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Abstract

3D instance segmentation is a challenging task due to the complex local geometric
structures of objects in point clouds. In this paper, we propose a learning-based
superpoint graph cut method that explicitly learns the local geometric structures of
the point cloud for 3D instance segmentation. Specifically, we first oversegment
the raw point clouds into superpoints and construct the superpoint graph. Then,
we propose an edge score prediction network to predict the edge scores of the
superpoint graph, where the similarity vectors of two adjacent nodes learned
through cross-graph attention in the coordinate and feature spaces are used for
regressing edge scores. By forcing two adjacent nodes of the same instance to be
close to the instance center in the coordinate and feature spaces, we formulate a
geometry-aware edge loss to train the edge score prediction network. Finally, we
develop a superpoint graph cut network that employs the learned edge scores and
the predicted semantic classes of nodes to generate instances, where bilateral graph
attention is proposed to extract discriminative features on both the coordinate and
feature spaces for predicting semantic labels and scores of instances. Extensive
experiments on two challenging datasets, ScanNet v2 and S3DIS, show that our
method achieves new state-of-the-art performance on 3D instance segmentation.
Code is available at https://github.com/fpthink/GraphCut.

1 Introduction

In recent years, with the development of 3D sensors, such as LiDAR and Kinect camera, various 3D
computer vision tasks have been receiving more and more attention. 3D instance segmentation is
a fundamental task in 3D scene understanding and has been widely used in kinds of applications
such as self-driving cars, virtual reality, and robotic navigation. Although recent progress in 3D
instance segmentation is encouraging, it is still a challenging task due to irregularities and context
uncertainties of 3D points in 3D scenes with complex geometric structures.

Many efforts have been dedicated to 3D instance segmentation and achieved promising performance.
These methods can be mainly divided into two categories: detection-based methods [44, 45] and
clustering-based methods [40, 18]. Among detection-based methods, 3D-BoNet [44] first detects
the 3D bounding boxes and then employs a mask prediction network to predict the object mask
for 3D instance segmentation. However, for objects with complex geometric structures, detection-
based methods [45] cannot obtain accurate 3D bounding boxes, thereby degrading the instance
segmentation performance. The clustering-based method SGPN [40] clusters 3D points based
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on semantic segmentation to generate instances. Unlike SGPN, Jiang et al. [18] developed an
offset branch to cluster points based on semantic predictions in dual coordinate spaces, including
original and shifted coordinate spaces. Besides, some follow-up methods utilize tree structures [25],
hierarchical aggregation [3], and soft semantic segmentation [37] to boost the performance of 3D
instance segmentation. However, most of these clustering-based methods rely on center offsets and
semantics to segment instances, which cannot effectively capture the geometric context information
of point clouds. Therefore, the performance of instance segmentation is usually limited by objects
with complex geometric structures in point clouds.

In this paper, we propose a learning-based superpoint graph cut method that explicitly learns the
local geometric structures of point clouds to segment 3D instances. Specifically, we construct the
superpoint graph to learn the geometric context similarities of superpoints and convert the instance
segmentation into a binary classification of edges. Our method consists of an edge score prediction
network to predict edge scores and a superpoint graph cut network to generate instances. In our
method, we oversegment the raw point clouds into superpoints and construct the superpoint graph by
linking the k-nearest superpoints in the coordinate space. In the edge score prediction network, we
first perform cross-graph attention on the local neighborhoods of two adjacent nodes to extract local
geometric features for measuring the similarity of the nodes. Then, based on the learned similarity
vectors from the coordinate and feature spaces, we adopt an edge score branch to predict the edge
scores. In addition, we propose a geometry-aware edge loss to train the edge score prediction network
by forcing the adjacent nodes of the same instance to be close to the instance center in both the
coordinate and feature spaces. In the superpoint graph cut network, we use the learned edge scores
combined with semantic classes of the nodes to cut the edges for forming object proposals. The
proposals are obtained by applying the breadth-first-search algorithm on the superpoint graph to
aggregate nodes in the same connected component. In each proposal, we apply bilateral graph
attention to aggregate local geometric features to extract discriminative features for predicting classes
and scores of proposals. Furthermore, we adopt a mask learning branch to filter the low-confidence
superpoints within the proposal to generate instance.

