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Abstract

We study the problem of change-point detection and localisation for functional
data sequentially observed on a general d-dimensional space, where we allow
the functional curves to be either sparsely or densely sampled. Data of this form
naturally arise in a wide range of applications such as biology, neuroscience, clima-
tology and finance. To achieve such a task, we propose a kernel-based algorithm
namely functional seeded binary segmentation (FSBS). FSBS is computationally
efficient, can handle discretely observed functional data, and is theoretically sound
for heavy-tailed and temporally-dependent observations. Moreover, FSBS works
for a general d-dimensional domain, which is the first in the literature of change-
point estimation for functional data. We show the consistency of FSBS for multiple
change-point estimation and further provide a sharp localisation error rate, which
reveals an interesting phase transition phenomenon depending on the number of
functional curves observed and the sampling frequency for each curve. Extensive
numerical experiments illustrate the effectiveness of FSBS and its advantage over
existing methods in the literature under various settings. A real data application is
further conducted, where FSBS localises change-points of sea surface temperature
patterns in the south Pacific attributed to El Niño. The code to replicate all of our
experiments can be found at https://github.com/cmadridp/FSBS.

1 Introduction

Recent technological advancement has boosted the emergence of functional data in various application
areas, including neuroscience [e.g. 11, 23], finance [e.g. 13], transportation [e.g. 10], climatology
[e.g. 7, 14] and others. We refer the readers to [29] - a comprehensive review, for recent development
of statistical research in functional data analysis.

In this paper, we study the problem of change-point detection and localisation for functional data,
where the data are observed sequentially as a time series and the mean functions are piecewise
stationary, with abrupt changes occurring at unknown time points. To be specific, denote D as a
general d-dimensional space that is homeomorphic to [0, 1]d, where d ∈ N+ is considered as arbitrary
but fixed. We assume that the observations {(xt,i, yt,i)}T,n

t=1,i=1 ⊆ D × R are generated based on

yt,i = f∗t (xt,i) + ξt(xt,i) + δt,i, for t = 1, . . . , T and i = 1, . . . , n. (1)
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In this model, {xt,i}T,n
t=1,i=1 ⊆ D denotes the discrete grids where the (noisy) functional data

{yt,i}T,n
t=1,i=1 ⊆ R are observed, {f∗t : D → R}Tt=1 denotes the deterministic mean functions,

{ξt : D → R}Tt=1 denotes the functional noise and {δt,i}T,n
t=1,i=1 ⊆ R denotes the measurement error.

We refer to Assumption 1 below for detailed technical conditions on the model.

To model the unstationarity of sequentially observed functional data which commonly exists in real
world applications, we assume that there exist K ∈ N change-points, namely 0 = η0 < η1 < · · · <
ηK < ηK+1 = T , satisfying that f∗t ̸= f∗t+1, if and only if t ∈ {ηk}Kk=1. Our primary interest is to
accurately estimate {ηk}Kk=1.

Due to the importance of modelling unstationary functional data in various scientific fields, this
problem has received extensive attention in the statistical change-point literature, see e.g. [3], [6],
[17], [31], [4] and [12]. Despite the popularity, we identify a few limitations in the existing works.
Firstly, both the methodological validity and theoretical guarantees of all these papers require fully
observed functional data without measurement error, which may not be realistic in practice. Secondly,
most existing works focus on the single change-point setting and to our best knowledge, there
is no consistency result of multiple change-point estimation for functional data. Lastly but most
importantly, existing algorithms only consider functional data with support on [0, 1] and thus are not
applicable to functional data with multi-dimensional domain, a type of data frequently encountered
in neuroscience and climatology.

In view of the aforementioned three limitations, in this paper, we make several theoretical and
methodological contributions, summarized below.

• In terms of methodology, our proposed kernel-based change-point detection algorithm, functional
seeded binary segmentation (FSBS), is computationally efficient, can handle discretely observed
functional data contaminated with measurement error, and allows for temporally-dependent and
heavy-tailed data. FSBS, in particular, works for a general d-dimensional domain with arbitrary but
fixed d ∈ N+. This level of generality is the first time seen in the literature.

• In terms of theory, we show that under standard regularity conditions, FSBS is consistent in
detecting and localising multiple change-points. We also provide a sharp localisation error rate,
which reveals an interesting phase transition phenomenon depending on the number of functional
curves observed T and the sampling frequency for each curve n. To the best of our knowledge, the
theoretical results we provide in this paper are the sharpest in the existing literature.

