
Heterogeneous Skill Learning for Multi-agent Tasks

Yuntao Liu
Academy of Military Science

Beijing, China
liu-yt@foxmail.com

Yuan Li
Academy of Military Science

Beijing, China
liyuan@nudt.edu.cn

Xinhai Xu ∗

Academy of Military Science
Beijing, China

xuxinhai@nudt.edu.cn

Yong Dou
National University of Defense Technology

Hunan Changsha, China
douyong@nudt.edu.cn

Donghong Liu ∗

Academy of Military Science
Beijing, China

liu_donghong@sina.com

Abstract

Heterogeneous behaviours are widespread in many multi-agent tasks, which have
not been paid much attention in the community of multi-agent reinforcement learn-
ing. It would be a key factor for improving the learning performance to efficiently
characterize and automatically find heterogeneous behaviours. In this paper, we
introduce the concept of the skill to explore the ability of heterogeneous behaviours.
We propose a novel skill-based multi-agent reinforcement learning framework to
enable agents to master diverse skills. Specifically, our framework consists of the
skill representation mechanism, the skill selector and the skill-based policy learning
mechanism. We design an auto-encoder model to generate the latent variable as the
skill representation by incorporating the environment information, which ensures
the distinguishable of agents for skill selection and the discriminability for skill
learning. With the representation, a skill selection mechanism is invented to real-
ize the assignment from agents to skills. Meanwhile, diverse skill-based policies
are generated through a novel skill-based policy learning method. To promote
efficient skill discovery, a mutual information based intrinsic reward function is
constructed. Empirical results show that our framework obtains the best perfor-
mance on three challenging benchmarks, i.e., StarCraft II micromanagement tasks,
Google Research Football and GoBigger, over state-of-the-art MARL methods.

1 Introduction

The cooperative multi-agent reinforcement learning (MARL) has obtained great improvements in
many multi-agent systems, such as real-time strategy games [2], artificial swarms of robots [13]
and autonomous vehicles [14]. The original solution is the independent learning method, in which
each agent treats other agents as part of the environment. The main drawback is that simultaneous
learning of all agents will result in a non-stationary environment from the perspective of each agent
[3]. To avoid this problem, fully centralized learning approaches [18] have been studied, which
aim to learn an optimal joint action of agents in response to the joint observation. However, the
solution space grows exponentially with the number of agents, making it hard to find a good policy in
a limited time [4]. Later, following the centralized training with decentralized execution (CTDE)
paradigm, value decomposition based MARL methods have been proposed which attracts wide
attention [21, 26, 33, 31]. The main idea is that each agent learns its policy based on local observation
while a centralized mechanism is designed to guide the training of all agents. In most such methods,

∗Corresponding authors.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

agents share their neural networks to compute actions, which is known as the parameter sharing
technique. In this way, the training efficiency is significantly improved due to the reduction of the
number of parameters, and enough samples shared by all agents in the centralized training procedure.
However, heterogeneous behaviours are hard to be generated for such kind of methods when facing
complex multi-agent tasks.

To address this challenge, some recent methods learn different roles for agents based on their
observations and actions. Agents are grouped into different roles which carry out different tasks.
ROMA [27] assumes a Gaussian distribution for learning roles and RODE [28] uses a pre-trained
model with random samples to restrict the action space for each role. However, roles are sometimes
not easy to be distinguished based on only observation-action pairs. Moreover, the diversity of
heterogeneous behaviours is hard to be fully explored. Recently, CDS [4] introduces diversity into
the MARL approach by adding an extra local network for each agent to the shared network. It tries
to make a balance between diversity and the high learning efficiency brought by parameter sharing.
However, extra introduced networks for all agents hinder the application of CDS on large-scale tasks,
which will be illustrated in the experiment.

Different from previous works, we consider studying heterogeneous behaviours in multi-agent tasks
by introducing the skill learning [20]. The main idea is to enable agents to learn diverse skills, and
then select proper skills for agents to complete certain tasks. For instance, in Google Research
Football game, if multiple useful skills such as off-the-ball moving, dribbling with the ball, passing
and shooting can be learned, agents can later use these skills to easily cooperate to win the match in
a short policy search time. Introducing skill learning into MARL approaches has two advantages.
On one hand, distinct skill representation will help to generate diverse policies and enable agents to
select heterogeneous behaviours. On the other hand, the skill learning process is compatible with the
parameter sharing technique, which does not bring much overhead for training efficiency. Then three
questions arise: (1) how skills are represented; (2) how skills are learned;(3) how agents select proper
skills.

There are some works studying the problem of skill generation in the single-agent area. Early works
used the human-designed reward function to discover skills [11]. However, expert knowledge is
often difficult to acquire. Autonomous acquisition of useful skills without human-supervised signals
can be divided into two types. One is adopting mutual information maximization for skill discovery
[6]. It uses model-free unsupervised RL methods to learn distinguishable skills which can perform
distinct tasks. Other works [5, 19] consider skill discovery with intrinsic motivation which drives
the exploration of agents. However, for those works, skills are learned one by one from different
single-agent scenarios. This is quite different from multi-agent tasks, in which different kinds of
skills must be learned in one scenario. Moreover, multiple agents should make decisions on the
selection of skills and the decision will change as the game goes on. For multi-agent tasks, HSD [32]
studies the problem of skill discovery with a hierarchical RL method. However, it does not make
full consideration of distinguishable and diverse skill discovery, leading to poor performance for
heterogeneous problems.

