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Abstract

Analyzing the spatiotemporal behavior of multiple agents is of great interest to
many communities. Existing probabilistic models in this realm are formalized
either in an unsupervised framework, where the latent space is described by discrete
or continuous variables, or in a supervised framework, where weakly preserved
labels add explicit information to continuous latent representations. To over-
come inherent limitations, we propose a novel objective function for processing
multi-agent trajectories based on semi-supervised variational autoencoders, where
equivariance and interaction of agents are captured via customized graph networks.
The resulting architecture disentangles discrete and continuous latent effects and
provides a natural solution for injecting expensive domain knowledge into inter-
active sequential systems. Empirically, our model not only outperforms various
state-of-the-art baselines in trajectory forecasting, but also learns to effectively
leverage unsupervised multi-agent sequences for classification tasks on interactive
real-world sports datasets.

1 Introduction

Analyzing the spatiotemporal behavior of multiple agents bears a great deal of value in many domains
such as autonomous driving [45, 15], public transportation [29, 54], migration [37, 23] or sports
analytics [50, 11]. Particularly, the detection of collective patterns across time and space is of interest
to many communities but non-trivial inter-dependencies between agents render estimating the inherent
multi-modal distributions often difficult.

Existing generative approaches to modeling sequential multi-agent data thus capitalize on variants
from graph networks [52, 14] and (sequential) variational autoencoders [25, 8]; being purely unsuper-
vised, their functionality is grounded in uncovering the implicit modular structure in agent-wise latent
variables directly from the observed trajectories via approximate inference [27, 48, 55, 17, 16, 32].
Although a generative view on the problem is very appealing, approaches in this regime either lack
interpretable and controllable latent factors (e.g., [55]), thus being limited in practical settings, or put
a strong focus on relationship discovery (e.g., [27]), which limits their generative capacity.

An alternative is offered by supervised approaches that aim to counteract these issues by incorporating
discrete behavioral indicators into the generation process [60, 61, 49]. Ideally, these labels encode
implicit expert knowledge that would be learned by the model and substantially expand the scope of
information captured in latent space. Instead of arguing in favor of expensive and tedious manual
annotations of spatiotemporal data, however, these approaches propose to incorporate heuristic
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surrogates as makeshift labels into the problem [62, 60, 38]. While reporting impressive predictive
accuracies, they require the existence of label sequences for all training instances and cannot include
inexpensive and possibly abundant unlabeled data due to their purely supervised nature.

To close this gap, we propose semi-supervised variational autoencoders for spatiotemporal multi-
agent problems to process (weakly) labeled as well as unlabeled data. Our contribution generalizes
the class of semi-supervised variational autoencoders [26] to spatiotemporal domains by using
ideas from variational recurrent neural networks [8]. At a high level, the derived objective function
subsumes previous approaches into a unified framework via a disentangled latent space that can
incorporate supervision signals in arbitrary quantities for structuring the discrete latent subspace.
Additional adaptive graph network layers provide order in- and equivariance of agents and render the
proposed approach appropriate for multi-agent scenarios. The resulting semi-supervised approach is
applicable to a wide range of problems including the generation of collective movements as well as
classifying situations of interest. Empirically, our contribution significantly advances recent baselines
in generation and classification tasks on interactive real-world data.

2 Related Work

Semi-supervised generative models Semi-supervised variational autoencoders have been origi-
nally studied by [26] who propose to incorporate additional labels in latent space. Related approaches
introduce auxiliary variables that leave the original model unchanged but increase the flexibility of
the variational posterior [33]. [24] propose to explicitly capture label characteristics in latent space
instead of the label values themselves and [39] study generalizations that allow for learning more
complex dependency structures. However, all the above approaches are introduced only for static
domains. Our contribution constitutes a generalization of the above approaches to spatiotemporal
domains.