• A striking case we handle in this paper is that each curve is only sampled at one point, i.e. n = 1.
To the best of our knowledge, all the existing functional data change-point analysis papers assume
full curves are observed. We not only allow for discrete observation, but carefully study this most
extreme sparse case n = 1 and provide consistent localisation of the change-points.

•We conduct extensive numerical experiments on simulated and real data. The result further supports
our theoretical findings, showcases the advantages of FSBS over existing methods and illustrates the
practicality of FSBS.

• A byproduct of our theoretical analysis is new theoretical results on kernel estimation for functional
data under temporal dependence and heavy-tailedness. This set of new results per se are novel,
enlarging the toolboxes of functional data analysis.

Notation and definition. For any function f : [0, 1]d → R and for 1 ≤ p < ∞, define ∥f∥p =

(
∫
[0,1]d

|f(x)|p dx)1/p and for p = ∞, define ∥f∥∞ = supx∈[0,1]d |f(x)|. Define Lp = {f :

[0, 1]d → R, ∥f∥p < ∞}. For any vector s = (s1, . . . , sd)
⊤ ∈ Nd, define |s| =

∑d
i=1 si,

s! = s1! · · · sd! and the associated partial differential operator Ds = ∂|s|

∂x
s1
1 ···∂xsd

d

. For α > 0, denote

⌊α⌋ to be the largest integer smaller than α. For any function f : [0, 1]d → R that is ⌊α⌋-times
continuously differentiable at point x0, denote by fαx0

its Taylor polynomial of degree ⌊α⌋ at x0,
which is defined as fαx0

(x) =
∑

|s|≤⌊α⌋
(x−x0)

s

s! Dsf(x0). For a constant L > 0, let Hα(L) be the
set of functions f : [0, 1]d → R such that f is ⌊α⌋-times differentiable for all x ∈ [0, 1]d and satisfy
|f(x) − fαx0

(x)| ≤ L|x − x0|α, for all x, x0 ∈ [0, 1]d. Here |x − x0| is the Euclidean distance
between x, x0 ∈ Rd. In non-parametric statistical literature,Hα(L) are often referred to as the class
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of Hölder smooth functions. We refer the interested readers to [25] for more detailed discussion on
Hölder smooth functions.

For two positive sequences {an}n∈N+ and {bn}n∈N+ , we write an = O(bn) or an ≲ bn if an ≤ Cbn
with some constant C > 0 that does not depend on n, and an = Θ(bn) or an ≍ bn if an = O(bn)
and bn = O(an).

2 Functional seeded binary segmentation

2.1 Problem formulation

Detailed model assumptions imposed on model (1) are collected in Assumption 1. For notational
simplicity, without loss of generality, we set the general d-dimensional domain D to be [0, 1]d, as the
results apply to any D that is homeomorphic to [0, 1]d.

Assumption 1. The data {(xt,i, yt,i)}T,n
t=1,i=1 ⊆ [0, 1]d × R are generated based on model (1).

a. (Discrete grids) The grids {xt,i}T,n
t=1,i=1 ⊆ [0, 1]d are independently sampled from a common

density function u : [0, 1]d → R. In addition, there exist constants r > 0 and L > 0 such that
u ∈ Hr(L) and that infx∈[0,1]d u(x) ≥ c̃ with an absolute constant c̃ > 0.

b. (Mean functions) For r > 0 and L > 0, we have f∗t ∈ Hr(L). The minimal spacing between two
consecutive change-points ∆ = minK+1

k=1 (ηk − ηk−1) satisfies that ∆ = Θ(T ).

c. (Functional noise) Let {εi, ε′0}i∈Z be i.i.d. random elements taking values in a measurable space
Sξ and g be a measurable function g : S∞

ξ → L2. The functional noise {ξt}Tt=1 ⊆ L2 takes the form

ξt = g(Gt), with Gt = (. . . , ε−1, ε0, ε1, . . . , εt−1, εt).

There exists an absolute constant q ≥ 3, such that E(∥ξt∥q∞) < Cξ,1 for some absolute constant Cξ,1.
Define a coupled process

ξ∗t = g(G∗t ), with G∗t = (. . . , ε−1, ε
′
0, ε1, . . . , εt−1, εt).