To learn effective skills in multi-agent tasks, we propose a novel skill-based learning framework.
We design an auto-encoder model to generate the latent variable as the skill representation. To
reflect the potential characters of agents and ensure diversity of skills, a set of skill-ids as well as
observations and actions of agents are used as the input while the reward of the environment and
the next observations are used as the output. With this representation, we devise a skill selection
mechanism that assigns an agent with a skill. Due to characters encoded in the skill representation,
this mechanism could select proper skills for agents based on their observations. Finally, we introduce
the information-theoretic paradigm of mutual information to discover distinguishable and diverse
skills. The optimization objective of mutual information is further represented as an intrinsic reward,
which together with the environment reward is used to perform skill-based policy learning. For
skill-based policy learning, we still adopt the parameter sharing technique, but we further compute
the latent variable conditioned policy for each skill. In this way, our framework learns distinguishable
skills and encourages each skill to explore the environment and perform its task more effectively.

We make extensive experiments to evaluate our framework on three challenging benchmarks, i.e.,
StarCraft II micromanagement environment, Google Research Football and GoBigger. To our best
knowledge, the proposed framework achieves state-of-the-art performance in all tasks.

2

{𝒊𝒅_𝒐𝒇_𝒔𝒌𝒊𝒍𝒍|𝑖𝑑 = 1,2,… ,𝑀}

𝑂𝑛𝑒𝐻𝑜𝑡 𝐸𝑛𝑐𝑜𝑑𝑒

…

…

…

…

…

…

…

…
… …

𝑧1 𝑧2 𝑧𝑗 𝑧𝑀

Skill_ID Pool

𝑠:
𝑜
_𝑙
𝑎
𝑡𝑒
𝑛
𝑡

𝑞(𝑎|𝑠, 𝑧1)

…

𝑠:
𝑜
_𝑙
𝑎
𝑡𝑒
𝑛
𝑡

𝑠:
𝑜
_𝑙
𝑎
𝑡𝑒
𝑛
𝑡

𝑞(𝑎|𝑠, 𝑧𝑗)

𝑞(𝑎|𝑠, 𝑧M)

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑆ℎ𝑎𝑟𝑖𝑛𝑔

𝑺𝒌𝒊𝒍𝒍𝟏

𝑺𝒌𝒊𝒍𝒍𝒋

𝑺𝒌𝒊𝒍𝒍𝑴

…
…

GRU𝑜𝑖 𝑜_𝑙𝑎𝑡𝑒𝑛𝑡𝑖

ℎ𝑖

ℎ′𝑖

Agent 𝑖

A
ss

ig
n

m
en

t

Skill Representation Skill Selector

Skill-based

Policy Learning

…

Intrinsic

Reward

𝐼(𝑧; 𝑠)

𝐼(𝑎; 𝑧|𝑠)

𝑄(𝑎𝑖; 𝑧j|𝑜𝑖)

𝑜𝑖 𝑎𝑖 𝒛_𝒍𝒂𝒕𝒆𝒏𝒕

…

𝑒𝑖

𝑜′ 𝑟

𝑑𝑐𝑜𝑠(𝑧_𝑙𝑎𝑡𝑒𝑛𝑡𝑖 , 𝑧_𝑙𝑎𝑡𝑒𝑛𝑡𝑗)

𝑑𝑐𝑜𝑠

Learning Representation

𝑧_𝑙𝑎𝑡𝑒𝑛𝑡1

𝑧_𝑙𝑎𝑡𝑒𝑛𝑡𝑀

𝑧_𝑙𝑎𝑡𝑒𝑛𝑡1 𝑧_𝑙𝑎𝑡𝑒𝑛𝑡𝑗 𝑧_𝑙𝑎𝑡𝑒𝑛𝑡𝑀…

𝑄𝜈

𝐻(𝑎|𝑧, 𝑠)

𝜃𝑒

𝜃𝑑𝑜 𝜃𝑑𝑟

𝑧_𝑙𝑎𝑡𝑒𝑛𝑡𝑗

𝑧_𝑙𝑎𝑡𝑒𝑛𝑡𝑀

𝑧1

𝑧𝑗

𝑧𝑀

…

Figure 1: Schematics of HSL. It consists of three parts: skill representation, skill selector and
skill-based policy learning. The skill representation generates latent variables z_latentfor the skill
selector. The skill selector is equivalent to an assignment module, which helps to select skills for
agents. The last part is responsible to generate diverse skills.

2 Background

Multi-agent Markov Games: We consider a partially observable multi-agent game, which can
be modeled as a multi-agent extension of Markov Decision Processes [34]. It is denoted by
⟨N,S,O, {Ai}ni=1, {Ri}ni=1, P, γ⟩, where N is a finite set of n agents. S is the state space, O
is the partial observation space of agents, Ai is the action of agent i, Ri : S ×A1 × · · · ×AN → R
is the reward function of agent i and P = S × A1 × · · · × AN × S → [0, 1] is the state transition
function. A popular solution approach for multi-agent games is the value decomposition based
MARL. Each agent i is associated with a neural network, which is used to compute the Q-value Qi

based on its local observation oi. During the training process, a global Q-value Qtot is computed
as a function of Qi, for example, the summation used in VDN [24] and the mixing network used in
QMIX [21].