In summary, we present an edge score prediction network that learns the local geometric features of
adjacent nodes for producing edge scores. To train it, we propose a geometry-aware edge loss to keep
the instance compact in the coordinate and feature space simultaneously. We present a superpoint
graph cut network that extracts discriminative instance features to generate accurate instances by using
bilateral graph attention in the coordinate and feature spaces. Extensive experiments on the ScanNet
v2 [7] and S3DIS [1] datasets show that our method achieves new state-of-the-art performance on 3D
instance segmentation. On the online test set of ScanNet v2, our method achieves the performance
of 55.2% in terms of mAP, which is 4.6% higher than the current best results [25]. For S3DIS, our
method outperforms the current best results [37] over 2% in terms of mAP.

2 Related Work

3D semantic segmentation. Extracting features from irregular 3D point clouds is crucial for 3D
semantic segmentation. Qi et al. [30] first proposed PointNet to learn point-wise features from a
point set for semantic segmentation through the multi-layer perceptron network. Following it, many
efforts [24, 34, 46, 15, 47, 4, 2] have been proposed to improve semantic segmentation performance.
Early point-based methods [36, 43, 31, 14] design various local feature aggregation strategies to
extract discriminative point-wise features for semantic segmentation. Inspired by successful 2D
convolution networks, view-based methods [23, 35, 17, 19] project the point cloud into multiple
regular 2D views, where the regular 2D convolution is applied to extract features. In addition to view-
based methods, volumetric-based methods [27, 39, 10, 6] first voxelize the point cloud into regular
3D grids and then apply 3D convolution to extract local features of point clouds. In order to capture
the local geometric structures of point clouds, graph-based methods [42, 22, 38, 5, 16] construct the
graph on point clouds and utilize graph convolution to aggregate local geometric information for
semantic segmentation.

3D instance segmentation. 3D instance segmentation is a more challenging task, which further needs
to identify each instance. Current methods can be roughly grouped into two classes: detection-based
methods and clustering-based methods.
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Figure 1: The framework of our learning-based superpoint graph cut method. Given the superpoint
graph, we first extract superpoint features (omitted in the figure). Then, we construct an edge score
prediction network to extract edge embeddings from the coordinate and feature spaces for predicting
edge scores. Finally, based on the learned edge scores, we develop a superpoint graph cut network to
generate accurate instances.

Detection-based methods [45, 13, 26] first detect 3D bounding boxes of each object in point clouds,
and then apply a mask prediction network on each box to predict the object mask for 3D instance
segmentation. In [44], a 3D instance segmentation framework dubbed 3D-BoNet is proposed, which
directly regresses the 3D bounding boxes for all instances and predicts point-level masks for each
instance. Yi et al. [45] proposed a generative shape proposal network that generates proposals by
reconstructing shapes from noisy observations in a scene for 3D instance segmentation. In addition,
using both geometry and RGB inputs, [13] develops a joint 2D-3D feature learning network that
combines the 2D and 3D features to regress 3D object bounding boxes and predict instance masks.

Clustering-based methods usually use point similarity [40], semantic maps [11, 20], or geometric
shifts [18, 3, 25, 33] to cluster 3D points into object instances. A similarity group proposal network
was proposed in [40] to cluster points by learning point-wise similarity for generating instances.
[29] proposes a multi-task learning framework that simultaneously learns semantic classes and
high-dimensional embeddings of 3D points to cluster the points into object instances. In [41],
a segmentation framework is introduced to learn semantic-aware point-wise instance embedding
for associatively segmenting instances and semantics of point clouds. Han et al. [11] proposed an
occupancy-aware method to predict the number of occupied voxels for each instance. PointGroup [18]
clusters points by using predicted point-wise center offset vectors and point-wise semantic labels.
The follow-up method [3] adopts a hierarchical aggregation strategy for 3D instance segmentation,
which first performs point aggregation to cluster points into preliminarily sets and then performs set
aggregation to cluster sets into instances. Lately, Vu et al. [37] proposed a soft grouping strategy to
mitigate the problem of semantic prediction errors by associating each point with multiple classes,
yielding in significant performance gains in 3D instance segmentation. In addition, a semantic
superpoint tree network, called SSTNet, is proposed in [25] for segmenting point clouds in instances.
It first groups superpoints with similar semantic features to build a binary tree and then generates
instances by tree traversal and splitting. To make the network more efficient, a dynamic convolution
network combined with a small Transformer network is constructed to propose a lightweight 3D
instance segmentation method [12].

