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Abstract

Backpropagation (BP) is the most successful and widely used algorithm in deep
learning. However, the computations required by BP are challenging to recon-
cile with known neurobiology. This difficulty has stimulated interest in more
biologically plausible alternatives to BP. One such algorithm is the inference learn-
ing algorithm (IL). IL trains predictive coding models of neural circuits and has
achieved equal performance to BP on supervised and auto-associative tasks. In con-
trast to BP, however, the mathematical foundations of IL are not well-understood.
Here, we develop a novel theoretical framework for IL. Our main result is that IL
closely approximates an optimization method known as implicit stochastic gradient
descent (implicit SGD), which is distinct from the explicit SGD implemented by BP.
Our results further show how the standard implementation of IL can be altered to
better approximate implicit SGD. Our novel implementation considerably improves
the stability of IL across learning rates, which is consistent with our theory, as a key
property of implicit SGD is its stability. We provide extensive simulation results
that further support our theoretical interpretations and find IL achieves quicker
convergence when trained with mini-batch size one while performing competitively
with BP for larger mini-batches when combined with Adam.

1 Introduction

Backpropagation (BP) [33], the most successful and ubiquitously used learning algorithm in deep
learning, has long been criticized as being incompatible with known neurobiology [10, 21]. For exam-
ple, unlike the highly interconnected, recurrent circuits in the brain, BP performs credit assignment
through a separate feedback stream that does not alter feedforward (FF) signals [10, 21]. Addition-
ally, standard implementations of BP are largely incompatible with energy efficient, neuromorphic
hardware, due, in part, to BP’s non-local gradient computations. These concerns have motivated
neuroscientists and engineers to search for alternatives to BP that use more biologically compatible,
local learning rules.

One alternative to BP is the inference learning algorithm (IL) [32, 43, 37]. IL is the standard
learning algorithm used to train predictive coding (PC) models of biological neural circuits (e.g.
[32, 13, 39, 4, 1, 7]). Within neuroscience, PC models have grown in popularity, where some even
propose PC may be a canonical biological circuit [15, 14, 4]. IL works by first minimizing an energy
function, known as free energy, w.r.t. neuron activities using the recurrent computations involved in
predictive coding. At convergence, IL updates weights to further minimize energy. Unlike standard
BP, IL uses local learning rules and recurrent circuits instead of a separate feedback stream to perform
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credit assignment. In addition to evidence the brain does predictive coding (and thus may do IL),
recent empirical work has found evidence the brain may learn by first inferring target neural activities
through recurrent processing then updating synapses to consolidate those neural activities, similar to
IL [38]. IL has also been used to train deep networks for machine learning tasks. IL, for example,
achieved comparable classification and recall accuracy to BP trained networks on supervised and
auto-associative tasks (e.g, [43, 2, 36, 35], see also below).

Despite IL’s wide use in biological models and success on machine learning tasks, a rigorous formal
understanding of IL’s optimization properties and their differences from BP is lacking. Providing
such a characterization could yield several useful contributions: 1) A basis for a novel theory of
how optimization and credit assignment may work in the brain, 2) a formal basis for improving,
developing, and applying IL to machine learning tasks and neuromorphic hardware.

In this paper, we develop a novel theoretical framework for IL that describes its optimization
properties and their similarities and differences from BP. More specifically, 1) we expand beyond
current literature by deriving a general form of the IL algorithm, which we call Generalized IL (G-IL).
2) We demonstrate our main result, which is that G-IL closely approximates an optimization method
known as implicit stochastic gradient descent (implicit SGD), where the approximation is closest in
the case of mini-batch size 1. Implicit SGD is distinct from explicit SGD (the standard form of SGD
used in machine learning and the sort implemented by BP). 3) We provide theoretical guarantees
concerning IL’s stability and a connection to Gauss-Newton optimization. 4) We identify a learning
rule and variable settings needed in order for IL to equal implicit SGD and use this result to develop
a novel implementation of IL called IL-prox. 5) Finally, we present extensive simulation results that
support our theoretical findings, and for the first time show certain performance advantages of IL over
BP, such as better stability across learning rates and improved convergence speed with biologically
realistic online learning tasks. These results collectively suggest that, not only does IL better fit
biological constraints, but it is also mathematically justified and has performance advantages over BP
in more biologically realistic training scenarios.