Mutual information: Mutual information is a core quantity in the information-theory that measures
the dependence between random variables using a Shannon entropy-based approach, defined as
Equation (1).

I(X;Y) = H(X)−H(X|Y) (1)

According to the definition, maximizing the mutual information I(·; ·) means maximizing the entropy
H(X) and minimizing the conditional entropy H(X|Y) at the same time.

In the context of reinforcement learning, X refers to the function of the state and Y is the function
of actions. Maximizing the mutual information encourages the entropy of the state to be high,
encouraging exploration in policy learning. Skill-based RL methods such as [6, 5] adopt the mutual
information to perform diverse skill discovery.

3 Method

In this section, we present a novel heterogeneous skill learning MARL framework (HSL) method for
multi-agent tasks. The framework is shown in Figure 1. We introduce the concept skill which is a
latent-conditioned (Z conditioned) policy π(A|S,Z) to enable agents to perform diverse behaviours.
Suppose there are M skills, of which ids are encoded in a one-hot manner, and they are denoted
by zj , j = 1, 2, ...M . We first encode the environment information, i.e, observations and actions of
agents, with skill-ids as latent skill variables z_latentj , j = 1, 2, ...M . This process is called skill
representation. Based on latent variables as key features, we design a skill assignment mechanism,
which associates each agent with a skill such that agents could learn heterogeneous policies. With
skill representations and skill assignments, diverse skill policies are learned through the skill learning
mechanism.

3

3.1 Skill Representation Learning

Skill representation learning generates latent skill variables, which are used for skill assignment and
skill learning. On one hand, generated latent skill variables should reflect the characters of different
agents, which helps agents make proper choices over different skills. On the other hand, they provide
key information that makes the learned skills as different as possible.

To achieve the aforementioned goals, we utilize key information from the environment such as the
environmental state transition function and the reward function for skill representation. We design
an auto-encoder model to generate skill variables. The encoder is denoted by fe(·; θe) where θe
represents parameters of the model. It encodes the one-hot vector of skill-id zj to the latent skill
variable z_latentj = fe(zj ; θe). There are two decoders with the same input which is a concatenation
of the observation oi, the action ai of agent i and all latent skill variables z_latent = {z_latentj |j =
1, 2, ...,M}. The output of one decoder, denoted by fdr(·; θdr), is the estimation of environment
reward while that of the other decoder, denoted by fdo(·; θdo), is the estimation of next observation
of agent i. The learning objective of the auto-encoder model is shown as Equation (2). With the first
two terms, the auto-encoder model could generate latent skill variables which reveal the effect of
different skills on observations, actions and the environment. Consequently, it is beneficial for the
skill selector to distinguish agents when their states and actions are similar.

Lr(θe, θds, θdo) = E[
∑

i(KL(fdo(z_latent, oi, ai)||o′i))
+ λ1

∑
i(fdr(z_latent, oi, ai)− r)2]− λ2

∑
j,j′ cos(fe(zj), fe(zj′)) (2)

where λ1, λ2 are the scaling factors.

The third term in Equation (2) aims to maximize the cosine distance between any two skills, which
encourages diverse policy learning for the skill learning module. The skill representation learning
mechanism is first trained in the early exploration of our framework. After the early exploration is
finished, we fix the parameters of the encoder in this module to generate representation features for
all skill ids.

3.2 Skill Selector

Here, we introduce a skill selection mechanism that assigns each agent a skill. This procedure
essentially assigns multiple skills to multiple agents. It is different from the single-agent skill-based
RL problem, which only assigns multiple skills to one agent.

Relying only on observation features may result in the skill selector assigning the same skill to
agents with similar observation features. Therefore, as shown in the middle part of Figure 1, the skill
selector chooses skills based on latent observation features of agents and the latent skill variables
generated in Section 3.1. The latent observation feature o_latenti is obtained through an MLP
and a GRU unit based on the observation oi, which is similar to other MARL methods. Then
o_latenti is disposed by another MLP module, of which the output is multiplied by the latent
skill variables z_latentj , j = 1, 2, ...,M . Then we can apply matrix multiplication of these two
matrices, i.e., o_latent and z_latent and get the matrix of local Q-values Qν of all agents. We
use Ω to represent the state space of the skill selector and Λ to represent the action space. The
Q-values of all agents’ actions are denoted by Qν

1 , Q
ν
2 , ..., Q

ν
N . In the execution mode, the index

corresponds to the maximum value is the skill that should be assigned to the agent i. For the training
of the skill selector, the learning objective is shown as Equation (3). Similar to the work in [21], a
mixing network is introduced to compute Qν

tot. Note that the assignment is computed every k steps,
thus the reward for each assignment is computed as

∑k−1
t′=0rt+t′ . Moreover, in the early training

stage, we encourage exploration and incentivize the skill selections to be as diverse as possible.
The policy with high entropy forces the skill selector to explore distinguished states for agents and
chooses different skills for agents, which benefits the training procedure. Therefore, maximizing the
policy entropy is also a goal G = H[Qν

i |Ω] in our objective. We replace it with an intrinsic reward
rs = −Ei[logQ

ν
i (o_latenti, z_latenti)] and add into Equation (3) for maximizing the expectation

G.