3 Method

An overview of our learning-based superpoint graph cut method is illustrated in Figure 1. Based on
the superpoint graph, the edge score prediction network (Sec. 3.1) extracts edge embeddings from
the coordinate and feature spaces for predicting edge scores. After that, the superpoint graph cut
network (Sec. 3.2) generates accurate object instances by learning discriminative instance features to
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predict classes and scores of instances. Finally, in Sec. 3.3, we describe how to train our method and
inference instances from point clouds.

3.1 Edge Score Prediction Network

Given a raw point cloud, we oversegment it into superpoints and construct the superpoint graph
G = (V,E), where V represents the node set of superpoints and E represents the edge set. Since the
superpoint representation is coarser than the point representation, learning features directly from the
superpoint representation cannot effectively capture the local geometric structures of point clouds.
Therefore, we apply submanifold sparse convolution [10] on the point cloud to extract point-level
features and use the point-level features to initialize superpoint-level features by average pooling.
After that, we apply edge-conditioned convolution [32] to extract superpoint features, denoted as
F ∈ R|V |×C , where C is the feature dimension.

3.1.1 Edge Feature Embedding

Once we obtain superpoint features, the edge score prediction network learns edge embeddings to
predict edge scores for segmenting instances. Given the adjacent nodes (u, v) ∈ E, it is desired
that the learned edge embedding can effectively identify whether nodes u and v belong to the same
instance. To tackle this problem, we applies cross-graph attention to the superpoint graph in double
spaces (the coordinate and feature spaces) for learning superpoint similarities. The learned similarity
vectors of nodes u and v are used to form the edge embedding for predicting edge scores.

Edge embedding in coordinate space. To characterize the similarity of nodes u and v, we first
shift them toward the corresponding instance centroids in the coordinate space. Here, a multi-layer
preceptron (MLP) network encodes F to produce |V | offset vectorsO = {o1, . . . ,o|V |} ∈ R|V |×3.
Give the original superpoint coordinates X = {x1, . . . , x|V |} ∈ R|V |×3, the shifted superpoint
coordinates X̂ = {x̂1, . . . , x̂|V |} are obtained by X̂ = X +O. In this way, the geometric distance of
nodes belonging to different instances will be increased, so that the discrimination of the superpoints
will be enhanced. After that, based on the shifted coordinate space, for node u, we leverage its
k-nearest superpoints (i.e., Nu) to construct the local k-NN graph Gu. Similarly, we can obtain the
graph Gv for node v. Then, we perform cross-graph attention across Gu and Gv to characterize the
similarity of nodes through the learned feature vectors, as shown in Figure 1. Taking the node u as an
example, the weight α of cross-graph attention is defined as:

αu,i = MLP(x̂i − x̂u),∀i ∈ Nu ∪Nv (1)

where x̂i and x̂u are the shifted coordinates. Note that i enumerates the all 2*k neighbors across two
graphs. Therefore, the final output feature vector can be formulated as:

hu =
∑

i∈Nu∪Nv

α̂u,i ∗MLP(x̂i) + bi (2)

where α̂u,i is the weight αu,i after softmax and bi is a learnable bias. The learned feature vector
hu ∈ RC can characterize the geometry similarity by adaptively learning the geometric differences
on two graphs. In the same way, we can obtain feature vector hv for another node v. We combine the
feature vectors hu and hv as the edge embedding in the coordinate space: eu,v = [hu,hv].

Edge embedding in feature space. In addition to the coordinate space, we also consider the feature
space to extract discriminative edge embeddings. Firstly, a MLP network encodes F to produce the
initial feature embedding Z ∈ RD. By pushing feature embeddings of instances away from each
other, we enlarge the gap between different instances in the feature space. Given a pair of nodes
(u, v) ∈ E, we construct the k-NN graphs Ĝu and Ĝv in the feature space, respectively. In this way,
it is expected that each graph can aggregate superpoints within the same instance. Then, we execute
cross-graph attention across Ĝu and Ĝv to characterize the similarity of nodes in the feature space.
Finally, we can obtain the feature vectors ĥu ∈ RC and ĥv ∈ RC . If u and v belong to the same
instance, they share the similar k-NN graph in the feature space, so that the learned feature vectors
ĥu and ĥv are similar to each other. Here, we also combine the feature vectors to obtain the edge
embedding in the feature space: êu,v = [ĥu, ĥv].
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Figure 2: The details of our geometry-aware edge loss. u and v in graphs (A) and (C) belong to the
same instance, and u and v in graphs (B) and (D) belong to different instances.