2 Related Works

Inference Learning and Backpropagation Whittington and Bogacz [43] proved that parameter
updates performed by the IL algorithm approach those of BP as the global loss approaches zero
and optimized activities approach FF activities. This proof also implies, however, that non-zero
IL updates essentially never equal those of BP, and suggests IL poorly approximates BP early in
training when the loss is large and optimized activities deviate significantly from FF activities. This
leaves open the question of whether there is a better description of IL’s optimization strategy and the
question of how IL is able to minimize the loss in a stable manner early in training. Other work has
shown IL is formally related to variational expectation maximization [25, 22], which is a learning
algorithm with convergence guarantees [27]. This analysis is a step forward though leaves open the
question of how IL relates to BP and the broader framework of gradient-based methods that are the
backbone of deep learning. The focus of the current work is to develop insights into these open
questions. More recently, several works have altered IL to more closely approximate SGD and BP
[26, 37]. These variants significantly change the original IL algorithm, and some of the alterations
seem hard to reconcile with neurobiology [26, 37]. Alternatively, instead of altering IL to better fit
SGD and BP, we show the standard implementation of IL already closely approximates a working
optimization method known as implicit SGD, and we identify the variable settings under which the
standard implementation of IL better approximates implicit SGD.

Similar Algorithms Algorithms similar to IL have been proposed. For example, the alternating
minimization algorithm [9], which was developed independently of the predictive coding and IL
framework from neuroscience, updates weights to minimize local prediction errors similar to IL
(see equation 4 below). However, [9] do not connect their algorithm to implicit SGD. A more
recent variant of this algorithm by Qiao et al. [31] show some formal links to proximal operators,
an optimization process related to implicit SGD [30] (see appendix B.1). However, they do not
interpret the weight updates as performing the proximal update or implicit SGD as we do here
with IL. Proximal operators have also recently been incorporated into learning algorithms for deep
networks. Frerix et al. [12] developed a BP, proximal algorithm hybrid. Lau et al. [17] developed
an algorithm that combined block coordinate descent with the proximal operator. Other works use
proximal operators to reduce noise or perform other tasks, then BP is used to to update at convergence
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[23, 45]. All of these algorithms, however, are distinct from IL, as they use BP or other non-local
gradient information to compute weight updates or local targets.

Target Propagation Finally, IL has some relation to target propagation algorithms, in which local
target activities are computed and used to compute local error gradients to update weights. Target
propagation [5] and difference target propagation [19] utilize approximate Gauss-Newton updates
on activities to create local targets [24, 6], while other algorithms compute targets using gradient
updates on activities [18, 29, 3, 16]. These algorithms have important differences from IL, e.g., they
use different learning rules than IL, which we discuss further below. In sum, previous works have not
developed the same mathematical interpretation of IL that we do here and have not developed the
same mathematical descriptions of the differences between IL and BP. Further, none of the works
mentioned above produced the same empirical findings we do in our simulations below.

3 Background

3.1 Notation

Term Description
Wn Weight Matrix, pre-synaptic layer n
hn Feedforward Activity layer n, hn = Wn−1f(hn−1)

ĥn Optimized/Target Activity layer n
∆hn Optimized Activity Change layer n, ∆hn = ĥn − hn

pn Local Prediction layer n, pn = Wn−1f(ĥn−1)

en Local Error, layer n, either en = ĥn − hn or en = ĥn − pn
Table 1: Notation

Notation describing a multi-layered feed-forward (FF) network (MLP) is summarized in table 1. To
simplify notation, we assume that the bias is stored in an extra column on each weight matrix Wn and
we assume a 1 is concatenated to the end of the pre-synaptic activity vector (hn or ĥn depending).
All the following results should hold with and without biases.