Sequential generative models Approaches designed for predicting agent trajectories are frequently
based on ideas from sequential generative models to encode temporal dependencies and address
the stochasticity inherent in future predictions. Sequential extensions of variational autoencoders
with dynamic latent variables include [4, 8, 13, 1]. Particularly, the VRNN [8] is related to our
contribution, as both deploy a VAE instance per time step conditioned on a recurrent state. However,
their work lacks modeling of a social dimension as well as means to integrate (potentially expensive)
discrete behavioral indicators. Other approaches associate a single global latent variable with each
sequence [5, 18, 10, 9].

Graph neural networks Deep graph-based (GNNs) approaches [46] are a natural methodological
choice for applications requiring modeling datasets composed of sets. GNNs operate by learning a
chain of hidden representations for each node through an iterative process that relies on aggregating
messages along edges in each network layer. Prominent instantiations such as GCN [28], GraphSAGE
[19], GAT [52], and others [14, 51, 21, 3, 59, 53] mainly differ in their notion of message passing
and neighborhood aggregation [56]. GNN layers can be stacked and allow for context-based and
adaptive neighborhoods for each node by incorporating particularly designed skip connections [53].
See [7] for a discussion on the function approximation capabilities of this neural network family.

Generative models for sequential multi-agent data Given the potential benefit across various
domains, a great deal of recent publications focus on movements of pedestrians or self-driving cars
[35, 45, 15, 36, 57, 44, 2, 22, 58, 31]. [34], however, show that these standard benchmark datasets
generally exhibit weak social interaction patterns, so in the remainder, we focus on methods using
team sport data. Related approaches show that learning and computing realistic rollouts significantly
benefit from the incorporation of makeshift annotations and heuristic surrogates into the problem
[62, 60, 38]. [12, 32] propose an architecture based on conditional VAEs [47] to model distributions
of future movements of basketball players. [55, 48] combine ideas from graph networks [14] and
VRNNs [8] into a unified framework aiming at modeling data from basketball and soccer. Other
related approaches [30, 27, 17, 16] aim to explicitly infer discrete latent variables to represent
interaction types while executing a trajectory prediction task.

Hence, existing generative models for spatiotemporal pattern detection focus on multi-agent trajectory
prediction in fully-(un)supervised settings. Our contribution represents the first semi-supervised
generalization of variational autoencoders for spatiotemporal domains, which allows addressing tasks
beyond representational or generative modeling involving expensive annotation processes.
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3 Methods

3.1 Preliminaries

Variational autoencoders (VAEs) [25, 40] allow to capture intrinsic conditional dependencies and
are often used in structured problems. Essentially, they consist of a θ-parameterized generative
model pθ(x, z) = p(z)pθ(x|z) and an associated φ-parameterized variational distribution qφ(z|x).
Optimal parameters {θ, φ} are obtained via maximizing the variational lower bound on the marginal
likelihood, given by

log pθ(x) ≥ Eqφ(z|x)[log pθ(x|z)]−KL[qφ(z|x) ‖ p(z)].

It is often helpful to augment partially observed discrete labels y into the model to guide the generating
process [26]. The resulting model p(x, z, y) = p(x|z, y)p(y)p(z) then acts on labeled and unlabeled
instances. Consequentially, the variational distribution qφ(y,z|x) = qφ(y|x)qφ(z|y,x) needs to be
defined over both quantities (z and y). Semi-supervised VAEs (SSVAE) are trained by maximizing∑

(x,y)

(
L(x, y) + λ log qφ(y|x)

)
+
∑
x

U(x),

where L(x, y) = Eqφ(z|x,y)[log pθ(x|y,z) + log p(y) + log p(z) − log qφ(z|x, y)] and U(x) =∑
y qφ(y|x)(L(x, y)) + H(qφ(y|x)) denote (variational) lower bounds on labeled and unlabeled

instances, respectively, and λ is a balancing term. The original motivation for this framework was
inspired by semi-supervised classification tasks. However, SSVAEs are also frequently employed for
learning meaningful representations and generating new data, thus rendering it a suitable method-
ological foundation for performing diverse sets of tasks. The dependency structures of qφ and pθ are
displayed visually as part of Figure 1.

