
Supplementary Information: Learning Structure from
the Ground up—Hierarchical Representation

Learning by Chunking

Shuchen Wu∗

Computational Principles of Intelligence Lab
Max Planck Institute for Biological Cybernetics

Tübingen, Germany
shuchen.wu@tuebingen.mpg.de

Noémi Éltető
Department of Computational Neuroscience

Max Planck Institute for Biological Cybernetics
Tübingen, Germany

noemi.elteto@tuebingen.mpg.de

Ishita Dasgupta
Computational Cognitive Science Lab

Department of Psychology
Princeton University

dasgupta.ishita@gmail.com

Eric Schulz
Computational Principles of Intelligence Lab

Max Planck Institute for Biological Cybernetics
Tübingen, Germany

eric.schulz@tuebingen.mpg.de

A Definitions

An observational sequence is made up of discrete, integer valued, size-one elementary observational
unit coming from an atomic alphabet set A0, where 0 represents the empty observational unit.

One example of such an observational sequence S is:

010021002112000...

The atomic alphabet set is A0 = {0, 1, 2}. The elementary observation units are ‘0’, ‘1’, and ‘2’.

Definition 1 (Chunk)
A chunk is made from any combinations of non-empty observational units A0 \ {0}.

Examples of chunks from the observational sequence can be ‘1’, ‘21’, ‘211’, ‘12’, ‘2112’, ... etc. 0
represents an empty observation in the sequence.

Definition 2 (Belief Set)
A belief set is the set of chunks that HCM uses to parse sequences, denoted as B.

An example belief set that HCM has learned to parse sequence S can be: B =
{0, 1, 21, 211, 12, 2112}.

∗

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Definition 3 (Parsing)
Chunks are being parsed from the beginning of the sequence. At each parsing step, the biggest chunk
in the belief set that matches the upcoming sequence is chosen to explain the observation. The end of
the previous parse initiates the next parse.

Using the belief set {0, 1, 21, 211, 12, 2112} to parse the sequence S results in the following partition.
0 1 0 0 21 0 0 2112 0 0 0.

Definition 4 (Completeness)
We say that a belief set is complete if at any point when the model parses the sequence, the upcoming
observations can be explained by at least one chunk in the belief set.

In this work, we only refer to complete belief sets.

Definition 5 (Parsing Length NB)
A parsing length NB of a sequence is the length of resulting sequence after being parsed by chunks in
B.

Definition 6 (NB(c))
NB(c) denotes number of times chunk c in the belief set B appears in the parsed sequence.

NB(c) for all of the chunks c on a belief set B sums to the parsing length: NB =
∑

c∈B NB(c)

Definition 7 (NB(x → y))
The number of times chunk x is being parsed following chunk y. x and y are both chunks in the
belief set B.

For any chunk x within any belief set B, NB(x) has the following relation with NB(x→ y):

NB(x) =
∑
y∈B

NB(x→ y) (1)

When the length of the sequence becomes infinite, it is easier to work with probabilities instead of
counting the number of chunk occurrences.

Definition 8 (Probability space of a belief set)
With a belief set B, one can define a associated probability space (SB,FB,PB). SB is the sample
space representing all of the possible outcomes of a chunk parse. An event space F is the space for
all possible sets of events. F contains all the subsets of SB. Additionally, the probability function
PAB : FB → R is defined on the event space SB. The probability function PAB satisfies the basic
axioms of probability:

• PAB(E) ≥ 0 ∀E ∈ F . For any subset in the event space, the probability of an observation
being in the subset is positive.

• M,N ∈ F , and M ∩N = E, then P (M ∪N) = P (M)+P (N). For two non-intersecting
subsets in the event space, the probability of observing any element that falls within the
union of the two subsets is the sum of the probability of observing any event within one
subset and the probability of observing any event from the other subset.

• P (S) = 1. The probability of observing any event that belongs to the sample space is one.

In the limiting case when the sequence becomes infinitely long, we formulate the probability of
parsing chunk c ∈ B.

PB(c) = lim
NB→∞

NB(c)

NB
(2)

A learning model keeps track of the occurrence probability associated with each chunk in the belief set.
For a current belief set, the model assumes that the chunks within the belief set occurs independently.

2

The probability of observing a sequence of chunks c1, c2,cN can be denoted as P (c1, c2,cN).
The joint probability of observing any chunk in the generative process is:

P (c1, c2,cN) =
∏

ci∈Bd

PBd
(ci) (3)

Chunks as observation units serve as independent factors that disentangle observations in the sequence.

Definition 9 (Marginal Parsing Frequency Md)
A vector that stores the number of parses for each chunk c in the belief set Bd.