3.2 Generalized Backpropagation

Consider a set of parameters θ(b) at training iteration b with global loss function L. An explicit
SGD iteration subtracts the gradient of the loss from the parameters: θ(b+1) = θ(b) − α ∂L

∂θ(b) , with
step size α. BP [34] is the common algorithm for implementing SGD in deep networks. Here,
to allow for easier comparison to IL, we consider an alternative implementation of SGD in deep
networks that involves computing local target activities at hidden and output layers, similar to [18],
[3], [29]. Under this regime, each weight matrix Wn is updated using the gradient of local loss
ln+1 = 1

2∥ĥn+1 − hn+1∥2 = 1
2∥en+1∥2. Here ĥn+1 is the local target, while hn+1 is the FF activity.

The target at the output layer is computed ĥN = hN − ∂L
∂hN

. At hidden layer n, the local target is
computed

ĥn = hn −
∂ln+1

∂hn
= hn −

∂L

∂hn
. (1)

It can be shown hn − ∂ln+1

∂hn
= hn − ∂L

∂hn
by first computing ĥN−1:

ĥN−1 = hN−1 −
∂lN

∂hN−1
= hN−1 −

∂lN
∂hN

∂hN

∂hN−1
= hN−1 + eN

∂hN

∂hN−1

= hN−1 + (hN −
∂L

∂hN
− hN )

∂hN

∂hN−1
= hN−1 −

∂L

∂hN−1

(2)

This same process can be applied recursively to show the remaining ĥn are also global loss gradient
steps over hn. See appendix of [3] for similar proof.

3



Updates to weights Wn also use the gradient of the local loss such that ∆Wn = −α∂ln+1

∂Wn
. If we use

the result from the above derivation that − ∂ln
∂hn

= − ∂L
∂hn

, we can see this update is equivalent to a
global loss gradient step over the weights:

∆Wn = −α ∂ln+1

∂hn+1

∂hn+1

∂Wn
= −α ∂L

∂hn+1

∂hn+1

∂Wn
= −α ∂L

∂Wn
= αen+1f(hn)

T . (3)

This local target formulation of SGD is similar to other target propagation (TP) [5, 19] algorithms,
which use essentially the same learning rule but compute targets slightly differently. For example,
a well-known variant of TP is difference target propagation (DTP) [19], which computes local
targets by approximating a Gauss-Newton update on activities rather than gradient updates [24, 6]:
ĥn ≈ hn − J+

N,neN , where J+
N,n is the pseudo-inverse of the Jacobian of the forward network from

layer n to N and eN = y − hN . Recent attempts to improve DTP generally do so by making DTP
updates more similar to SGD updates (e.g. [24, 11]). Additionally, variants of BP algorithms, like
random feedback alignment [20] and sign symmetric feedback alignment [44], approximate SGD.
Since all of these methods approximate the (explicit) SGD update over weights and use similar
learning rules, we consolidate them all under the heading of generalized BP (G-BP). The target-based
formulation of G-BP is shown in algorithm 1.

3.3 Generalized Inference Learning

We now present a general description of the IL algorithm, which we call Generalized Inference
Learning (G-IL). A summary of the algorithm is presented in algorithm 2. At each layer n of an MLP,
G-IL stores two variables: ĥn and pn. At initialization these variables are set to feed-forward activity
values: ĥn = pn = hn. Then ĥn are altered over time to minimize the energy function F :

F = L(y, ĥN ) +

N∑
n=1

γn
1

2
∥ĥn − pn∥2 +

N−1∑
n=1

γdecay
n

1

2
∥ĥn∥2, (4)

where L is the global loss, 1
2∥ĥn − pn∥2 are local losses, γdecay

n
1
2∥ĥn∥2 is an optional regu-

larization term, and γ are positive scalar weighting terms. The prediction pn is computed as
pn = Wn−1f(ĥn−1). (Note pn may also be computed as pn = f(Wn−1ĥn−1). Our theoretical
results use the first formulation, but we find little difference in performance between the two in
practice. See simulations below.) G-IL first minimizes F w.r.t. to activities ĥ (inference phase).
While optimizing ĥ, predictions also change since pn+1 = Wnf(ĥn). After argminĥ F is estimated,
F is again minimized, now w.r.t. the weight, i.e. argminW F . Typical IL algorithms use SGD to
perform the inference phase with either the LMS rule (below) or Adam optimizers to update weights
(e.g. [32, 43]). G-IL, on the other hand, is general w.r.t. the optimization processes that approximate
argminW F and argminĥ F . We consider two weight updates in our analysis and simulations below.
First, is a local error gradient update, which is equivalent to the least-mean squares (LMS) rule:

argminWn
F ≈Wn +∆Wn = Wn − α

∂ln+1

∂Wn
= Wn + αen+1f(ĥn)