3.2 Problem Formulation

We are interested in modeling spatiotemporal multi-agent scenarios and focus on positions x(a)
t ∈ R2

of an agent a ∈ A over time 1 ≤ t ≤ T , denoted by x
(a)
≤T . We assume that a non-empty subset of

agents inA is present in any observed segment and collect their trajectories (in random order) to form
collective movements x≤T := {x(a)

≤T | a ∈ A}. We will make use of velocities dx/dt and linearized
motion ∆xt = xt′ − xt, for t′ > t, of agents in the remainder.

In addition, we introduce discrete labels y(a)t ∈ Y associated with agent a ∈ A at time t. The
collection of sequences y≤T := {y(a)

≤T | a ∈ A} may be best thought of as discriminative causes
of variation in the corresponding trajectories x≤T . In practice, y≤T may contain anything that
aids in generating multi-agent rollouts, including behavioral indicators, long-term goals, or current
tasks. Finally, observations x≤T accompanied by labels y≤T assemble the labeled share of the
data, denoted by DL = {(x≤T ,y≤T )n}1≤n≤N , while unlabeled observations are collected in
DU = {(x≤T )m}1≤m≤M . We refer to all data by D = DL ∪ DU .

We aim at estimating the underlying distribution that generated the observations in D. A straight
forward solution is to maximize the log likelihood given by

log p(D)=
∑
DL

log pθ(x≤T ,y≤T )+
∑
DU

log pθ(x≤T ). (1)

However, human movement is inherently non-determenistic and multi-modal. Thus, it is common to
model the stochasticity inherent in future agent behaviors via latent representations of VAEs. We
propose to lower-bound Eq. 1 as follows.

3.3 SSVAEs for Modeling Multi-Agent Trajectories

We associate disentangled latent realizations {zt, yt} with each time step t of the segment while
injecting the dependency structures introduced in Section 3.1 for the generative and inference parts.
To model temporal dependencies, we additionally condition the model components on the past
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Figure 1: Illustrative graphical model at t. Dashed lines indicate the encoding procedure, and solid lines the
generative model. We use a semi-supervised VAE (SSVAE, Section 3.1) per time step and additionally introduce
variables ht and ot. The representations in set ot jointly encapsulate both temporal and spatial patterns. The
proposed model can accommodate all contingent proportions of supervision for the discrete latent subspace yt.

observations x<t and latent variables z<t and y<t (cmp. [8]). The joint distribution factorizes into

pθ(x≤T , z≤T ,y≤T ) =
∏
t

[
pθ(xt|x<t, z≤t,y≤t)pθ(zt|x<t, z<t,y<t)pθ(yt|x<t, z<t,y<t)

]
,

with generating distribution pθ(xt|x<t, z≤t,y≤t) and prior distributions pθ(zt|x<t, z<t,y<t) and
pθ(yt|x<t, z<t,y<t) for latents zt and yt. Note that in our sequential setting, the priors are included
in the optimization rather than being represented by fixed distributions to account for latent dynamics
and effective sampling at inference time.

To derive the variational distributions, we differentiate between observed labels y and latent variables
ỹ in the remainder. Using the factorization introduced in Section 3.1 yields

qφ(z≤T |x≤T ,y≤T ) =
∏
t

qφ(zt|x≤t, z<t,y≤t) and qφ(ỹ≤T |x≤T ) =
∏
t

qφ(ỹt|x≤t, z<t,y<t).