We have
∑∞

t=1 t
1/2−1/q{E∥ξt − ξ∗t ∥q∞}1/q < Cξ,2 for some absolute constant Cξ,2 > 0.

d. (Measurement error) Let {ϵi, ϵ′0}i∈Z be i.i.d. random elements taking values in a measurable
space Sδ and g̃n be a measurable function g̃n : S∞

δ → Rn. The measurement error {δt}Tt=1 ⊆ Rn

takes the form
δt = g̃n(Ft), with Ft = (. . . , ϵ−1, ϵ0, ϵ1, . . . , ϵt−1, ϵt).

There exists an absolute constant q ≥ 3, such that maxni=1 E(|δt,i|q) < Cδ,1 for some absolute
constant Cδ,1. Define a coupled process

δ∗t = g̃n(F∗
t ), with F∗

t = (. . . , ϵ−1, ϵ
′
0, ϵ1, . . . , ϵt−1, ϵt).

We have maxni=1

∑∞
t=1 t

1/2−1/q{E|δt,i − δ∗t,i|q}1/q < Cδ,2 for some absolute constant Cδ,2 > 0.

Assumption 1a allows the functional data to be observed on discrete grids and moreover, we allow for
different grids at different time points. The sampling distribution µ is required to be lower bounded
on the support [0, 1]d, which is a standard assumption widely used in the nonparametric literature
[e.g. 26]. Here, different functional curves are assumed to have the same number of grid points n.
We remark that this is made for presentation simplicity only. It can indeed be further relaxed and the
main results below will then depend on both the minimum and maximum numbers of grid points.

Note that Assumption 1a does not impose any restriction between the sampling frequency n and the
number of functional curves T , and indeed our method can handle both the dense case where n≫ T
and the sparse case where n can be upper bounded by a constant. Besides the random sampling
scheme studied here, another commonly studied scenario is the fixed design, where it usually assumes
that the sampling locations {xi}ni=1 are common to all functional curves across time. We remark that
while we focus on the random design here, our proposed algorithm can be directly applied to the
fixed design case without any modification. Furthermore, its theoretical justification under the fixed
design case can be established similarly with minor modifications, which is omitted.
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The observed functional data have mean functions {f∗t }Tt=1, which are assumed to be Hölder continu-
ous in Assumption 1b. Note that the Hölder parameters in Assumption 1a and b are both denoted
by r. We remark that different smoothness are allowed and we use the same r here for notational
simplicity. This sequence of mean functions is our primary interest and is assumed to possess a piece-
wise constant pattern, with the minimal spacing ∆ being of the same order as T . This assumption
essentially requires that the number of change-points is upper bounded. It can also be further relaxed
and we will have more elaborated discussions on this matter in Section 5.

Our model allows for two sources of noise - functional noise and measurement error, which are
detailed in Assumption 1c and d, respectively. Both the functional noise and the measurement error
are allowed to possess temporal dependence and heavy-tailedness. For temporal dependence, we
adopt the physical dependence framework by [30], which covers a wide range of time series models,
such as ARMA and vector AR models. It further covers popular functional time series models such as
functional AR and MA models [17]. We also remark that Assumption 1c and d impose a short range
dependence, which is characterized by the absolute upper bounds Cξ,2 and Cδ,2. Further relaxation is
possible by allowing the upper bounds Cξ,2 and Cδ,2 to vary with the sample size T .

The heavy-tail behavior is encoded in the parameter q. In Assumption 1c and d, we adopt the
same quantity q for presentational simplicity and remark that different heavy-tailedness levels
are allowed. An extreme example is that when q = ∞, the noise is essentially sub-Gaussian.
Importantly, Assumption 1d does not impose any restriction on the cross-sectional dependence
among measurement errors observed on the same time t, which can be even perfectly correlated.

2.2 Kernel-based change-point detection

To estimate the change-point {ηk}Kk=1 in the mean functions {f∗t }Tt=1, we propose a kernel-based
cumulative sum (CUSUM) statistic, which is simple, intuitive and computationally efficient. The
key idea is to recover the unobserved {f∗t }Tt=1 from the observations {(xt,i, yt,i)}T,n

t=1,i=1 based on
kernel estimation.