Ls = [
∑k−1

t′=0rt+t′ + βsr
s + γmaxΛ′Qν−

tot (Ωt+k,Λ
′)−Qν

tot(Ωt,Λt)]
2 (3)

4

3.3 Skill-based Policy Learning

In this section, we introduce a skill learning mechanism, which consists of a skill discovery process
and a skill-based policy learning process. The main idea of skill discovery includes two aspects. The
first is that skills should do effective exploration in the environment, which means that different skills
should explore effectively and access different states of the environment. Ideally, several skills should
cover as much of the exploration space of the environment as possible. The second aspect is that
skills should be learned as diverse as possible. In order to avoid duplication policies, each skill should
compute the action that differs significantly from the others. For example, in cooperative football
games, it is clear that the two skills of passing and shooting the ball should compute different actions
so that the respective tasks can be completed.

We introduce mutual information from information theory to realize the aforementioned objectives. To
achieve the first goal, we encourage each skill z to associate with the observation o, i.e. maximizing
the mutual information I(o; z) between skills and observations, where I represents the mutual
information. As for the diversity of skills, we hope that different skills generate actions as differently
as possible. Therefore, we can strengthen the correlation between the action a and the skill z
through maximizing the mutual information I(a; z|o) conditioned on the given state o. Finally, we
can improve the diversity of skills by maximizing the policy entropy H[a|o, z]), where H[·] is the
Shannon entropy. In summary, the final maximization objective is shown as Equation (4):

rm = I(o; z) + I(a; z|o) +H[a|o, z]
= (H[z]−H[z|o])︸ ︷︷ ︸

1⃝

+(H[a|o]−H[a|o, z])︸ ︷︷ ︸
2⃝

+H[a|o, z]︸ ︷︷ ︸
3⃝

(4)

For term 2⃝ in Equation (4), using the toolkit of variational inference and applying the bound from
[1], we can construct the variational lower bound which is shown in Equation (5) based on Theorem
1 in Appendix. (the proof is shown in Appendix A).

H[a|o]−H[a|o, z] ⩾ Ep(a,z,o)

[
log

p(z|a, o)
p(a, z|o)

]
−H[a|o, z] (5)

Further, we can transform Ep(a,z,o)

[
log p(z|a,o)

p(a,z|o)

]
into Equation (6).

−Ep(a,o) [H[p(z|a, o)]] + Ep(a,z,o)

[
log

1

p(z|o)

]
+ Ep(z,o) [H[p(a|z, o)]] (6)

Inserting Equation (5) and (6) into Equation (4) yields Equation (7). Note that H[z|o] in term 1⃝ and
3⃝ are eliminated (see Appendix A for details).

rm ⩾ H[p(z)] + Ep(z,o) [H[p(a|z, o)]]− Ep(a,o) [H[p(z|a, o)]] (7)

p(z) is the skill prior distribution. We fix this prior distribution to be uniform to ensure its maximiza-
tion entropy inspired by [6]. To make full use of the information contained in all actions, inspired
by [10], we use the Boltzmann Softmax distribution to generate a policy distribution, which is
consistent with the original Q function with the greedy policy, i.e., p(a|z, o) = Softmax(qθa(a|z, o)).
In this way, it takes into account all actions and makes maximum use of the information. Since it is
difficult to exactly compute p(z|a, o) covering all states, actions and skills, we make a variational
approximation to p(z|a, o) and optimize the lower bound of the variational posterior distribution
qθz (z|a, o).
The final optimization objective is shown as Equation (8).

rm ⩾ Ez,a,o [α1 log Softmax(qθa(a|z, o))− α2 log qθz (z|a, o)] (8)

The discovered skills can be chosen by agents to perform skill-based policy learning. Each agent
computes its skill-based policy Qi(ai, oi|zj) where zj is the representation of the selected skill. To
perform policy learning based on the global reward r from the environment, we use a QMIX-style
mixing network to mix all individual Q-values into a global Q-value Qtotal. The TD-loss of the
skill-based policy learning can be described as Equation (9).

LTD = E
[(

r + γmax
a′

Q−
tot(o

′,a′)−Qtot(o,a)
)2

]
(9)

5

0.0 0.5 1.0 1.5 2.0
T (mil)

0

20

40

60

80

100

Te
st

 W
in

 %

MMM2
HSL
CDS
RODE
ROMA
QPLEX
HSD
QMIX

0.0 1.0 2.0 3.0 4.0 5.0
T (mil)

0

20

40

60

80

100

Te
st

 W
in

 %

3s5z_vs_3s6z
HSL
CDS
RODE
ROMA
QPLEX
HSD
QMIX

0.0 0.5 1.0 1.5 2.0
T (mil)

0

20

40

60

80

100

Te
st

 W
in

 %

27m_vs_30m
HSL
CDS
RODE
ROMA
QPLEX
HSD
QMIX

0.0 0.5 1.0 1.5 2.0
T (mil)

0

20

40

60

80

100

Te
st

 W
in

 %

corridor
HSL
CDS
RODE
ROMA
QPLEX
HSD
QMIX

0.0 1.0 2.0 3.0 4.0 5.0
T (mil)

0

20

40

60

80

100

Te
st

 W
in

 %

6h_vs_8z
HSL
CDS
RODE
ROMA
QPLEX
HSD
QMIX

0.00 0.25 0.50 0.75 1.00
T (mil)

0

20

40

60

80

100

Te
st

 W
in

 %

5m_vs_6m
HSL
CDS
RODE
ROMA
QPLEX
HSD
QMIX

Figure 2: Performance comparison on SMAC.