(2)

Labeled instances render reasoning over latents ỹ≤T unnecessary since the true y≤T is already
known. Hence, the right-hand side in Eqn (2) can be ignored when sampling from DL. We arrive at
the following results and refer to Appendix ?? for the proofs.
Theorem 1. A lower bound on log pθ(x≤T ,y≤T ) in Eqn (1) is given by

log pθ(x≤T ,y≤T )≥
∑
t

log pθ(yt|x<t, z<t,y<t)+Eqφ(zt|x≤t,z<t,y≤t)
[
log pθ(xt|x<t, ,z≤t,y≤t)

]
−KL[qφ(zt|x≤t, z<t,y≤t) ‖ pθ(zt|x<t, z<t,y<t)] ≡

T∑
t=1

−JS−MAT (xt,yt). (3)

Correspondingly, for unlabeled instances drawn from DU , sequential label information need to be
estimated as shown in the following theorem.
Theorem 2. Let H(β) be the entropy of quantity β. A lower bound on log pθ(x≤T ) in Eqn (1) is
given by

log pθ(x≤T )≥
∑
t

(
H
(
qφ(ỹt|x≤t, z<t,y<t)

)
−Eqφ(ỹt|x≤t,z<t,ỹ<t)

[
JS−MAT (xt, ỹt)

])
≡
∑
t

−JU−MAT (xt). (4)

Eqn (4) encodes the behavior of object qφ(y≤T |x≤T ) when dealing with unsupervised data. Since
data likelihood log pθ(xt|x<t, ,z≤t, y≤t) tends to comprise the largest factor in L(xt, yt), taking
the expectation wrt. qφ(ỹt|x≤t, z<t, ỹ<t) encourages the model to realize the highest probability
mass for the latent label valuel y ∈ Y that incurs the smallest reconstruction loss compared to other
candidates in label space. This is a desirable property that reflects our assumption of data generation.
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Figure 2: The full computational logic when processing unobserved multi-agent segments. Given temporal
context encoded using an RNN module, the model leverages a customized GNN architecture based on [52, 53]
(Section 3.5) to infer posteriors (and priors) over the discrete (yt) and continuous (zt) latent factors. The realized
latent values, in conjunction with the GNN output, serve as input for the decoding module, which generates
distribution over agent movements.

The full evidence lower bound (ELBO) is obtained by combining the lower bounds for all data D,

p(D) ≥
∑
DL

∑
t

−JS−MAT (xt,yt) +
∑
DU

T∑
t=1

−JU−MAT (xt). (5)

This formalization focuses on either fully labeled or unlabeled observations. However, a more general
formulation can be obtained to also allow for partially labeled data points.

3.4 Extension to Classification Settings

Intrinsic to our contribution is an encoding module that argues over the label space, qφ(y≤T |x≤T ),
and hence can be used as a classification network annotating new observations. However, the
ELBO in Eqn (5) is oblivious to classification and simply ignores relevant gradient updates for
JS−MAT (xt,yt) by discarding Eqn (2). This is clearly inappropriate for semi-supervised learning
where the overall goal is to learn an unknown mapping x 7→ y. Following [26], we circumvent this
by heuristically incorporating Eqn (2) into the label-dependent objective. Hence, the full training
criterion to learn {θ, φ} is given by

JMAT (θ, φ;D) = λ0
∑
DU

∑
t

JU−MAT (xt)

+
∑
DL

∑
t

(
JS−MAT (xt,yt)− λ1 log qφ(yt|x≤t, z<t,y<t)

)
, (6)

where λ1 balances generative and discriminative learning and λ0 the contribution of labeled and
unlabeled data, respectively. Thus, JMAT contains fully (un)supervised modeling tasks as special
cases via adjusting λ1, λ2 accordingly. Note that the resulting supervised part in Eqn 6 (right
part) differs from its unsupervised counterpart only in observing yt instead of factorizing over Y ,
which results in computing the log-likelihood (auxiliary loss) log qφ(yt|x≤t, z<t,y<t) instead of the
entropyH(qφ(yt|x≤t, z<t,y<t)).

3.5 Design Choices

As described in Section 3.2, we aim to learn a distribution over possible sequences of agent sets that
may differ in share of discrete annotations (and cardinality). However, the previously derived objective
functions only account for temporal dependencies, so that independence of the agent dimension
is required to realize permutation-invariant models. This assumption is trivially inappropriate for
interactive systems where future agent movements need to be coordinated with other agents. Thus, it
is common to propose some form of graph encoding strategy [46] to account for both, equivariance
and agent interactions, respectively.