Edge score prediction. After obtaining edge embeddings in the coordinate and feature spaces, we
utilize a simple MLP network to generate the edge score, which is defined as:

au,v = σ(MLP([eu,v, êu,v, du,v])) (3)
where [·, ·, ·] indicates the concatenation operation, σ denotes the sigmoid function, and du,v rep-
resents the geometric distance between the nodes u and v in the shifted coordinate space. In the
experiment, if the edge score au,v > 0.5, it means that the edge between nodes u and v should be cut
from the superpoint graph. We use the binary cross-entropy loss Ledge to minimize the edge score.

3.1.2 Geometry-Aware Edge Loss

To train the edge score prediction network, we employ the geometric structures of the superpoint
graph to form a geometry-aware edge loss, as shown in Figure 2.

Specifically, given the nodes u, v and their corresponding instance centroids cu and cv, we draw
nodes toward their instance centroids by minimizing the L2 distance du,cu and dv,cv . Furthermore,
when (u, v) ∈ E belong to the same instance, it is expected that they can collaboratively shift to
the same instance centroid c by minimizing the area of triangle4uvc. While (u, v) ∈ E belong to
different instances, it is expected that they can collaboratively shift to their own instance centroids cu
and cv by minimizing the area of triangles4uvcu and4uvcv . The area constraint in the coordinate
space is written as:

Larea =
1

|E|
∑

(u,v)∈E

‖x̂u − cu‖2 + ‖x̂v − cv‖2 +
1

2
(|(c− x̂u)× (c− x̂v)|I(u, v)

+(|(cu − x̂u)× (x̂v − x̂u)|+ |(cv − x̂v)× (x̂u − x̂v)|)(1− I(u, v)))
(4)

where I(u, v) is the indicator function, and I(u, v) equals to 1 if u and v belong to the same instance,
and 0, otherwise. Note that “×” represents the outer product of vectors for computing the area of
triangles. For nodes u and v from the same instance, u and v are simultaneously close to the common
instance centroid. Therefore, they are pulled close to each other in the coordinate space, which is
helpful to group u and v into the same instance. For nodes u and v from different instances, u and v
are respectively close to the corresponding instance centroids. Thus, they are pushed away in the
coordinate space, which is helpful to divide u and v into two different instances.

Likewise, we expect the nodes in the same instance to be compact in the feature space by constraining
their feature embeddings. For (u, v) ∈ E belong to the same instance, we draw embeddings of u
and v toward the mean embedding of the instance, and also pull them to each other. For (u, v) ∈ E
belong to different instances, we push embeddings of u and v away from each other. In addition, the
instances are pushed away from each other by increasing the distance of their own mean embedding
of instances. Thus, the constraint in the feature space is written as:

Lfeat =
1

|E|
∑

(u,v)∈E

([‖zu − zv‖2 − δ]2+ + [‖zu − gu‖2 − δ]2+)I(u, v)

+([2β − ‖zu − zv‖2]2+ + [2β − ‖gu − gv‖2]2+)(1− I(u, v))
(5)

where zu ∈ RD and zv ∈ RD are the feature embeddings. Note that gu ∈ RD and gv ∈ RD
indicate the mean feature embeddings of the instances that u and v belong to, respectively. The
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Algorithm 1 Proposal Generation Algorithm
Input: node semantic scores S = {s1, . . . , s|V | | si ∈ RN for i = 1, . . . , |V |}, N is the number of
classes; semantic threshold θ; edge scores A = {au,v} ∈ R|E|×1, au,v indicates the score of edge
which connects nodes u and v;
Output: proposals I = {I1, . . . , Im}, m is the number of proposals.