Given a kernel function K(·) : Rd → R+ and a bandwidth parameter h > 0, we define Kh(x) =

h−dK(x/h) for x ∈ Rd. Given the random grids {xt,i}T,n
t=1,i=1 and a bandwidth parameter h̄, we

define the density estimator of the sampling distribution u(x) as

p̂(x) = p̂h̄(x) =
1

nT

T∑
t=1

n∑
i=1

Kh̄(x− xt,i), x ∈ [0, 1]d.

Given p̂(x) and a bandwidth parameter h > 0, for any time t = 1, 2, · · · , T , we define the kernel-
based estimation for f∗t (x) as

Ft,h(x) =

∑n
i=1 yt,iKh(x− xt,i)

np̂(x)
, x ∈ [0, 1]d. (2)

Based on the kernel estimation Ft,h(x), for any integer pair 0 ≤ s < e ≤ T , we define the CUSUM
statistic as

F̃
(s,e]
t,h (x) =

√
e− t

(e− s)(t− s)

t∑
l=s+1

Fl,h(x)−

√
t− s

(e− s)(e− t)

e∑
l=t+1

Fl,h(x), x ∈ [0, 1]d. (3)

The CUSUM statistic defined in (3) is the cornerstone of our algorithm and is based on two kernel
estimators p̂(·) and Ft,h(·). At a high level, the CUSUM statistic F̃ (s,e]

t,h (·) estimates the difference in
mean between the functional data in the time intervals (s, t] and (t, e]. In the functional data analysis
literature, other popular approaches for mean function estimation are reproducing kernel Hilbert space
based methods and local polynomial regression. However, to our best knowledge, existing works
based on the two approaches typically require that the functional data are temporally independent
and it is not obvious how to extend their theoretical guarantees to the temporal dependence case. We
therefore choose the kernel estimation method owing to its flexibility in terms of both methodology
and theory and we derive new theoretical results on kernel estimation for functional data under
temporal dependence and heavy-tailedness. We would like to point out that in the existing literature,
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kernel-based change-point estimation methods are used in detecting change-points in nonparametric
models [e.g. 20, 1, 21, 22].

For multiple change-point estimation, a key ingredient is to isolate each single change-point with
well-designed intervals in [0, T ]. To achieve this, we combine the CUSUM statistic in (3) with a
modified version of the seeded binary segmentation (SBS) proposed in [19]. SBS is based on a
collection of deterministic intervals defined in Definition 1.
Definition 1 (Seeded intervals). Let K = ⌈CK log log(T )⌉, with some sufficiently large absolute
constant CK > 0. For k ∈ {1, . . . ,K}, let Jk be the collection of 2k − 1 intervals of length
lk = T2−k+1 that are evenly shifted by lk/2 = T2−k, i.e.

Jk = {(⌊(i− 1)T2−k⌋, ⌈(i− 1)T2−k + T2−k+1⌉], i = 1, . . . , 2k − 1}.
The overall collection of seeded intervals is denoted as J = ∪Kk=1Jk.

The essential idea of the seeded intervals defined in Definition 1 is to provide a multi-scale system of
searching regions for multiple change-points. SBS is computationally efficient with a computational
cost of the order O(T log(T )) [19].

Based on the CUSUM statistic and seeded intervals, Algorithm 1 summarises the proposed functional
seeded binary segmentation algorithm (FSBS) for multiple change-point estimation in sequentially
observed functional data. There are three main tuning parameters involved in Algorithm 1, the kernel
bandwidth h̄ in the estimation of the sampling distribution, the kernel bandwidth h in the estimation
of the mean function and the threshold parameter τ for declaring change-points. Their theoretical
and numerical guidance will be presented in Sections 3.1 and 4, respectively.

Algorithm 1 Functional Seeded Binary Segmentation. FSBS ((s, e], h̄, h, τ)

INPUT: Data {xt,i, yt,i}T,n
t=1,i=1, seeded intervals J , tuning parameters h̄, h, τ > 0.