Intuitively, optimal interaction modeling allows to adaptively accommodate structural information
from different levels of granularity for each agent. In team sports, for example, agent nodes should
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be able to capture immediate player influences as well as holistic team strategies dependent on the
interaction structure best suited for the task at-hand. Motivated by the previous considerations, we
customize an GNN architecture that aims to mimic the desired behavior. Specifically, we stack
attention-based GNN layers [52] with particularly designed skip-connections [53] and construct the
assumed graph structure using the k (spatially) closest agents.

There are various possibilities to incorporate graph-based approaches into the overall scheme1. An
efficient way to model the distributions defining JMAT is via hidden agent states h(a)

t conditioned
on representations o(a)

t−1,

h
(a)
t = frnn(x

(a)
t , z

(a)
t ,y

(a)
t ,o

(a)
t−1) with ot = GNN(ht),

where frnn denotes an RNN transition function, GNN is the described GAT-based GNN and ot =

{o(a)
t | a ∈ A} refers to the set of updated agent representations2. Since the elements in set

ot aggregate neighboring information of the RNN outputs ht via graph networks, the inferred
feature vectors describe the entire interactive past of individual agents. While it is reasonable to
additionally enforce intra-timestep dependencies on the latent variables using encoding and decoding
GNN modules, we argue that capturing past spatiotemporal patterns is sufficiently informative for
high-frequency data [43]. Hence, assuming conditional independence within t, the joint movement
distribution factorizes across the agent dimension and is given by

pθ(xt|x<t, z≤T ,y≤T ) = pθ(xt|ψt) =
∏
a∈A

pθ(x
(a)
t |ψ

(a)
t )

where ψt = {ψ(a)
t | a ∈ A} are the distribution parameters and ψ(a)

t = ϕ(z
(a)
t ,y

(a)
t ,o

(a)
t−1). The

computational logic of the full architecture is schematically depicted in Fig. 1 and 2.

4 Empirical Evaluation

For evaluation, we focus on team sports as the coordination of players renders these tasks more
difficult than other domains [34].3 Hence, we experiment on STATS SportVU NBA4 for comparison,
and tracking data from soccer games of the german national team. As detailed in Section 3.2, we use
agent velocities as input to all models and assume linear motion between consecutive observations.
For NBA, we adopt the experimental setup and processing strategy from [38]5.

The STATS SportVU NBA data comprises tracking positions of offensive plays from the 2016 NBA
regular season covering more than 1200 different games where game segment are given by sequences
of length 50 and contain two-dimensional positions of all agents (10 players and ball) sampled at 5
frames per second. The data is split into 60% training, 20% validation, and 20% test sets. All data is
translated so that the origin of the underlying coordinate system is mapped onto the top-left corner.

The soccer data consists of 12 matches where positions of players and ball are sampled at 25 frames
per second. The tracking data is accompanied by manual event annotations that we will also make use
of in the remainder. Models are trained on eight matches, the remaining four are distributed evenly
into validation and test data (two matches each).

4.1 Baselines

We evaluate versus several baselines on two distinct tasks: trajectory forecasting (Section 4.2 and 4.4)
and spatiotemporal classification (Section 4.3 and 4.4). Since our approach constitutes the first semi-
supervised model for label predictions in multi-agent scenarios, we need to rely on self-constructed
supervised baselines for scenarios where only a few labels are available, which we discuss in more
detail in the relevant sections.

1We empirically evaluate different configurations in Appendix ??.
2Empirically, we observe performance gains when exclusively processing discriminative information y≤T

using separate recurrent and graph networks. Appendix ?? outlines the implementation details.
3We report on results on Stanford Drone Data (SDD) [41] in the Appendix.
4https://github.com/linouk23/NBA-Player-Movements
5The source code is available at https://github.com/fassmeyer/MAT_NeurIPS22.