1: initialize an empty instance set I
2: for i = 1 to N do
3: if i is valid class (excluding wall, floor) then
4: initialize an array f (visited) of length |V | with all zeros
5: for v = 1 to |V | do
6: if fv == 0 and siv > θ then
7: initialize an empty queue Q
8: initialize an empty set I
9: fv = 1 ; Q.pushBack(v) ; add v to I

10: while Q is not empty do
11: h = Q.popFront()
12: for each k ∈ {k | ah,k < 0.5} do
13: if fk == 0 and sik > θ then
14: fk = 1 ; Q.pushBack(k) ; add k to I
15: add I to I
16: return I

thresholds δ and β are set to be 0.1 and 1.5 to ensure that the inter-instance distance is higher than the
intra-instance. Finally, the geometry-aware edge loss is defined as:

Lgeo = Larea + Lfeat + Ledge (6)

3.2 Superpoint Graph Cut Network

3.2.1 Proposal Generation via Superpoint Graph Cut

Given the edge scoreA = {au,v} ∈ R|E|×1, we propose a proposal generation algorithm to generate
candidate proposals by simultaneously employing the learned edge scores and the predicted semantic
classes of nodes (i.e., superpoints). Specifically, in order to mitigate semantic prediction errors, we
follow [37] and adopt a soft threshold θ to associate the nodes with multiple classes. Given semantic
scores of superpoints S = {s1, . . . , s|V | | si ∈ RN for i = 1, . . . , |V |}, where N is the number
of classes, if siv > θ, the v-th superpoint can be associated with the i-th class. In this way, for the
i-th class, we can slice a superpoint subset Ci on the superpoint graph, where the semantic score of
the superpoint on the i-th class index is higher than θ. Then, on the superpoint graph, for the edge
(u, v) ∈ E, if nodes u ∈ Ci and v ∈ Ci, the edge (u, v) will be preserved, otherwise the edge will be
deleted. In other words, we remove the edge between two superpoint nodes with different semantics.
After that, for the preserved edges (u, v) on the superpoint graph, we utilize the edge score au,v to
determine whether the edge should be cut from the superpoint graph. In the experiment, the threshold
for cutting the edge is set to 0.5. If the edge score is higher than 0.5, the edge will be cut from the
superpoint graph. Finally, we apply the breadth-first-search algorithm on the superpoint graph to
aggregate nodes in the same connected component for generating proposals for the i-th class. In this
way, we can generate proposals for N classes by iterating through N classes. The details are shown
in Algorithm 1.

3.2.2 Bilateral Graph Attention for Proposal Embedding

As we obtain proposals I = {I1, . . . , Im} from the point cloud, we propose bilateral graph attention
to extract proposal embeddings for generating instances by applying the attention mechanism in both
the coordinate and feature spaces. Specifically, given the i-th proposal, we first compute proposal
centroid ci by averaging the shifted superpoint coordinates. Then, we adopt the inverse distance
weighted average of the corresponding superpoints to interpolate the embedding of the proposal
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centroid, which is formulated as:

f
′

i (ci) =

∑
j∈Ii ψj(ci) ∗ fj∑
j∈Ii ψj(ci)

, ψj(ci) =
1

‖xj − ci‖2
(7)

where Ii represents the superpoints within the i-th proposal and xj indicates the original coordinates of
superpoints. Note that ∗ indicates the Hadamard product, which outputs the element-wise production
of two vectors. After obtaining the coordinate ci and embedding f

′

i for the i-th proposal, we then
link the superpoints to proposal centroid for constructing the k-NN graph. To extract discriminative
embedding of the proposal, we develop bilateral graph attention to achieve this. The bilateral weight
wi,j between the superpoint j ∈ Ii and the i-th proposal is formulated as:

wi,j = φ(f
′

i ,fj) ∗ ϕ(ci, xj) (8)

where φ(·, ·) : RC×RC → RC and ϕ(·, ·) : R3×R3 → RC are two mapping functions implemented
by MLP networks. φ(f

′

i ,fj) = ReLU(W>
φ (f

′

i−fj)) encodes the difference between the superpoint
and proposal centroid in the feature space, while ϕ(ci, xj) = ReLU(W>

ϕ (ci − xj)) encodes the
difference between the superpoint and proposal centroid in the coordinate space. Thus, wi,j ∈ RC
captures the channel-wise relationship between the superpoint and proposal in the coordinate and
feature spaces. We use the softmax function to obtain normalized weight ŵi,j across the proposal Ii,
which is written as:

ŵi,j =
exp(wi,j)∑
k∈Ii exp(wi,k)

(9)