3.4 Overall Optimization Objective

Finally, we describe how skill selector, skill discovery and skill-based policy learning are combined
in our framework. It is organized as a bi-level learning structure.

Inspired by [6], the optimization goal rm of skill discovery is embedded as an intrinsic reward in Lp

for skill-based policy learning, which is described as follows.

Lp =
[
r + βmrm + γmax

a′
Q−

tot(o
′,a′)−Qtot(o,a)

]2
(10)

We train our framework end-to-end by optimizing the following objective function:

L = ηsLs + Lp (11)

where Ls is the objective function for the skill selector and ηs is the scaling factor in Section 3.2.

4 Experiments

In this section, we test the performance of our framework on three challenging multi-agent tasks, i.e.,
StarCraft II micromanagement multi-agent challenge (SMAC) [22], Google Research Football (GRF)
[15] and GoBigger [8]. We compare our approach (HSL) with classical multi-agent value decomposi-
tion methods, i.e., QMIX [21] and QPLEX [26], role-based methods , i.e., ROMA[27],RODE[28],
diversity-based method CDS [4] and skill-based method HSD [32]. All experiments are conducted
over five random seeds. The detailed setting of the experimental setup is described in Appendix B.2.

4.1 Performance

SMAC: SMAC is a cooperative multi-agent task, in which each agent cooperates with teammates to
kill enemies. Maps in SMAC can be classified as Easy, Hard and Super Hard. In this section, we
concentrate on one Hard scenario 5m_vs_6m and all Super Hard scenarios, i.e., MMM2, 3s5z_vs_3s6z,
27m_vs_30m, corridor, 6h_vs_8z.

Figure 2 shows comparing results of the proposed method, HSL, with other baseline methods. As
we can see, HSL achieves the best performance over all scenarios. In the first three scenarios, even
if there exists a baseline that could achieve a satisfactory win rate, HSL still has a much faster
convergent speed. In the last three scenarios, HSL obtains the best win rate. Especially for 6h_vs_8z
and 5m_vs_6m, HSL improves the win rate by around 10% and 20% respectively, compared to
CDS.

It is interesting to see that CDS does not perform well in the scenario 27m_vs_30m. It is consistent
with the explanation in the introduction that CDS is not suited for large-scale scenarios. CDS
introduces extra neural networks for each agent. All these extra neural networks do not share

6

parameters in order to ensure diversity. Although HSL also introduces one extra neural network for
learning skills, different skill representations ensure diversity and thus parameter sharing still could
be applied.

Another note is that the role-based MARL, i.e., RODE, performs better than CDS in the first two
scenarios. The reason is that agents in the two scenarios are heterogeneous, which is easy for RODE
to distinguish roles based on observations and actions of agents. HSL is still better than RODE by
introducing skills. For the last three scenarios in which agents are homogeneous, it is difficult for
RODE to distinguish roles. HSL could obtain the best performance by discovering diverse skills.
In addition, we can observe that HSD cannot win in Super Hard scenarios. The skill discovery
mechanism based only on each agent’s local observation makes it difficult to learn winning strategies
effectively.

0.0 1.0 2.0 3.0 4.0
T (mil)

0
10
20
30
40
50
60
70
80

Te
st

 W
in

 %

3 vs 1 with keeper
HSL
CDS
RODE
ROMA
QPLEX
HSD
QMIX

0.0 2.0 4.0 6.0 8.0 10.0
T (mil)

0
10
20
30
40
50
60
70

Te
st

 W
in

 %

Hard Counter-attack
HSL
CDS
RODE
ROMA
QPLEX
HSD
QMIX

0.0 2.0 4.0 6.0 8.0 10.0
T (mil)

0

10

20

30

40

50

60

Te
st

 W
in

 %

Corner
HSL
CDS
RODE
ROMA
QPLEX
HSD
QMIX

Figure 3: Performance comparison on GRF.

GRF: In GRF, agents work with each other to decide when and where to move and keep the ball as
long as possible to maximize the chances of scoring. We consider three scenarios, i.e., 3 vs 1 with
keeper, Hard Counter-attack and Corner.

Results are shown in Figure 3, and again HSL performs the best. It is clear to see that classical value
decomposition MARL methods, i.e., QMIX and QPLEX, perform poorly in these scenarios due to
the lack of disposing of heterogeneous tasks. Role-based MARL methods cannot achieve satisfactory
performance because agents in these scenarios usually get similar states and actions, making it hard
to distinguish roles for agents. Due to the effective skill representation and skill selector mechanism,
HSL performs better than role-based MARL methods. Further, we could see that CDS is not able
to find effective strategies to win on Corner. Still, the reason is that the number of agents in this
scenario is much higher than that in the other two scenarios, which leads to an adverse effect on
training extra networks in CDS.

0.0 3.0 6.0 9.0 12.0 15.0
T (mil)

0

10

20

30

40

50

Te
st

 W
in

 %

Gobbiger 3 vs 3
HSL
CDS
RODE
ROMA
QPLEX
HSD
QMIX

0.0 2.0 4.0 6.0 8.0 10.0
T (mil)

0

10

20

30

40

50

60

Te
st

 W
in

 %

Gobigger 3 vs 3 with thorn
HSL
CDS
RODE
ROMA
QPLEX
HSD
QMIX

Figure 4: Performance comparison on GoBigger.