6

https://github.com/linouk23/NBA-Player-Movements
https://github.com/fassmeyer/MAT_NeurIPS22


Table 1: Error for NBA in meters for a prediction interval of 10 timesteps with an observation period of
40 timesteps. Bold is the lowest avg L2 & final L2 for the supervised and unsupervised generative models,
respectively.

GVRNN dNRI GRIN DAG-Net. U-MAT S-MAT

avg L2 2.60 2.77 3.00 2.10 2.31 1.94
final L2 5.66 5.52 6.12 4.28 4.80 3.99

By contrast, trajectory forecasting is an active topic in different fields (see, e.g., [42] for an overview),
which allows comparisons with a wide range of baseline models. It is difficult to determine the current
state-of-the-art in generative methods for sports tracking data because there is no consistent setting
in terms of forecasting horizon or data (see e.g., [32, 38]). While some approaches are restricted to
making predictions for a predetermined horizon, our method learns spatiotemporal representations
autoregressively and thus can be used for the full range of prediction scenarios. To include a variety
of methods, we conduct two sets of experiments over short (10 timesteps) and long (40 timesteps)
prediction horizons. We benchmark against the most recent and methodologically important work
described below.

Fully supervised generative models such as DAG-Net [38] and Weak-Sup [60] use weak labels in
the form of agent objectives (heuristically inferred prior to model training) to improve trajectory
prediction. In these settings, an agent’s objective at each timestep t is to reach the next area where the
observed movement speed falls below a predefined threshold. Adopting the experimental framework
of [38] allows us to make further comparisons with Social-Ways [2] and STGAT [22] without
additional experiments. STGAT [22] augments a standard GAT with an LSTM [20] to capture both
spatial and temporal dependencies of social interactions while Social-Ways uses Info-GAN [6] to
learn multimodal predictive distributions.

The majority of generative models for sequential multiagent systems operate in a fully-unsupervised
fashion. GVRNN [55] is a graph extension of the VRNN for explicitly modeling joint agent move-
ments for basketball and soccer data. dNRI [17] dynamically extracts interaction types that determine
the parametrization of the decoder. Finally, GRIN [32] recovers (static) interactions via attention
using a disentangled latent space.

4.2 Exploring Boundary Cases for Trajectory Prediction

Methods We study the purely (un)supervised generation of trajectories by maximizing the respec-
tive lower bounds on NBA. For the fully-supervised variant, the weak labels described in Section
4.1 can be naturally integrated into the overall scheme via treating them as semantic concepts y(a)t .
These target areas naturally vary over time so that the sequential label y≤T always denotes the next
desired position for every involved agent at time t. Following related work [38, 60], we obtain 90
different areas/class labels. The underlying data distribution is estimated by maximizing Eqn (3).
The supervised variant of our contribution is denoted by S-MAT.

Although done in [38, 60], direct comparison of unsupervised and supervised generative models
is inappropriate inasmuch as the latter use ground-truth labels over the entire observation period
(which include future information) at prediction time. Thus, we additionally benchmark against a
fully unsupervised instantiation of our proposed framework lacking ground-truth information for
structuring the discrete latent subspace. To encourage the model to learn semantically meaningful
concepts describing distinct movement patterns, we parametrize the decoder dependent on the
predicted agent class ỹ(a)t . In this context, ỹ(a)t may be best thought of dynamically assigned agent
roles that accurately explain the observed trajectories. We maximize Eqn (4) using 3 agent types
and refer to the unsupervised variant as U-MAT. Further details for S-MAT and U-MAT are given in
Appendix ??.

Metrics We measure the quality of the learned multimodal distribution using common standard
metrics: the minimum over 20 generated samples of the average and final L2 distance between
predicted x̂

(a)
≤T and observed positions x(a)

≤T .
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Table 2: Error for NBA in meters for a prediction interval of 40 timesteps with an observation period of 10
timesteps. Top rows show results for offense, bottom rows the defense. Bold is the lowest avg L2 & final L2 for
the supervised and unsupervised generative models, respectively.