Finally, we sum the weighted superpoint embeddings to obtain the proposal embedding, which is
given by:

f̂i =
∑

j∈Ii
wi,j ∗ fj (10)

After obtaining the proposal embedding, we adopt a classification head and a score head to predict
the class and score of the proposal Ii. In addition, we use a superpoint mask head to predict the
superpoint score for masking the low-confidence superpoints within the proposal. Note that by using
the superpoint mask head, we can generate the instance from the candidate proposal. According to
these three heads, we use the cross-entropy as the classification loss Lcls, the binary cross-entropy as
the score loss Lscore, and the mean squared error as the mask loss Lmask to form the instance loss
Lins = Lcls + Lscore + Lmask for training the superpoint graph cut network.

3.3 Training and Inference

In the training process, the whole framework is optimized by a joint loss, which is defined as:

Ljoint = Lsem + Lgeo + Lins (11)

where Lsem is the conventional cross-entropy loss for semantic scores, Lgeo is the geometry-aware
edge loss for edge scores, and Lins is the instance loss for instance classification, score prediction,
and superpoint mask prediction. In the inference process, our method directly outputs instances after
a forward pass of the network. Note that non-maximum suppression is not necessary for our method.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct experiments on two benchmark datasets, ScanNet v2 [7] and S3DIS [1]. The
ScanNet v2 dataset contains 1,613 3D scenes, which are split into 1,201 training, 312 validation,
and 100 test scenes, respectively. The results of instance segmentation are evaluated on 18 object
categories. We report the results on validation and hidden test set. The ablation study is conducted on
the validation set. The S3DIS dataset has 272 3D scans in 6 different areas with 13 object classes.
The instance segmentation is evaluated in all classes. We report Area 5 and 6-fold cross-validation
results, respectively.

Evaluation metrics. Following the ScanNet v2 official protocol, we use the mean average precision
as the evaluation metric for both ScanNet v2 and S3DIS. The mean average precision with IoU
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Table 1: Instance segmentation results on the ScanNet v2 hidden test set. The reported results are
from the ScanNet benchmark on 19/5/2022.

Method AP ba
th

tu
b

be
d

bo
ok

sh
e

ca
bi

ne
t

ch
ai

r

co
un

te
r

cu
rt

ai
n

de
sk

do
or

ot
he

r

pi
ct

ur
e

fr
id

ge

s.
cu

rt
ai

n

si
nk

so
fa

ta
bl

e

to
ile

t

w
in

do
w

3D-SIS [13] 16.1 40.7 15.5 6.8 4.3 34.6 0.1 13.4 0.5 8.8 10.6 3.7 13.5 32.1 2.8 33.9 11.6 46.6 9.3
GSPN [45] 15.8 35.6 17.3 11.3 14.0 35.9 1.2 2.3 3.9 13.4 12.3 0.8 8.9 14.9 11.7 22.1 12.8 56.3 9.4
3D-MPA [8] 35.5 45.7 48.4 29.9 27.7 59.1 4.7 33.2 21.2 21.7 27.8 19.3 41.3 41.0 19.5 57.4 35.2 84.9 21.3
PointGroup [18] 40.7 63.9 49.6 41.5 24.3 64.5 2.1 57.0 11.4 21.1 35.9 21.7 42.8 66.0 25.6 56.2 34.1 86.0 29.1
SSTNet [25] 50.6 73.8 54.9 49.7 31.6 69.3 17.8 37.7 19.8 33.0 46.3 57.6 51.5 85.7 49.4 63.7 45.7 94.3 29.0
HAIS [3] 45.7 70.4 56.1 45.7 36.4 67.3 4.6 54.7 19.4 30.8 42.6 28.8 45.4 71.1 26.2 56.3 43.4 88.9 34.4
SoftGroup [37] 50.4 66.7 57.9 37.2 38.1 69.4 7.2 67.7 30.3 38.7 53.1 31.9 58.2 75.4 31.8 64.3 49.2 90.7 38.8
GraphCut (ours) 55.2 100 61.1 43.8 39.2 71.4 13.9 59.8 32.7 38.9 51.0 59.8 42.7 75.4 46.3 76.1 58.8 90.3 32.9

thresholds of 50% and 25% are denoted as AP50 and AP25, respectively. Also, AP denotes the mean
average precision with the IoU threshold from 50% to 95% with a step size of 5%. Additionally,
following existing methods [41, 3, 37], we use mean coverage (mCov), mean weighted coverage
(mWCov), mean precision (mPrec), and mean recall (mRec) for S3DIS evaluation.