GoBigger: In GoBigger tasks, agents control one or more circular balls and cooperate to become
large as much as possible by eating food balls and other smaller balls in the environment. Meanwhile,
each agent needs to prevent itself from being eaten by other larger enemy balls. Agents can move,
eject, split and stop, which could be discretized as 13 actions, including moving, ejecting and splitting
in four orthogonal directions and stopping. For each episode, the team with the largest overall size
will win at the end of the game.

We show the performance comparison in Figure 4. We can observe that these two maps in GoBigger
are quite difficult. Only HSL and CDS can learn winning policies. Role-based MARL methods
do not work at all due to the reason explained before. In GoBigger, it becomes quite hard for
role-based MARL methods to find roles based on observations and actions. Due to the effective skill
representation and skill assignment, agents in HSL can select useful skills to cooperate with each
other to eat more food and eliminate enemies.

7

4.2 Ablation Study

0.0 1.0 2.0
T (mil)

0

20

40

60

80

100
Te

st
 W

in
 %

SMAC:6h_vs_8z
HSL
HSL No Action
HSL No Skill Repr
HSL No State
HSL Random Skill
HSL No Skill Intri. Reward

0.0 2.0 4.0 6.0 8.0 10.0
T (mil)

0
10
20
30
40
50
60
70

Te
st

 W
in

 %

GRF:Hard Counter-attack
HSL
HSL No Action
HSL No Skill Repr
HSL No State
HSL Random Skill
HSL No Skill Intri. Reward

0.0 3.0 6.0 9.0 12.0 15.0
T (mil)

0

10

20

30

40

50

Te
st

 W
in

 %

Gobigger: 3 vs 3
HSL
HSL No Action
HSL No Skill Repr
HSL No State
HSL Random Skill
HSL No Skill Intri. Reward

Figure 5: Ablation studies.

In this section, we conduct ablation experiments to evaluate the influence of the three components: (A)
Skill representation learning; (B) Skill selector; (C) Skill-based policy learning. To test component
A, we replace representations of skills with raw states, which is denoted by HSL No Skill Repr. For
evaluating component B, we introduce HSL Random Skill, where each agent randomly selects a skill.
Also, we remove the intrinsic reward in the learning objective of the skill selector, which is associated
with HSL No Skill Intri. Reward. To test component C, we consider HSL No State which removes
term 1⃝, and HSL No Action which removes term 2⃝ and 3⃝ in Equation (4).

Results are shown in Figure 5. HSL Random Skill obtains the worst performance, which indicates
that the skill selector plays a key role in the performance of HSL. Compared with HSL Random Skill,
HSL No Skill Repr. achieves higher performance in SMAC:6h_vs_8z and GRF:Hard Counter-attack,
since the raw state of agents could also work for skill assignment. However, it still performs worse
than our skill representation technique. It becomes obvious in the task Gobigger:3_vs_3. SM No
Skill Repr. does not work at all. HSL No Action achieves higher performance than HSL No State
does in SMAC:6h_vs_8z and GRF:Hard Counter-attack, which shows that the term 1⃝ in (4) is
important in these scenarios. In contrast, other terms in (4) are important in HSL No State because the
performance is higher in this scenario. As for the intrinsic reward in the skill selector, we can observe
that the performance gap between HSL and HSL No Skill Intri. Reward in GRF:Hard Counter-attack
and Gobigger:3_vs_3 is larger than that in SMAC:6h_vs_8z. The reason is that dense rewards in
SMAC:6h_vs_8z help the skill selector learn effective skill selection policies. Conversely, the sparse
reward in GRF:Hard Counter-attack and the inefficient reward in Gobigger:3_vs_3 increase the
policy learning difficulty of the skill selector in HSL No Skill Intri. Reward.

4.3 Skill Demonstration

In this section, we conduct a case study on scenario SMAC: 6h_vs_8z to demonstrate what our
skill-based framework learns. We carry out an experiment with the obtained strategy and give a
skill demonstration in Figure 6. It is clear to see that our framework has learned 3 skills including
escaping (red), attacking (green) and kiting (yellow). The middle part shows the skill selection of
agents during the game. For example, Agent 1 selects the red skill at the beginning and the yellow
skill until dies. The top and the bottom part give visualizations of discovered skills.

In the first two graphs, two agents select the escaping skill to absorb damage and other agents select
the attack skill to produce damage to enemies. In the third graph, one agent close to enemies selects
escaping skill. Four other agents select the kiting skill to run in the opposite direction to make damage
to enemies. In the fourth graph and fifth graph, two of the alive agents still choose the kiting skill.
Agent 3 first chooses the attacking skill since it is far away from enemies, and soon it chooses to
escape when enemies are approaching. In the last graph, an escaped agent is died, while the remaining
agents select the kiting skill to eliminate enemies. Results on GRF and GoBigger benchmarks are
detailed in Appendix B.3.