STGAT Social-Ways GVRNN Weak-Sup. DAG-Net U-MAT S-MAT

avg L2 9.94 9.91 9.73 9.47 8.98 9.01 8.11
final L2 15.80 15.19 15.89 16.98 14.08 13.28 12.52
avg L2 7.26 7.31 7.29 7.05 6.87 6.88 6.21
final L2 11.28 10.21 10.62 10.56 9.76 9.04 8.45

Figure 3: Left: Prediction probabilities for different events on soccer data. The dashed lines correspond to
the human annotations. Right: Exemplary rollouts for offensive players on basketball data. The figure shows
observed (light color) and generated player trajectories (intense color) as well as label information indicated by
colored boxes, where the color intensity corresponds to the ground-truth frequency of the (weakly obtained)
location-based labels.

Results Tables 1 and 2 show the results. The proposed approaches clearly outperform their peers
and realize the lowest average L2 and final L2 distances. The MAT variants effectively accommodate
not only mutual influences across agents, but also discrete generative factors, leading to better
approximations of the underlying multi-modal distributions. Unsurprisingly, Table 1 also shows
that defending players exhibit more structure and are easier to predict than offensive players. The
results of an ablation study are contained in Appendix ??. The right part of Fig. 3 displays exemplary
rollouts that underline models’ ability to capture highly complex changes in movement directions.
The results indicate that the proposed framework denotes a valuable contribution to the large body of
research that explicitly addresses modeling multi-agent data accurately.

4.3 Semi-Supervised Classification

We now extend the experimental protocol by targeting accurate label discovery in semi-supervised
scenarios. We refer to the full model simply as MAT where λ0, λ1 > 0 and incorporate the fully su-
pervised S-MAT (λ0 = 0) as an additional baseline. We also compare to an RNN-based classification
network that addresses inter-agent dependencies by inferring hidden states of agents by the GNN
architecture described in Section 3.5. A final softmax layer is used for classification, and the model is
optimized by minimizing the negative log-likelihood. We refer to this baseline as MA-RNN.

Figure 4 shows the performance of the models on NBA when using 50% labeled and 50% unlabeled
examples (left side) and when using varying portions of labeled data (right side), while the supervised
baselines have access only to the labeled part. The semi-supervised MAT clearly emerges as the
strongest classifier as it converges to the lowest generalization error during a training run and the
performance benefit increases via reduction of labeled data. Comparing the numbers to its supervised
peer (S-MAT) highlights the value of incorporating unlabeled data that is effectively utilized by MAT
to inform classification decisions. Comparing the fully supervised approaches S-MAT and MA-RNN,
the importance of an effective regularization mechanism becomes obvious; MA-RNN quickly overfits
while the lower-bound in S-MAT acts as a regularizer and guarantees gradually increasing predictive
accuracies on validation sets.
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Figure 4: Semi-supervised results on NBA. Right: Progression of accuracy during a training run. Left: Test
accuracies for varying amount of labeled data.

Table 3: Results on soccer data. Left: Semi-supervised data generation for a prediction interval of 10 timesteps
with an observation period of 40 timesteps (errors in meters). Right: Semi-supervised event detection.

NAME AVG L2 FINAL L2

VRNN 2.91 7.10
VRNN + GNN 2.87 6.98
GVRNN 2.89 6.97
S-MAT 2.87 6.91
MAT-DIAG 2.84 6.90
MAT 2.81 6.88

NAME ACCURACY F1

MA-RNN-DIAG 0.74 0.80
MA-RNN 0.85 0.88
S-MAT 0.82 0.85
MAT 0.88 0.92

4.4 Combining Generation and Classification in Semi-Supervised Settings

In our last set of experiments, we study the combination of trajectory generation and classification
and resort to tracking data from elite soccer. The reason for favoring this data over NBA is that the
soccer tracking data is manually annotated by experts from the data provider. We focus on labels
Y = {pass, other ball action, shot, none}, where class none denotes the absence of all other labels in
a frame and use 20% annotated data. Every label is propagated to the previous five and the subsequent
30 frames. We generate a balanced training set where half of the segments carry label none.