T , (5)

where en+1 = ĥn+1 − pn+1 and local loss ln+1 = 1
2∥en+1∥2. The LMS rule does not solve

argminW F but only approximates it. The next rule, which is equivalent to the normalized least
mean squared rule (NLMS) [28] is

argminWn
F = Wn +∆Wn = Wn + ∥f(ĥn)∥−2en+1f(ĥn)

T . (6)

The NLMS rule performs a gradient update but with an inverse squared ℓ2 norm of the pre-synaptic
activities as its step size instead of a hyper-parameter. The NLMS rule is the minimum-norm solution
to argminWF in the case where we use mini-batch size 1 (see proposition B.1). The LMS rule
closely approximates the NLMS update in the sense the two are proportional. Comparing these rules
to the update rule for G-BP (equation 3) we see the main difference is the pre-synaptic term used in
the rule: BP uses FF activity hn, while IL uses optimized/target activity ĥn. This difference leads to
significantly different stability properties between the algorithms, as we note below.
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Algorithm 1: Generalized BP
begin

// Feedforward Pass
h0 ← x(b)

for n = 0 to N − 1 do
hn+1 ←Wnf(hn)

end
ĥN ← y(b)

// Compute Local Targets
for n = 1 to N do

ĥn ≈ hn − ∂L
∂hn

end
// Update Weight Matrices
Eqn. 3

end

Algorithm 2: Generalized IL
begin

// Feedforward Pass
ĥ0 ← x(b)

for n = 0 to N − 1 do
pn+1, ĥn+1 ←Wnf(hn)

end
// Compute Local Targets
(ĥ1, ...ĥN ) ≈ argminĥ F
// Update Weight Matrices
(W0, ...WN−1) ≈ argminW F , Eqn. 4,5

end

4 Theoretical Results

4.1 Implicit Gradient Descent

Let the set of MLP weight parameters θ(b) = [W
(b)
0 , ...W

(b)
N−1], where the input data is x(b), the

output target is y(b), and b is the current training iteration. The explicit SGD update uses the loss
gradient produced by the current parameters:

θ(b+1) = θ(b) − α
∂L(θ(b), x(b), y(b))

∂θb
, (7)

where α is step size and L is the loss measure. This update is explicit because the gradient can
be readily computed given θ(b), x(b), y(b). The implicit SGD update uses the loss gradient of the
parameters at the next training iteration:

θ(b+1) = θ(b) − α
∂L(θ(b+1), x(b), y(b))

∂θ(b+1)
. (8)

This is an implicit update because θ(b+1) shows up on both sides of the equation. Unlike explicit
SGD, θ(b+1) cannot be readily computed using available quantities. However, the implicit gradient
update is equivalent to the solution of the following optimization problem (see appendix equation
14):

θ(b+1) = argminθ

(
L(θ, x(b), y(b)) +

1

2α
∥θ − θ(b)∥2

)
. (9)

This update is equivalent to the proximal operator/update [30]. This proximal update changes
parameters θ(b) in a way that minimizes the loss L and the magnitude of the update, which helps keep
θ(b+1) in the proximity of θ(b). (For more details on the proximal update and its relation to implicit
SGD see appendix B.1).

4.2 Main Results

We now present our main result, which is to show G-IL is equivalent to implicit SGD in certain limits
that are approximated well in practice. We focus on the case where single data-points (mini-batch size
1) are presented each training iteration. This scenario is more biologically realistic than mini-batching
and is the case where IL best approximates implicit SGD. We discuss the case of mini-batching in
appendix B.5. We first define a kind of IL algorithm that minimizes the proximal loss (equation 9)
w.r.t. neuron activities and show G-IL approaches this algorithm in certain limits.