Initialization: If (s, e] = (0, n], set S ← ∅ and set ρ ← log(T )n−1h−d. Furthermore, sample
⌈log(T )⌉ points from {xt,i}T,n

t=1,i=1 uniformly at random without replacement and denote them as

{um}⌈log(T )⌉
m=1 . Estimate the sampling distribution evaluated at {p̂h̄(um)}⌈log(T )⌉

m=1 .
for I = (α, β] ∈ J and m ∈ {1, . . . , ⌈log(T )⌉} do

if I = (α, β] ⊆ (s, e] and β − α > 2ρ then
AI

m ← maxα+ρ≤t≤β−ρ |F̃ (α,β]
t,h (um)|, DI

m ← argmaxα+ρ≤t≤β−ρ |F̃
(α,β]
t,h (um)|

else
(AI

m, D
I
m)← (−1, 0)

end if
end for
(m∗, I∗)← argmaxm=1,...,⌈log(T )⌉,I∈J A

I
m.

if AI∗

m∗ > τ then
S← S ∪DI∗

m∗

FSBS ((s,DI∗

m∗ ], h̄, h, τ)
FSBS ((DI∗

m∗ , e], h̄, h, τ)
end if

OUTPUT: The set of estimated change-points S.

Algorithm 1 is conducted in an iterative way, starting with the whole time course, using the multi-scale
seeded intervals to search for the point according to the largest CUSUM value. A change-point is
declared if the corresponding maximum CUSUM value exceeds a pre-specified threshold τ and the
whole sequence is then split into two with the procedure being carried on in the sub-intervals.

Algorithm 1 utilizes a collection of random grid points {um}⌈log(T )⌉
m=1 ⊆ {xt,i}T,n

t=1,i=1 to detect
changes in the functional data. For a change of mean functions at the time point η with ∥f∗η+1 −
f∗η ∥∞ > 0, we show in the appendix that, as long as ⌈log(T )⌉ grid points are sampled, with high

probability, there is at least one point um′ ∈ {um}⌈log(T )⌉
m=1 such that |f∗η+1(um′) − f∗η (um′)| ≍

∥f∗η+1 − f∗η ∥∞. Thus, this procedure allows FSBS to detect changes in the mean functions without
evaluating functions on a dense lattice grid and thus improves computational efficiency.
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3 Main Results

3.1 Assumptions and theory

We begin by imposing assumptions on the kernel function K(·) used in FSBS.

Assumption 2 (Kernel function). Let K(·) : Rd → R+ be compactly supported and satisfy the
following conditions.

a. The kernel function K(·) is adaptive to the Hölder classHr(L), i.e. for any f ∈ Hr(L), it holds
that supx∈[0,1]d

∣∣ ∫
[0,1]d

Kh (x− z) f(z) dz − f(x)
∣∣ ≤ C̃hr, where C̃ > 0 is a constant that only

depends on L.

b. The class of functions FK = {K(x− ·)/h : Rd → R+, h > 0} is separable in L∞(Rd) and is a
uniformly bounded VC-class. This means that there exist constantsA, ν > 0 such that for every proba-
bility measure Q on Rd and every u ∈ (0, ∥K∥∞), it holds thatN (FK ,L2(Q), u) ≤ (A∥K∥∞/u)v ,
where N (FK ,L2(Q), u) denotes the u-covering number of the metric space (FK ,L2(Q)).

Assumption 2 is a standard assumption in the nonparametric literature, see [15, 16], [18], [27]
among many others. These assumptions hold for most commonly used kernels, including uniform,
polynomial and Gaussian kernels.

Recall the minimal spacing ∆ = minK+1
k=1 (ηk − ηk−1) defined in Assumption 1b. We further define

the jump size at the kth change-point as κk = ∥f∗ηk+1 − f∗ηk
∥∞ and define κ = minKk=1 as the

minimal jump size. Assumption 3 below details how strong the signal needs to be in terms of κ and
∆, given the grid size n, the number of functional curves T , smoothness parameter r, dimensionality
d and moment condition q.
Assumption 3 (Signal-to-noise ratio, SNR). There exists an arbitrarily-slow diverging sequence
CSNR = CSNR(T ) such that

κ
√
∆ > CSNR logmax{1/2,5/q}(T )

(
1 + T

d
2r+dn

−2r
2r+d

)1/2

.

We are now ready to present the main theorem, showing the consistency of FSBS.