5 Related Work

Deep MARL algorithms have drawn broad attention in recent years. Most works take advantage of
the CTDE paradigm [9] for cooperative policy learning for agents. Policy-based MARL algorithms
design a centralized critic to compute gradients for decentralized actors such as MADDPG[16],
COMA [7] and DOP [30]. Value-based MARL algorithms achieve centralized optimization and

8

Skill1: Escape

A
ge

n
t

Skill2: Attack

Skill3: Kite

Skill1: Escape

Skill3: Kite

Skill2: Attack Skill1: Escape

Skill3: Kite Skill3: Kite

Figure 6: Skill demonstration on SMAC: 6h_vs_8z.

decentralized execution via value decomposition. These methods introduce a mixing network to mix
the local value functions of each agent to estimate the joint value function. VDN [25], QMIX [21] and
QTRAN [23] have gradually improved the decomposition capabilities of the mixing networks. Qatten
[34] refines the representation of the joint value function by implementing a multi-head attention
formation to approximate the value decomposition procedure. Qplex [26] designs a duplex dueling
network to encode the IGM principle for higher representation capabilities of the IGM class.

Although many MARL works under the CTDE paradigm have achieved promising results, most
of them apply the parameter sharing technique to share knowledge and experience among agents
to compute cooperative actions. However, when faced with complex multi-agent tasks, centralized
training and parameter sharing lead to difficulties in generating heterogeneous behavior. Therefore,
a series of works have been developed to learn heterogeneous policy learning in MARL. ROMA
[27] introduces the concept of role to compute independent actions for different agents. RODE
[28] decomposes the action space into sub-groups in order to reveal proper roles for agents for
heterogeneous policy learning. Recent works introduce diversity to enable agents to learn diverse
policies to solve complex tasks. MAVEN [17] designs a latent space to learn heterogeneous policies
and encourage exploration. EITI and EDIT [29] use mutual information to encourage each agent
to perform independent exploration to optimize team performance. EMC [35] proposes a curiosity-
driven exploration method to make full use of the explored valuable experiences for each agent’s
efficient policy learning. EOI [12] learns each agent’s policy via the combination of the gradient
from the intrinsic value function and the joint value function. CDS [4] adds an extra local policy
network for each agent and tries to make a balance between the high learning efficiency brought
by diversity and parameter sharing. The most relevant work is HSD [32], which encourages skill
discovery in MARL settings. It proposes a bi-level hierarchy to discover cooperative skills for each
agent. However, HSD selects skills for agents only based on historical observations, which leads to
poorly distinguishable skill discovery. Skill-based policy learning mechanism in HSD cannot learn
diverse skills because it is also conditioned on skill features. By comparison, our approach does
not totally rely on trajectories, but instead designs a skill representation mechanism and introduces
intrinsic rewards for skill selection. Furthermore, our approach computes intrinsic targets for skill
discovery and skill-based policy learning via mutual information maximization.

9

6 Conclusion

This paper proposes a novel skill-based MARL framework to deal with the heterogeneous problem in
complex cooperative multi-agent tasks. The concept of skill is introduced, which is represented as
latent variables generated by an auto-encoder model. The representation reflects the characters of
agents and ensures the diversity of skills, which play an important role in generating and selecting
skills for agents. The skill selection mechanism outputs a skill for an agent based on its observation
and skill representation. The selection is dynamically changed with the real-time game state, which
helps agents to use proper skills to adapt to complex situations. To ensure efficient policy learning,
we propose a skill-based policy learning mechanism based on mutual information optimization under
the information theory paradigm. Empirical results on three challenging MARL benchmarks show
that our framework significantly pushes forward the performance of state-of-the-art MARL methods.
We expect that our approach could provide valuable guidance for future MARL in using skills to
solve complex cooperative problems in the real world.

7 Acknowledge

This work was partially supported by the National Natural Science Foundation of China
(No.61902425) and the Open Fund of Science and Technology on Parallel and Distributed Pro-
cessing Laboratory (WDZC20205500104). We would like to thank the anonymous reviewers for
their valuable suggestions.

References
[1] David Barber Felix Agakov. 2004. The im algorithm: a variational approach to information

maximization. (2004).

[2] Kai Arulkumaran, Antoine Cully, and Julian Togelius. 2019. Alphastar: An evolutionary com-
putation perspective. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion. 314–315.

[3] Michael Bowling and Manuela Veloso. 2000. An analysis of stochastic game theory for
multiagent reinforcement learning. Technical Report. Carnegie-Mellon Univ Pittsburgh Pa
School of Computer Science.

[4] Li Chenghao, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie Zhang.
2021. Celebrating Diversity in Shared Multi-Agent Reinforcement Learning. Advances in
Neural Information Processing Systems 34 (2021).

[5] Jongwook Choi, Archit Sharma, Honglak Lee, Sergey Levine, and Shixiang Shane Gu. 2021.
Variational Empowerment as Representation Learning for Goal-Based Reinforcement Learning.
arXiv preprint arXiv:2106.01404 (2021).

[6] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. 2018. Diversity is
All You Need: Learning Skills without a Reward Function. In International Conference on
Learning Representations.

[7] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
2018. Counterfactual multi-agent policy gradients. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 32.

[8] Go-Bigger. 2021. Go-Bigger: Multi-Agent Decision Intelligence Environment. https://
github.com/opendilab/GoBigger. (2021).

[9] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. 2017. Cooperative multi-agent
control using deep reinforcement learning. In International Conference on Autonomous Agents
and Multiagent Systems. Springer, 66–83.