Definition 4.1. Proximal Inference Learning (IL-prox). An algorithm identical to G-IL (algorithm
2), except activities are optimized according to argminĥ prox = argminĥ(L(θ

∗) + 1
2α∥θ

∗ − θ(b)∥2)
and the NLMS rule is used to update weights.
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Figure 1: A depiction of IL. Target activities ĥ are initialized to FF activities h then updated to
minimize energy F during the inference phase. Afterward, weights are updated to further minimize F .
Weight updates ’align’ with ĥ activities so ĥ become the new FF activities given the same data point.
ĥ are activities that will both improve the loss L and minimize ∥∆θ∥2. This process is equivalent to
minimizing the proximal objective and approximates implicit SGD.

Here b is the current training iteration and θ∗ are the parameters updated with the NLMS rule. IL-prox
is the same as G-IL except during the inference phase, it minimizes the proximal loss w.r.t. activities
ĥ instead of the energy F . Intuitively, minimizing the proximal loss w.r.t. activities will result in ĥ
that yields a small loss after weights are updated and small weight update norms. Weight update
norm 1

2∥θ
∗ − θ(b)∥2 is known during the inference phase because the NLMS learning rule is used

and known explicitly:

1

2
∥θ∗ − θ(b)∥2 =

1

2

N∑
n

∥∆Wn∥2 =
1

2

N∑
n

∥αnen+1f(ĥn)
T ∥2,

where αn = ∥f(ĥn)∥−2. Thus, it can be minimized w.r.t. ĥn. As we explain in the appendix (see
lemma B.1 and proposition B.1), the loss L(θ∗) is also explicitly known during the inference phase
and can be optimized w.r.t. ĥn.

Now, let α be a ’global’ learning rate hyper-parameter, and αn be layer-wise learning rates used in
the actual weight update ∆Wn.

Theorem 4.1. Let αn = ∥f(ĥn)∥−2 and assume mini-batch size 1. In the limit where γdecay
n →

∥en+1∥2(1 − 2
α6

n
), γN → αN−1

α , and γn → α−1
n−1 for all n < N , it is the case that argminĥ F =

argminĥ L(θ
∗) + 1

2α∥∆θ∥2. Hence, in these limits G-IL is equivalent to IL-prox.

The proof can be found in supplementary materials theorem B.1. This theorem states that when
using the NLMS rule, G-IL is increasingly similar to IL-prox, as the γ weighting terms in the free
energy (equation 4) approach the scalar values specified in the above theorem. In these limits,
argminĥ prox = argminĥ F and G-IL is equivalent to IL-prox. The intuitive explanation of this
theorem goes as follows: minimizing the proximal loss (equation 9) requires minimizing L w.r.t.
θ∗ while also minimizing the update norm 1

2α∥θ
∗ − θ(b)∥2. The inference phase of IL minimizes

L w.r.t. θ∗ by initializing output layer activity ĥN to FF output hN then shifting it toward global
target y. Upon a weight update this will yield a θ∗ that produces a smaller loss L. See figure 4.1
for visualization. The magnitude of a weight update ∥en+1f(ĥn)

T ∥2 intuitively depends on the
magnitude of local prediction error en+1. F is a sum of the magnitudes of errors (see equation
4), so minimizing F minimizes the magnitudes of errors and consequently weight update norms
1
2α∥θ

∗ − θ(b)∥2. Importantly, the γ settings under which theorem 4.1 holds can be computed exactly
in practice and are of reasonable magnitude that is easily approximated in practice (e.g., they do not
approach∞ or 0 and typically approach positive scalars). This is opposed to the limits under which
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Figure 2: We measure the proximal objective during the inference phase, where F is minimized w.r.t.
activities ĥ, in a two hidden layer MLP with ReLU activations trained on MNIST. We test under
four different initializations of ĥ. First, all ĥ are initialized to h (FF Init.). Second, hidden layer ĥ
are initialized to h, while output layer ĥN = y (FF + Full Clamp). For both of these initializations,
the proximal loss is reduced to near zero for both the IL-prox and IL-SGD variants of IL (defined
below). We next initialized ĥ randomly (Rand Init. and Rand + Full Clamp). Both networks reduce
the proximal loss, but nowhere near the global minima, which may help explain why the ĥ needs to
be initialized to FF activities when F is minimized with SGD. These results support theorem 4.1,
which states that minimizing F w.r.t. ĥ also minimizes the proximal objective.