Theorem 1. Under Assumptions 1, 2 and 3, let {η̂k}K̂k=1 be the estimated change-points by FSBS
detailed in Algorithm 1 with data {xt,i, yt,i}T,n

t=1,i=1, bandwidth parameters h̄ = Ch̄(Tn)
− 1

2r+d ,

h = Ch(Tn)
−1

2r+d and threshold parameter τ = Cτ log
max{1/2,5/q}(T )

(
1 + T

d
2r+dn

−2r
2r+d

)1/2

, for
some absolute constants Ch̄, Ch, Cτ > 0. It holds that

P
{
K̂ = K; |η̂k − ηk| ≤ CFSBS log

max{1,10/q}(T )
(
1 + T

d
2r+dn

−2r
2r+d

)
κ−2
k , ∀k = 1, . . . ,K

}
≥ 1− 3 log−1(T ),

where CFSBS > 0 is an absolute constant.

In view of Assumption 3 and Theorem 1, we see that with properly chosen tuning parameters and
with probability tending to one as the sample size T grows, the output of FSBS estimates the correct
number of change-points and

K
max
k=1
|η̂k − ηk|/∆ ≲

(
1 + T

d
2r+dn

−2r
2r+d

)
logmax{1,10/q}(T )/(κ2∆) = o(1),

where the last inequality follows from Assumption 3. The above inequality shows that there exists a
one-to-one mapping from {η̂k}Kk=1 to {ηk}Kk=1, assigning by the smallest distance.

3.2 Discussions on functional seeded binary segmentation (FSBS)

From sparse to dense regimes. In our setup, each curve is only observed at n discrete points and we
allow the full range of choices of n, representing from sparse to dense scenarios, all accompanied
with consistency results. In the most sparse case n = 1, Assumption 3 reads as κ

√
∆ ≳ T d/(4r+2d)×

a logarithmic factor, under which the localisation error is upper bounded by T d/(2r+d)κ−2, up to
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a logarithmic factor. To the best of our knowledge, this challenging case has not been dealt in
the existing change-point detection literature for functional data. In the most dense case, we can
heuristically let n = ∞ and for simplicity let q = ∞ representing the sub-Gaussian noise case.
Assumption 3 reads as κ

√
∆ ≍ log1/2(T ) and the localisation error is upper bounded by κ−2 log(T ).

Both the SNR ratio and localisation error are the optimal rate in the univariate mean change-point
localisation problem [28], implying the optimality of FSBS in the dense situation.

Tuning parameters. There are three tuning parameters involved. In the CUSUM statistic (3), we
specify that the density estimator of the sampling distribution is a kernel estimator with bandwidth
h̄ ≍ (Tn)−1/(2r+d). Due to the independence of the observation grids, such a choice of the bandwidth
follows from the classical nonparametric literature [e.g. 26] and is minimax-rate optimal in terms of
the estimation error. For completeness, we include the study of p̂(·)’s theoretical properties in ??. In
practice, there exist different default methods for the selection of h̄ , see for example the function
Hpi from the R package ks ([9]).

The other bandwidth tuning parameter h is also required to be h ≍ (Tn)−1/(2r+d). Despite that we
allow for physical dependence in both functional noise and measurement error, we show that the
same order of bandwidth (as h̄) is required under Assumption 1. This is an interesting finding, if not
surprising. This particular choice of h is due to the fact that the physical dependence put forward by
[30] is a short range dependence condition and does not change the rate of the sample size.

The threshold tuning parameter τ is set to be a high-probability upper bound on the CUSUM statistics
when there is no change-point and is in fact of the form τ = Cτ log

max{1/2,5/q}(T )
√
n−1h−d + 1.

This also reflects the requirement on the SNR detailed in Assumption 3, that κ
√
∆ ≳ τ .

Phase transition. Recall that the number of curves is T and the number of observations on each
curve is n. The asymptotic regime we discuss is to let T diverge, while allowing all other parameters,
including n, to be functions of T . In Theorem 1, we allow a full range of cases in terms of the
relationship between n and T . As a concrete example, when the smooth parameter r = 2, the jump
size κ ≍ 1 and in the one-dimensional case d = 1, with high probability (ignoring logarithmic factors
for simplicity),

K
max
k=1
|η̂k − ηk| = Op(T

1
5n−

4
5 + 1) =

{
Op(1), n ≥ T 1/4;

Op(T
1
5n−

4
5 ), n ≤ T 1/4.

