embedding maps of TE, but it has more shared regions in the embedding81

maps of SRTD.82

C.2 Zero-shot adaptation83

To confirm the generalization performance of our skill-regularized task decomposition, we perform84

a zero-shot evaluation for multi-task settings with new tasks (which are not part of the training85

multi-task datasets).86

Specifically, we use the MT50 benchmark for evaluation using our model that is trained on the MT1087

benchmark. The average success rate is shown in Table 4. Our model (SRTD, SRTD+ID) yields88

higher performance consistently than TE for all the configurations; SRTD and SRTD+ID achieve89

1.28 ∼ 2.37% and 2.04 ∼ 2.91% gains in the success rate compared to TE, respectively. These90

results clarify that the generalization model performance is improved by our skill-regularized task91

decomposition. Note that the other comparison methods are not included in this test, since they use92

the one-hot task encoding which is not relevant for adaptation on new tasks.93

Datasets TE SRTD SRTD+ID
(MR 10, RP 0, ME 0) 5.79%± 0.61% 8.16%± 0.91% 8.70%± 0.84%
(MR 0, RP 10, ME 0) 9.12%± 2.28% 10.71%± 1.24% 11.16%± 2.10%
(MR 0, RP 0, ME 10) 10.23%± 0.98% 11.51%± 0.78% 12.65%± 1.05%

Table 4: Zero-shot adaptation for MT50 by offline RL agents trained on MT10

C.3 Performance comparison about quality estimation methods94

While we use episodic returns for quality estimation and sub-trajectory relabeling, our SRTD can95

be readily extended to other quality-estimation methods. For example, Hindsight credit assignment96

iv



(HCA) [9] can be used for quality estimation and sub-trajectory relabeling in SRTD, where HCA97

exploits the advantage for hindsight relabeling, i.e.,98

Aπ(s, a) = Eτ∼D

[(
1− π(a|s)

πz(a|s, R̃(s, a))

)
∗ R̃(s, a)

]
(3)

where R̃(s, a) is a return and πz is a return conditioned policy. Compared to the case of using the99

episodic returns in SRTD, our experiments rarely specify any performance improvement (i.e., as100

shown in the first 3 rows in Table 5). That was expected to some extent because sampled transitions101

within an episode (or trajectory) turn out to be relatively either uniformly low-quality or high-quality102

in our datasets. In the offline RL context, it is common for offline dataset collection that a behavior103

(sampling) policy remains the same during an episode as it is learned [10].104

We also test the other case, the mixed-quality within an episode (MIX-EPI) where the behavior105

policy’s quality are frequently changed even during a single episode. We deliberately set a sequence106

of sampling policies for each episode of MIX-EPI datasets such that different policies are used107

for a few timesteps in rotation. This data collection emulates the environment where the quality108

of sub-trajectories is highly variable within each individual episode. In the MIX-EPI 10 case of109

Table 5, we observe the performance difference achieved by SRTD and the SRTD variant with110

HCA (SRTD+HCA) for MT10; this motivates us as our future research to investigate other quality111

estimation and relabeling strategies for a wide range of mixed configurations of different quality112

datasets.113

Datasets SRTD SRTD+HCA
(MR 10, RP 0, ME 0) 21.24± 1.40% 22.14 ±1.09%
(MR 0, RP 10, ME 0) 38.97± 3.38% 36.50 ± 2.01%
(MR 0, RP 0, ME 10) 46.60± 3.11% 47.06 ± 2.18%

(MIX-EPI 10) 39.60± 3.24% 42.4%± 1.95%

Table 5: Performance comparison of SRTD and SRTD+HCA

C.4 Performance comparison about the length of sub-trajectory114

To estimate the quality of sub-trajectories, our proposed method uses unbiased quality measures such115

as advantage or episodic return. In the case of having sub-trajectories of variable lengths, the quality116

measure might vary depending on their length. While it is also interesting to investigate how to stably117

approximate the quality in variable length settings, we define the length of sub-trajectories as a fixed118

hyperparameter and perform experiments with various dataset quality conditions, focusing on the119

quality-aware skill regularization.120

We use n-length sub-trajectories (s, a)t−n:t in the task embedding procedure, and we use 2n-length121

sub-trajectories (s, a)t−n:t+n−1 in the skill embedding procedure. In our implementation, task122

embeddings (generated by the task encoder qθ in Figure 2 of the main paper) are used as input for a123

learned RL policy, so only n-length sub-trajectories (without future transitions) are used, similar to124

the task embedding method in [11]. However, sub-trajectories for skill embeddings are 2n-length125

transitions including the past of n-length and the future of n-length, since skills abstract the action126

sequence conditioned on a given (current) state, similar to the skill embedding method in [12]. Table 6127

shows the performance in multi-task success rates for MT10 achieved by different sub-trajectory128

length settings n = 2, 4, 8, 16, 32. As shown, no significant difference in performance is observed as129

long as n is not too short or too long.