IL approximates BP/explicit SGD, which is the limit where ĥn → hn and thus ∆Wn → 0 [43], a
condition that does not generally occur in practice.

Theorem 4.2. Let θ(b) be a set of MLP parameters at training iteration b. Let θ
(b+1)
prox =

argminθL(θ) +
1
2α∥θ − θ(b)∥2. Let θ(b+1)

IL−prox be the parameters updated by IL-prox (see def.

4.1) and θ
(b+1)
IL the parameters updated by G-IL under γ values in theorem 4.1. Assume mini-batch

size 1. Under this assumption, it is the case θ
(b+1)
prox = θ

(b+1)
IL−prox = θ

(b+1)
IL .

This theorem states that the IL-prox update is equivalent to the proximal update (equation 9), and thus
implicit SGD. It follows that, under the γ settings in theorem 4.1 the G-IL update is also equivalent
to the proximal update/implicit gradient update.

Further theoretical results are developed in the appendix. A novel closed form description of IL
targets is developed in C.5. The closed form description shows local targets approximate a regularized
Gauss-Newton update on FF activities (see section C). We call this closed form approximation IL-GN.
We study the stability of IL-GN when using the LMS learning rule, and compare to an analogous BP
network, which uses Gauss-Newton updates (BP-GN). We show that IL-GN weight updates push
output layer activities down their loss gradients for any positive learning rate, i.e., for any positive
learning rate ĥ(b)

N − ĥ
(b+1)
N = j ∂L

∂ĥ
(b)
N

where j is a positive scalar (theorem D.1). We show BP-GN only

has this property for a small range of learning rates (theorem D.2). We develop a partial explanation
of why IL is more stable than BP that is based on differences in their learning rule (for details see
section E). These results suggest that the differences in the way IL and BP compute and use local
targets in their weight updates can explain much of their differences in stability across learning rate.
The IL learning rule and target computations are advantageous over that of G-BP in this sense.

5 Experiments

In this section, we compare the performance of BP based algorithms to IL algorithms. BP algorithms
compute and use explicit gradients to update weights, while IL algorithms compute and use approxi-
mate implicit gradients to perform updates. We test BP models that either perform simple gradient
descent (BP-SGD) or use Adam optimizers (BP-Adam). IL-SGD is a simple implementation of
IL that is similar to implementations of [32, 43]. It uses the LMS rule (local error gradient update)
to update weights and optimizes ĥ using SGD to near convergence (25 update steps). IL-Prox is
our novel algorithm that is based on definition 4.1. IL-prox uses the NLMS rule to update weights.
Following theorem 4.1, the learning rate is only used to determine how much the output layer activ-
ities ĥN are pushed toward the target y. As α → ∞, ĥN → y and as α → 0, ĥN → hN . IL-Prox
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Reconstruction BCE (mean±std.)
Data BP-SGD BP-Adam IL-SGD IL-prox IL-prox fast

F-MNIST .303 .282 .306 .286 .286
CIFAR-10 .631 .622 .652 .611 .611

Table 3: Best test reconstruction loss after one epoch of training, mini-batch size 1. BCE was averaged
across pixels and data-points. Top two scores highlighted in bold. All standard deviations ≤ .002.

optimizes ĥ using SGD to near convergence (25 update steps). IL-Prox Fast is the same as the
IL-Prox algorithm except it truncates the optimization of ĥ to only 12 iterations. IL-Adam computes
the weight gradients using IL-SGD, then uses Adam optimizers to update weights. IL-prox Adam
computes the normalized weight gradient using IL-prox and uses Adam optimizers to update weights.
All simulations average results over at least 5 seeds of each model type. All models use ReLU
activations at hidden layers. Softmax is used at output layer for classification, while sigmoid is used
on the autoencoder task.