This relationship between n and T was previously demonstrated in the mean function estimation lit-
erature [e.g. 8, 32], where the observations are discretely sampled from independently and identically
distributed functional data. It is shown that the minimax estimation error rate also possesses the same
phase transition between n and T , i.e. with the transition boundary n ≍ T 1/4, which agrees with our
finding under the change-point setting.

Physical dependence and heavy-tailedness In Assumption 1c and d, we allow for physical depen-
dence type temporal dependence and heavy-tailed additive noise. As we have discussed, since the
physical dependence is in fact a short range dependence, all the rates involved are the same as those in
the independence cases, up to logarithmic factors. Having said this, the technical details required in
dealing with this short range dependence are fundamentally different from those in the independence
cases. From the result, it might be more interesting to discuss the effect of the heavy-tail behaviours,
which are characterised by the parameter q. It can be seen from the rates in Assumption 3 and
Theorem 1 that the effect of q disappears and it behaves the same as if the noise is sub-Gaussian
when q ≥ 10.

4 Numerical Experiments

4.1 Simulated data analysis

We compare the proposed FSBS with state-of-the-art methods for change-point detection in functional
data across a wide range of simulation settings. Specifically, we compare with three competitors:
BGHK in [6], HK in [17] and SN in [31]. All three methods estimate change-points via examining
mean change in the leading functional principal components of the observed functional data. BGHK
is designed for temporally independent data while HK and SN can handle temporal dependence via
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the estimation of long-run variance and the use of self-normalization principle, respectively. All three
methods require fully observed functional data. In practice, they convert discrete data to functional
observations by using B-splines with 20 basis functions.

For the implementation of FSBS, we adopt the Gaussian kernel. Following the standard practice in
kernel density estimation, the bandwidth h̄ is selected by the function Hpi in the R package ks ([9]).
The tuning parameter τ and the bandwidth h are chosen by cross-validation, with evenly-indexed
data being the training set and oddly-indexed data being the validation set. For each pair of candidate
(h, τ), we obtain change-point estimators {η̂k}K̂k=1 on the training set and compute the validation

loss
∑K̂

k=1

∑
t∈[η̂k,η̂k+1)

∑n
i=1{(η̂k+1 − η̂k)−1

∑η̂k+1

t=η̂k+1 Ft,h(xt,i)− yt,i}2. The pair (h, τ) is then
chosen to be the one corresponding to the lowest validation loss.

We consider five different scenarios for the observations {xti, yti}T,n
t=1,i=1. For all scenarios 1-5,

we set T = 200. Given the dimensionality d, denote a generic grid point as x = (x(1), · · · , x(d)).
Scenarios 1 to 4 are generated based on model (1). The basic setting is as follows.

• Scenario 1 (S1) Let (n, d) = (1, 1), the unevenly-spaced change-points be (η1, η2) = (30, 130)
and the three distinct mean functions be 6 cos(·), 6 sin(·) and 6 cos(·).
• Scenario 2 (S2) Let (n, d) = (10, 1), the unevenly-spaced change-points be (η1, η2) = (30, 130)
and the three distinct mean functions be 2 cos(·), 2 sin(·) and 2 cos(·).
• Scenario 3 (S3) Let (n, d) = (50, 1), the unevenly-spaced change-points be (η1, η2) = (30, 130)
and the three distinct mean functions be cos(·), sin(·) and cos(·).
• Scenario 4 (S4) Let (n, d) = (10, 2), the unevenly-spaced change-points be (η1, η2) = (100, 150)
and the three distinct mean functions be 0, 3x(1)x(2) and 0.

For S1-S4, the functional noise is generated as ξt(x) = 0.5ξt−1(x) +
∑50

i=1 i
−1bt,ihi(x), where

{hi(x) =
∏d

j=1(1/
√
2)π sin(ix(j))}50i=1 are basis functions and {bt,i}T,50

t=1,i=1 are i.i.d. standard
normal random variables. The measurement error is generated as δt = 0.3δt−1 + ϵt, where {ϵt}Tt=1

are i.i.d. N (0, 0.5In). We observe the noisy functional data {yti}T,n
t=1,i=1 at grid points {xti}T,n

t=1,i=1

independently sampled from Unif([0, 1]d).

Scenario 5 is adopted from [31] for densely-sampled functional data without measurement error.