[10] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. 2017. Reinforcement
learning with deep energy-based policies. In International Conference on Machine Learning.
PMLR, 1352–1361.

10

https://github.com/opendilab/GoBigger
https://github.com/opendilab/GoBigger

[11] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart Russell, and Anca D Dragan.
2017. Inverse reward design. In Proceedings of the 31st International Conference on Neural
Information Processing Systems. 6768–6777.

[12] Jiechuan Jiang and Zongqing Lu. 2021. The emergence of individuality. In International
Conference on Machine Learning. PMLR, 4992–5001.

[13] Zahi Kakish, Karthik Elamvazhuthi, and Spring Berman. 2021. Using reinforcement learn-
ing to herd a robotic swarm to a target distribution. In International Symposium Distributed
Autonomous Robotic Systems. Springer, 401–414.

[14] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil
Yogamani, and Patrick Pérez. 2021. Deep reinforcement learning for autonomous driving: A
survey. IEEE Transactions on Intelligent Transportation Systems (2021).

[15] Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajac, Olivier Bachem, Lasse Espeholt,
Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. 2019. Google re-
search football: A novel reinforcement learning environment. arXiv preprint arXiv:1907.11180
(2019).

[16] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. 2017.
Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in neural
information processing systems 30 (2017).

[17] Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. 2019. Maven:
Multi-agent variational exploration. Advances in Neural Information Processing Systems 32
(2019).

[18] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. 2012. Independent reinforce-
ment learners in cooperative markov games: a survey regarding coordination problems. The
Knowledge Engineering Review 27, 1 (2012), 1–31.

[19] Simone Parisi, Victoria Dean, Deepak Pathak, and Abhinav Gupta. 2021. Interesting Object, Cu-
rious Agent: Learning Task-Agnostic Exploration. Advances in Neural Information Processing
Systems 34 (2021).

[20] Karl Pertsch, Youngwoon Lee, Yue Wu, and Joseph J Lim. 2021. Guided Reinforcement
Learning with Learned Skills. In Self-Supervision for Reinforcement Learning Workshop-ICLR
2021.

[21] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. 2018. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In International Conference on Machine Learning. PMLR, 4295–4304.

[22] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nan-
tas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon
Whiteson. 2019. The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043 (2019).

[23] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. 2019. Qtran:
Learning to factorize with transformation for cooperative multi-agent reinforcement learning.
In International Conference on Machine Learning. PMLR, 5887–5896.

[24] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. 2017. Value-
decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296
(2017).

[25] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. 2018. Value-
Decomposition Networks For Cooperative Multi-Agent Learning Based On Team Reward.
In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems. 2085–2087.

11

[26] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. 2021. QPLEX: Duplex
Dueling Multi-Agent Q-Learning. In International Conference on Learning Representations.

[27] Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. 2020. ROMA: Multi-Agent Re-
inforcement Learning with Emergent Roles. In International Conference on Machine Learning.
PMLR, 9876–9886.

[28] Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang.
2021. RODE: Learning Roles to Decompose Multi-Agent Tasks. In International Conference
on Learning Representations.

[29] Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. 2020. Influence-Based Multi-Agent
Exploration. In International Conference on Learning Representations.

[30] Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. 2020. Dop:
Off-policy multi-agent decomposed policy gradients. In International Conference on Learning
Representations.

[31] Zifan Wu, Chao Yu, Deheng Ye, Junge Zhang, Hankz Hankui Zhuo, et al. 2021. Coordinated
Proximal Policy Optimization. Advances in Neural Information Processing Systems 34 (2021).

[32] Jiachen Yang, Igor Borovikov, and Hongyuan Zha. 2020. Hierarchical Cooperative Multi-
Agent Reinforcement Learning with Skill Discovery. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems. 1566–1574.

[33] Yaodong Yang, Jianye Hao, Guangyong Chen, Hongyao Tang, Yingfeng Chen, Yujing Hu,
Changjie Fan, and Zhongyu Wei. 2020. Q-value path decomposition for deep multiagent
reinforcement learning. In International Conference on Machine Learning. PMLR, 10706–
10715.

[34] Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao
Tang. 2020. Qatten: A general framework for cooperative multiagent reinforcement learning.
arXiv preprint arXiv:2002.03939 (2020).

[35] Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen, Changjie Fan,
Yang Gao, and Chongjie Zhang. 2021. Episodic Multi-agent Reinforcement Learning with
Curiosity-driven Exploration. Advances in Neural Information Processing Systems 34 (2021).

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Appendix D.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Appendix E.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section
3.3 and Appendix A.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [No] The code is
proprietary.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix B.2.

12

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See all results in Section 4.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix B.4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix B.3.
(b) Did you mention the license of the assets? [Yes] See [22], [15] and [8].
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Background
	Method
	Skill Representation Learning
	Skill Selector
	Skill-based Policy Learning
	Overall Optimization Objective

	Experiments
	Performance
	Ablation Study
	Skill Demonstration

	Related Work
	Conclusion
	Acknowledge
	Mathematical Derivation
	Experimental Details
	Baselines
	Architecture and Hyper-parameters
	MARL benchmarks
	Infrastructure

	Additional Results
	Skill Demonstration on GRF
	Skill Demonstration on GoBigger

	Limitations
	Broader impact
	Discussion