CIFAR-10 Test Accuracy (mean±std.)
Model m-batch size=1 m-batch size=64

BP-SGD 36.834(±.478) 57.044 (±.144)
IL-SGD 43.894 (±.371) 46.924(±.248)
IL-prox 42.060(±.412) 49.844(±.359)

IL-prox Fast 42.984 (±.530) 46.094(±.228)
BP-Adam 42.102(±.770) 56.466 (±.228)
IL-Adam 40.724(±.160) 54.066(±.190)

IL-prox + Adam 42.802(±.390) 55.572(±.172)

Table 2: Best test accuracy on CIFAR-10 supervised task
with mini-batch size 1 after 50,000 iterations (1 epoch) and
with mini-batch size 64 with 77000 iterations.

Mini-batch Training Previous work
has shown that IL algorithms can
achieve the same accuracy as BP on
small scale data sets (e.g., MNIST and
Fashion-MNIST), in the case where
Adam optimizers and medium sized
mini-batches (e.g, 64) are used ( [43,
2]. Here we train our BP and IL algo-
rithms on CIFAR-10 with mini-batch
size 64. Results are summarized in ta-
ble 2. Consistent with previous results,
IL algorithms, including our novel
IL-prox, achieve near equal accuracy
as BP-SGD and BP-Adam when us-
ing Adam optimizers. However, un-
like previous studies, we also test IL-
SGD and IL-prox algorithms without
Adam, and find they do not perform as well as BP algorithms in this scenario. IL algorithms without
Adam tend to converge more quickly but to shallower local minima. Adam, with its momentum and
adaptive learning rate, may help prevent IL algorithms from getting caught in shallow local minima
(see discussion).

Online Learning We find IL algorithms tend to converge significantly quicker and to more similar
loss/accuracies as BP in a more biologically realistic, online learning scenario, where a single data-
point is presented each training iteration and each data point is seen only once. This is especially
apparent with CIFAR-10, shown in tables 2 and 3 and figure 3. IL-SGD and IL-prox algorithms
perform similar to and even slightly better than BP-Adam, despite not using momentum or stored,
parameter-wise adaptive learning rates like Adam. As far as we know, this is a novel result. Less
significant speedups were also seen on MNIST and Fashion-MNIST classification tasks (see figure
6). On autoencoder tasks, IL-prox algorithms, in particular, decreased loss significantly quicker than
BP-SGD and even slightly quicker than BP-Adam (figure 3).

Stability Test: CIFAR-10 Test Accuracy
Model lr=.01 lr=.1 lr=1 lr=2.5 lr=10 lr=100

BP-SGD 35.48(±1.65) − − − − −
IL-SGD 41.66(±1.65) 36.268(±.271) − − − −
BP-prox 38.39(±2.91) 23.978(±1.57) 12.89(±1.1) 12.10(±1.61) 12.21(±1.61) −
IL-prox 34.97(±.67) 33.47(±2.56) 37.38(±1.46) 37.12(±1.81) 37.01(±1.01) 37.64(±.74)

Table 4: Accuracies after 50,000 training iterations on CIFAR-10, mini-batch size 1. Fully connected
networks with layer sizes 3072-3x1024-10.
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Figure 3: Training runs for mini-batch size 1 (online) scenario, for classification and autoencoder
tasks. MLP size 784-2x500-10 and autoencoder dimension 784-256-100-256-784 are trained on
F-MNIST for 50000+ iterations. MLP size 3072-3x1024-10 and autoencoder 3072-1024-500-100-
500-1024-3072 are trained on CIFAR-10 for 50000+ iterations. The first 4000 training iterations
shown for F-MNIST on left. Full training run are shown for other simulations in right three plots.

Learning Under Data Constraints We also find that IL algorithms can converge to better accuracy
than BP in highly data constrained scenarios. We trained IL algorithms using on only 10, 100, or 500
data points from each category on F-MNIST and CIFAR-10, with mini-batch size 100. IL algorithms
achieved better accuracies than BP-SGD in the 10 datapoint scenario on F-MNIST and CIFAR, and
better accuracy on the 100 data point scenario on CIFAR, while performances evened out in the 500
data point scenario (see appendix table 8 for details). IL-prox also tended to converge significantly
quicker than other algorithms on Cifar-10 (figure 4).