• Scenario 5 (S5) Let (n, d) = (50, 1), the evenly-spaced change-points be (η1, η2) = (68, 134) and
the three distinct mean functions be 0, sin(·) and 2 sin(·).
The grid points {xti}50i=1 are 50 evenly-spaced points in [0, 1] for all t = 1, · · · , T . The functional
noise is generated as ξt(·) =

∫
[0,1]

ψ(·, u)ξt−1(u) du + ϵt(·), where {ϵt(·)}Tt=1 are independent
standard Brownian motions and ψ(v, u) = 1/3 exp((v2 + u2)/2) is a bivariate Gaussian kernel.

S1-S5 represent a wide range of simulation settings including the extreme sparse case S1, sparse case
S2, the two-dimensional domain case S4, and the densely sampled cases S3 and S5. Note that S1 and
S4 can only be handled by FSBS as for S1 it is impossible to estimate a function via B-spline based
on one point and for S4, the domain is of dimension 2.

Evaluation result: For a given set of true change-points C = {ηk}Kk=1, we evaluate the accuracy
of the estimator {η̂k}K̂k=1 by the difference |K̂ − K| and the Hausdorff distance d(Ĉ, C), defined
by d(Ĉ, C) = max{maxx∈Ĉ miny∈C{|x− y|},maxy∈Ĉ minx∈C{|x− y|}}. For Ĉ = ∅, we use the

convention that |K̂ −K| = K and d(Ĉ, C) = T .

For each scenario, we repeat the experiments 100 times and Figure 1 summarizes the performance of
FSBS, BGHK, HK and SN. Tabulated results can be found in ??. As can be seen, FSBS consistently
outperforms the competing methods by a wide margin and demonstrates robust behaviour across the
board for both sparsely and densely sampled functional data.
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Figure 1: Bar plots for simulation results of S1-S5. Each bar reports the mean and standard deviation
computed based on 100 experiments. From left to right, the first two plots correspond to the Hausdorff
distance and |K − K̂| in S2, S3 and S5. The last two plots correspond to S1 and S4.

4.2 Real data application

We consider the COBE-SSTE dataset [24], which consists of monthly average sea surface temperature
(SST) from 1940 to 2019, on a 1 degree latitude by 1 degree longitude grid (48 × 30) covering
Australia. The specific coordinates are latitude 10S-39S and longitude 110E-157E.

We apply FSBS to detect potential change-points in the two-dimensional SST. The implementation of
FSBS is the same as the one described in Section 4.1. To avoid seasonality, we apply FSBS to the
SST for the month of June from 1940 to 2019. We further conduct the same analysis separately for
the month of July for robustness check.

For both the June and July data, two change-points are identified by FSBS, Year 1981 and 1996,
suggesting the robustness of the finding. The two change-points might be associated with years when
both the Indian Ocean Dipole and Oceanic Niño Index had extreme events [2]. The El Niño/Southern
Oscillation has been recognized as an important manifestation of the tropical ocean-atmosphere-land
coupled system. It is an irregular periodic variation in winds and sea surface temperatures over the
tropical eastern Pacific Ocean. Much of the variability in the climate of Australia is connected with
this phenomenon [5].

To visualize the estimated change, Figure 2 depicts the average SST before the first change-point
Year 1981, between the two change-points, and after the second change-point Year 1996. The two
rows correspond to the June and July data, respectively. As we can see, the top left corners exhibit
different patterns in the three periods, suggesting the existence of change-points.

Figure 2: Average SST. From left to right: average SST from 1940 to 1981, average SST from 1982
to 1996, and average SST from 1997 to 2019. The top and bottom rows correspond to the June and
July data respectively.
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5 Conclusion

In this paper, we study change-point detection for sparse and dense functional data in general
dimensions. We show that our algorithm FSBS can consistently estimate the change-points even in
the extreme sparse setting with n = 1. Our theoretical analysis reveals an interesting phase transition
between n and T , which has not been discovered in the existing literature for functional change-point
detection. The consistency of FSBS relies on the assumption that the minimal spacing ∆ ≍ T . To
relax this assumption, we may consider increasing K in Definition 1 to enlarge the coverage of the
seeded intervals in FSBS and apply the narrowest over threshold selection method [Theorem 3 in
19]. With minor modifications of the current theoretical analysis, the consistency of FSBS can be
established for the case of ∆≪ T . Since such a relaxation does not add much more methodological
insights to our paper, we omit this additional technical discussion for conciseness.
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