Implementation details. Our model is trained on a single TITAN RTX GPU. We use the Adam
optimizer with a base learning rate of 0.001 for the network training, which is scheduled by a
cosine annealing. The voxel size is set to 0.02m. A graph-based segmentation method [9] and
SSP+SPG [22, 21] are used to generate superpoints for ScanNet scene and S3DIS room, respectively.
At training time, we limit the maximum number of points in a scene to 250k and crop the excess
randomly. Due to the high point density of S3DIS, we randomly downsample its 1/4 points before
cropping. At inference, the whole scene is fed into the network without downsampling and cropping.
Note that we follow [3, 37] and use the statistical average instance radius of the specific class to refine
the instances.

4.2 Benchmarking Results

ScanNet v2. We compare our model with recent state-of-the-art methods on the unreleased test set
of ScanNet v2. Table 1 reports the results on the leaderboard of the official testing server . It can
be observed that our method achieves the highest performance in terms of AP. The results on the
leaderboard can demonstrate the effectiveness of our method for 3D instance segmentation.

Table 2: Instance segmentation results on the Scan-
Net v2 validation set.

Method AP AP50 AP25

GSPN [45] 19.3 37.8 53.4
3D-MPA [8] 35.3 51.9 72.4
PointGroup [18] 34.8 56.9 71.3
SSTNet [25] 49.4 64.3 74.0
HAIS [3] 43.5 64.1 75.6
SoftGroup [37] 46.0 67.6 78.9
GraphCut (ours) 52.2 69.1 79.3

Moreover, we evaluate our method on the val-
idation set of ScanNet v2. From the results in
Table 2, one can observe that the proposed Grap-
Cut can achieve better results. In particular,
our method brings 2.8% gains for the metric
AP and 1.5% gains for the metric AP50 to the
second-best methods. In addition, we provide
the visualization results of our GraphCut and
SoftGroup [37] in Figure 3. We use the red rect-
angular boxes to show the differences between
them. It can be observed that our method can
generate good instances with clear boundaries
for objects clustered together, such as chairs.
SoftGroup relies on point grouping by using
offset-shifted point coordinates, which cannot make full use of local geometric information of point
clouds. Since our method can fully utilize the local geometric information of point clouds by con-
structing an edge score prediction network and a superpoint graph cut network, our method achieves
better results than SoftGroup on these clustered objects.

S3DIS. In Table 3, we list the results of Area 5 and 6-fold cross-validation on S3DIS. Regarding the
evaluation of Area 5, our method can outperform all compared methods. It is worth noting that our
model improves SoftGroup by 2.5% in terms of AP. For the 6-fold cross-validation of S3DIS, our
method is superior to the state-of-the-art methods on most metrics.

http://kaldir.vc.in.tum.de/scannet_benchmark/semantic_instance_3d.php?metric=ap
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Input Instance GT GraphCut (ours) SoftGroup

Figure 3: Visualization results of our GraphCut and SoftGroup [37] on the ScanNet v2 validation set.

Table 3: Instance segmentation results on the S3DIS dataset.

Setting Method AP AP50 mCov mWCov mPrec50 mRec50

Area 5

SGPN [40] - - 32.7 35.5 36.0 28.7
ASIS [41] - - 44.6 47.8 55.3 42.4
PointGroup [18] - 57.8 - - 61.9 62.1
SSTNet [25] 42.7 59.3 - - 65.5 64.2
HAIS [3] - - 64.3 66.0 71.1 65.0
SoftGroup [37] 51.6 66.1 66.1 68.0 73.6 66.6
GraphCut (ours) 54.1 66.4 67.5 68.7 74.7 67.8

6-fold

SGPN [40] - - 37.9 40.8 38.2 31.2
PartNet [28] - - - - 56.4 43.4
ASIS [41] - - 51.2 55.1 63.6 47.5
3D-BoNet [44] - - - - 65.6 47.7
OccuSeg [11] - - - - 72.8 60.3
GICN [26] - - - - 68.5 50.8
PointGroup [18] - 64.0 - - 69.6 69.2
SSTNet [25] 54.1 67.8 - - 73.5 73.4
HAIS [3] - - 67.0 70.4 73.2 69.4
SoftGroup [37] 54.4 68.9 69.3 71.7 75.3 69.8
GraphCut (ours) 56.3 68.2 72.8 75.0 74.4 73.7