Stability Test Explicit SGD is well-known to be highly sensitive to learning rate. Implicit SGD, on the
other hand, is highly insensitive to learning rate and is unconditionally stable, i.e., it is able to discount
the loss in a stable manner for nearly any positive learning rate [41]. We compare performance of
BP-SGD, IL-SGD, and IL-prox on MNIST (table 5) and CIFAR-10 (table 4) classification task across
different learning rates. As a control, we train a hybrid of BP and IL-prox (BP-prox). BP-prox, like
IL-prox, uses the learning rate only to adjust the target at the output layer and uses the NLMS rule to
update weights. Unlike IL-prox, BP-prox computes local targets using the G-BP algorithm rather
than the IL algorithm. Results can be found in table 5 and 4. Blank entries are those with accuracies
below 12%. IL-SGD is more stable than BP-SGD, and IL-prox is more stable than BP-prox. This
suggests that the way IL computes and uses targets contributes to stability. Additionally, IL-prox
and BP-prox algorithms are more stable than SGD algorithms, showing that using the normalized
gradient to update weights and α to adjust the output layer target (rather than scale weight updates)
also contributes to stability.

Figure 4: Training runs for a subset of the algorithms on the data constrained scenarios. Each model
trained on n data points from each category.
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6 Limitations

Our theoretical results show that IL algorithms closely approximate implicit SGD in the case where
only a single data-point (i.e., mini-batch size 1) is presented each training iteration. This approxima-
tion is looser in the case where large mini-batches are used (see appendix B.5). This is no problem
from a biological point of view, since the brain does not train with large mini-batches. Additionally,
when Adam optimizers are used IL still performs similarly to BP. However, it may still be desirable to
further study the optimization properties of IL with mini-batches to improve performance on machine
learning tasks where mini-batches are typically used.

7 Discussion

In this paper, we found that IL closely approximates implicit SGD, which is distinct from the explicit
SGD performed by BP. This theoretical result, along with results that help to characterize how IL and
BP behave differently, suggest a hypothesis, which as far was we know is novel: learning in the brain
is more similar to implicit gradient descent than explicit gradient descent. This hypothesis would
imply the learning characteristics of the brain behave differently from BP and explicit SGD, more
generally. More empirical work will be needed to test this theory. However, recent evidence directly
supports the idea the brain does something similar to IL [38]. Evidence that neural circuits perform
predictive coding provides further, though more indirect, evidence for the idea.

We also found that IL often converged more quickly than BP and achieved similar test losses and
accuracies in online and data constrained scenarios. However, in large mini-batch scenarios without
data constraints and without the use of Adam optimizers, IL sometimes converged to worse accuracies
than BP in classification tasks. With the use of Adam, IL’s performance more closely matched that of
BP. One possible explanation of this empirical finding may be related to the fact that IL, and implicit
SGD more generally, tend to take smaller steps over parameters and a more direct path toward local
minima than BP (e.g., see figures 7 and table 9). More direct paths to minima often lead to faster
convergence. Smaller update magnitudes may also act as a kind of built-in regularization that aids in
difficult, noisy learning scenarios, such as small mini-batch and data constrained scenarios. In cases
where regularization is less advantageous (e.g., no data constraints and large mini-batches), IL’s small
update magnitudes may provide less of an advantage, and its more direct optimization paths may
push parameters into shallow, nearby minima. Adam optimizers, with their momentum and adaptive
learning rates, may help push parameters out of shallow minima. More work will be needed to fully
characterize and explain these behavioral differences, but we believe the work done here provides a
good formal basis for doing so.

These results further suggest IL may have advantages over BP in more biologically realistic machine
learning tasks, such as lifelong, online learning scenarios, where streams of data are received by the
neural network, a single datapoint at a time, and the model must adapt quickly to changes in the
environment and minimize the magnitude of weight updates to prevent catastrophic forgetting. This
possibility is especially interesting given that, unlike BP, IL’s weight updates are both local in space
and time and may thus be more compatible with energy efficient neuromorphic hardware, which is
well suited for autonomous, embedded systems that run on batteries and receive data streams through
sensors, similar to the brain.

8 Broader Impacts

This work is largely theoretical. As such, we do not see any potential negative societal impacts.
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