The main purpose of this set of experiments is to quantitatively validate the benefits of including
expensive human annotations in the proposed modeling framework for structuring the discrete latent
subspace. This approach has low additional costs because the method operates semi-supervised, so
only a small subset of multi-agent segments needs to be annotated. Given the higher sampling rate
and less interactive nature of soccer dynamics, we also aim to evaluate the extent to which social
dependency modeling modules achieve empirical benefits. We design our baselines accordingly.

Generation For trajectory prediction, we compare MAT to VRNN [8], an interactive version of
thereof with GNNs on the hidden states (VRNN+GNN), GVRNN [55], S-MAT with long-term goals
(introduced in Section 4.2), and a diagonal MAT version, MAT-Diag. Note that the VRNN constitutes
a strong competitor for the task at-hand, as it effectively corresponds to a diagonal GVRNN, which
has been shown to produce competitive results on soccer data [55].

The left part of Table 3 shows the results. Although the results are generally more similar compared
to the basketball experiments, the semi-supervised MAT generates trajectories that are closest in both
metrics to the observed ones. We hypothesize that decreasing the frequency of the data and extracting
multi-agent segments that merely consist of highly interactive plays yields an significant increase in
performance gap.

Classification MAT learns a model over the label space Y simultaneously to the generative model.
To evaluate classification performance, we turn the output of the corresponding softmax for a given
frame into a class label whenever it exceeded a predefined threshold. We compare the prediction
performance to the classification baselines introduced in Section 4.4.
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The resulting accuracies and F1 scores are summarized in Table 3. Once more, MAT clearly beats the
baselines and stands out by the highest accuracy and F1 scores. The result impressively demonstrates
the benefit of including unlabeled data for the task. Surprisingly, MA-RNN performs better than
S-MAT. This finding is in contrast to the results on NBA shown in Figure 4. However, soccer is
played on a much larger pitch and movements are likely more linear compared to basketball, which
leads to less multimodality of the distributions involved and a consequently decreased benefit of
variational methods. Together with a significantly reduced label space and sufficient amounts of data
this may lead to a simpler learning task where MA-RNN is less prone to overfitting.

The left part of Fig. 3 shows exemplary prediction probabilities for two segments and three possible
events. In both segments, the algorithm is highly confident no shot-action will occur in the near future.
The segment on top contains an event of the class other ball action followed by an event of class pass.
Both are correctly identified by MAT. The former is clearly indicated by a peak in the corresponding
probability chart, which then decreases to give rise to the following pass action. The segment on the
bottom shows solely a single pass event that is also clearly identifiable by a peak at the correct frame.

5 Conclusion

We presented semi-supervised variational autoencoders for spatiotemporal multi-agent scenarios. The
proposed approach effectively combined ideas from semi-supervised variational autoencoders, varia-
tional recurrent neural networks, and graph neural networks. Empirically, our approach clearly out-
performed previous state-of-the-art models in interactive sequential generation and (semi-supervised)
classification tasks in all experiments. The performance underlines the benefit of including unlabeled
data in spatiotemporal problems where labeled sequences are either scarce or assembled from weak
makeshift signals.

Potential societal impact We have a clear focus on team sports. Though dual use of the proposed
technique is certainly possible (e.g., military domains), it may be a bit far fetched as we have no
expertise in these domains and would only be able to deliver uneducated guesses about whether this
is realistic or not. Generally, the data and tasks at-hand are privacy-sensitive as the targets are human
individuals. While the soccer and basketball players are probably identifiable in the data, they/their
contract/their clubs agreed in recording the data.
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