4.3 Ablation Studies and Analysis

Different k in edge score prediction network. In our edge score prediction network, we learn the
similarity from the local k-NN graphs of two adjacent nodes to identify whether they belong to the
same instance. Here, we study the impact of different k on the instance segmentation performance.
We select k ∈ {0, 2, 4, 8, 16}. Notably, k=0 means that we only concatenate two adjacent superpoint
features as edge embedding. The results of AP, AP50, and AP25 are 52.0%, 68.8%, 78.7% (k=2),
52.2%, 69.1%, 79.3% (k=4), 51.4%, 68.1%, 79.1% (k=8), and 50.8%, 67.7%, 79.1% (k=16),
respectively. Since k=4 achieves the best results, we set k=4 in our experiment.

Effectiveness of edge feature embedding. To verify the effectiveness of our edge feature embedding,
we consider three cases: (1) Only with edge embedding in coordinate space (dubbed as “Coordinate”),
(2) Only with edge embedding in feature space (dubbed as “Feature”), (3) Only with embeddings
of adjacent nodes as edge embedding. From the instance segmentation results on the ScanNet v2
validation set listed in Table 4, the best performance is achieved with the combination of the edge
embeddings in both the coordinate and feature spaces. In the edge feature embedding, employing
both geometry and feature embeddings of point clouds can improve the performance of the instance
segmentation of point clouds.
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Table 4: Ablation study on the ScanNet v2 vali-
dation set for edge feature embedding.

Coordinate Feature AP AP50 AP25

50.1 66.6 77.4
! 50.9 68.0 78.3

! 51.5 68.8 78.5
! ! 52.2 69.1 79.3

Table 5: Ablation study on the ScanNet v2 vali-
dation set for geometry-aware edge loss.

Larea Lfeat AP AP50 AP25

47.8 65.1 75.3
! 51.7 68.6 78.8

! 51.2 67.8 77.8
! ! 52.2 69.1 79.3

Ablation study on geometry-aware edge loss. Here, we conduct the experiments on the ScanNet
v2 validation set to verify the effectiveness of the propose geometry-aware edge loss. Specifically, we
also consider three ablations: (1) Only with area constraint in the coordinate space (i.e., “Larea”), (2)
Only with instance constraint in the feature space (i.e., “Lfeat”), (3) Only with binary cross-entropy
loss, i.e., Ledge. The results are listed in Table 5. It can be observed that the geometry constraints
bring substantial gains to our method. By using the area constraint, it is easier to draw the nodes of
the instance toward the instance center, making the boundary between different instances clearer.

Effectiveness of bilateral graph attention. In order to validate the effectiveness of the proposed
bilateral graph attention, we replace the bilateral graph attention with a simple MLP network followed
by max-pooling and conduct experiments on the ScanNet v2 validation set. The results of AP, AP50,
and AP25 are 49.9%, 66.8%, 77.3% (MLP network), and 52.2%, 69.1%, 79.3% (our bilateral graph
attention), respectively. Without our designed bilateral graph attention, the performance drops a lot.
This is because the bilateral graph attention can adaptively aggregate the information of superpoints
in the same instance, which is more reasonable than the simple max-pooling operation for instance
embedding.

5 Conclusion

In this paper, we proposed a learning-based superpoint graph cut method for 3D instance segmentation,
which prunes the edges off the superpoint graph for generating instances. Specifically, we proposed
an edge score prediction network with cross-graph attention in the coordinate and feature spaces to
capture local geometric information of two adjacent nodes and predict the edge scores. A geometry-
aware edge loss was proposed to train the edge score prediction network, which encourages two
adjacent nodes in the same instance to be close to the instance center in both the coordinate and
feature spaces. Based on the learned edge scores, a superpoint graph cut network was developed to
cut irrelevant edges for instance generation. For the generated instances, we further adopted bilateral
graph attention to predict semantic classes and scores of instances. Extensive experiments on ScanNet
v2 and S3DIS benchmarks show that our method achieves new state-of-the-art performance on 3D
instance segmentation.
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