Datasets SRTD (n: sub-trajectory length)
MR RP ME n=2 n=4 n=8 n=16 n=32
10 0 0 19.75 ± 1.01% 21.24± 1.40% 20.28 ± 1.25% 21.51 ± 2.25% 15.59 ± 3.81%
0 10 0 34.32 ± 2.12% 38.97± 3.38% 38.50 ± 3.58% 40.64 ± 6.25% 37.11 ± 3.19%
0 0 10 38.52 ± 3.44% 46.60± 3.31% 46.43 ± 2.81% 44.21 ± 4.84% 43.25 ± 2.57%

Table 6: Performance with respect to sub-trajectory lengths

130

v



C.5 Performance comparison with conservative data sharing131

In conservative data sharing (CDS) [13], the data limitation problem in offline RL was discussed132

and selective data sharing strategies across different task datasets were presented. Unlike CDS, we133

don’t assume that reward function for each tasks is known, so we compare our model and CDS under134

different experiment conditions, where CDS exploits known reward functions but our model does not.135

We observe that CDS achieves good performance when high-quality data is sufficiently given but its136

performance much degrades when high-quality data is not sufficiently given. We speculate that it is137

because CDS shares only the transitions with high Q-values learned by CQL algorithm. In Table 7,138

the dataset configurations (MR 10, RP 0, ME 0), (MR 0, RP 10, ME 0), and (MR 5, RP3, ME 2)139

represent relatively low-quality conditions, while the dataset configurations (MR 0, RP 0, ME 10) and140

(MR 4, RP 3, ME 3) represent relatively high-quality conditions. For the former configurations, we141

observe better performance by SRTD+ID, and for the latter configurations, we observe comparable142

performance between SRTD+ID and CDS.143

Datasets SRTD+ID CDS
(MR 10, RP 0, ME 0) 23.87± 2.22% 17.50 ± 2.10%
(MR 5, RP 3, ME 2) 32.13± 3.57% 29.60 ± 3.30%
(MR 0, RP 10, ME 0) 41.91± 5.88% 35.88 ± 2.14%
(MR 4, RP 3, ME 3) 43.53± 3.32% 42.17 ± 2.57%
(MR 0, RP 0, ME 10) 49.29± 3.35% 48.12 ± 1.41%

Table 7: Performance comparison of SRTD+ID and CDS

References144

[1] Tianhe Yu et al. “Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Re-145

inforcement Learning”. In: Proceedings of the 3rd Conference on Robot Learning (CoRL).146

PMLR. 2019.147

[2] Tuomas Haarnoja et al. “Soft actor-critic algorithms and applications”. In: arXiv148

preprint:1812.05905 (2018).149

[3] Shital Shah et al. “AirSim: High-Fidelity Visual and Physical Simulation for Autonomous150

Vehicles”. In: arXiv preprint: 1705.05065 (2017).151

[4] Aqeel Anwar and Arijit Raychowdhury. “Autonomous Navigation via Deep Reinforcement152

Learning for Resource Constraint Edge Nodes using Transfer Learning”. In: arXiv preprint:153

1910.05547 (2019).154

[5] Scott Fujimoto and Shixiang Shane Gu. “A minimalist approach to offline reinforcement155

learning”. In: Proceedings of the 34th Advances in Neural Information Processing Systems156

(NeurIPS). 2021.157

[6] Tianhe Yu et al. “Gradient surgery for multi-task learning”. In: Proceedings of the 33rd158

Advances in Neural Information Processing Systems (NeurIPS). 2020.159

[7] Ruihan Yang et al. “Multi-task reinforcement learning with soft modularization”. In: Proceed-160

ings of the 33rd Advances in Neural Information Processing Systems (NeurIPS). 2020.161

[8] Aviral Kumar et al. “Conservative q-learning for offline reinforcement learning”. In: Proceed-162

ings of the 33rd Advances in Neural Information Processing Systems (NeurIPS). 2020.163

[9] Anna Harutyunyan et al. “Hindsight credit assignment”. In: Proceedings of the 32nd Advances164

in Neural Information Processing Systems (NeurIPS). 2019.165

[10] Justin Fu et al. “D4rl: Datasets for deep data-driven reinforcement learning”. In: arXiv166

preprint:2004.07219 (2020).167

[11] Kate Rakelly et al. “Efficient off-policy meta-reinforcement learning via probabilistic context168

variables”. In: Proceedings of the 36th International Conference on Machine Learning (ICML).169

PMLR. 2019, pp. 5331–5340.170

[12] Taewook Nam et al. “Skill-based Meta-Reinforcement Learning”. In: Proceedings of 10th171

International Conference on Learning Representations (ICLR). 2022.172

[13] Tianhe Yu et al. “Conservative data sharing for multi-task offline reinforcement learning”. In:173

Proceedings of the 34th Advances in Neural Information Processing Systems (NeurIPS). 2021.174

vi


	Environment Settings
	Meta world
	Drone navigation

	Implementation
	TD3+BC
	PCGrad
	Soft modularization
	SRTD and SRTD+ID

	Additional Experiments
	Visualization of subtask embeddings
	Zero-shot adaptation
	Performance comparison about quality estimation methods
	Performance comparison about the length of sub-trajectory
	Performance comparison with conservative data sharing