Md is a vector with size |Bd|.

Definition 10 (Transition Frequency Td)
The set of transition frequency from any chunk ci ∈ Bd to cj ∈ Bd

Definition 11 (Chunk Hierarchy Graph Gd)
The relation between chunks and their constructive components in the generative model is described
by a chunk hierarchy graph Gd with vertex set VAd

and edge set EAd
. In this hierarchical generative

model, d is the depth of the graph and Ad is the set of chunks used as atomic units to construct the
sequence. Each vertex in VAd

is a chunk, and edges connect the parent chunk vertices to their child
chunk vertices.

B Independence Test as a Chunking Criterion

Combining any two chunks cL and cR in the current belief set by ranking their joint occurrence
probability may result in combining independently occurring chunks together. To distinguish this
scenario of taking precedence over correlated and yet lower probability chunk pairs, we use Pearson’s
chi-square statistic for evaluating statistical independence to assess if the consecutive parses of cl
and cr observed in T are independent. We use a χ2-test of independence to assess the correlation of
consecutive occurrences of cL followed by cR in B. Let cL be an indicator variable that is 1 when
chunk cl is parsed and 0 otherwise, similarly we formulate cR as another indicator variable of parsing
the chunk cr. Observations of cL and cR in parses are categorical variables and can be represented
as rows and columns of a contingency table. The number of observations that cL = 1 or any other
observations (cL = 0) consists of the row entries, indicating observations of cL, while the number of
observations cR = 1 and cR = 0 make up the column entries. The table, therefore, consists of two
rows and two columns.

The null hypothesis is the statistical independence of consecutive observations. Given the in-
dependence hypothesis, the expected frequency for observing cl followed by cr is E[cL, cR] =
Np(cL)p(cR), with N being the total number of parses.

χ2 =
∑

cL={0,1}

∑
cR={0,1}

(O(cL, cR)− E[cL, cR])
2

E[cL, cR]

=
∑

cL={0,1}

∑
cR={0,1}

N(p(cL, cR)− p(cL)p(cR))
2

p(cL)p(cR)

(4)

The degree of freedom for this test is 1. A χ2 value of less than or equal to 0.05 is used as a criterion
for rejecting the null hypothesis of independence.

B.1 Independence Test as a Halting Criterion

In the rational version of the chunking algorithm, the independence test is also employed to evaluate
the strength of statistical correlation between chunks in the current belief set as a criterion to continue

3

or to halt the chunking process. In this case, the contingency table contains rows and columns
corresponding to all possible chunks in the current belief set, and the χ2-statistic is calculated as:

χ2 =
∑
cL∈B

∑
cR∈B

(O(cL, cR)− E[cL, cR])
2

E[cL, cR]
= N

∑
cL∈B

∑
cR∈B

(p(cL, cR)− p(cL)p(cR))
2

p(cL)p(cR)
(5)

The degrees of freedom are (|B| − 1)2, and a p-value of 0.05 is used as a criterion to reject the null
hypothesis and thereby used as an evidence to continue the chunking process.

We chose 0.05 as a decision criterion for rejecting the null hypothesis of two consecutively occurring
chunks to be independent to be consistent with standard conventions in statistics. However, in
applications, the strictness of parameters can be adapted to task domains. For example, for medical
data, you might want to have only a few chunks and should, therefore, set alpha to be conservatively
low. However, when using chunks for predictions in downstream tasks, you might want to have more
of them, and should, therefore, set alpha to be liberally high.

C Rational Chunking Algorithm

Algorithm 1: Rational Chunking Algorithm
input :Seq, maxIter
output :Bd, Ĝd, Td, Md

d← 0 iter ← 0;
Bd, Md, Td = getSingleElementSets(Seq); /* minimally complete atomic set */
while !Test(Md, Td) and iter ≤ maxiter do

Md, Td = Parse(Seq, Bd);
cL, cR ← None;
MaxChunk,MaxChunkP ← None;
PreCk = {};
for (ci, cj) ∈ Bd\{0} × Bd\{0} do

Pd(ci ⊕ cj) = CalculateJoint(Md,Td, ci, cj);
Pd+1(ci ⊕ cj) =

Pd(ci⊕cj)
1−Pd(ci⊕cj)

;
if Pd+1(ci ⊕ cj) ≥ MaxChunkP and ci ⊕ cj /∈ PreCk and !Test(ci, cj) then

cL ← ci, cR ← cj ;
MaxChunkP ← Pd+1(ci ⊕ cj);
MaxChunk ← ci ⊕ cj

end
end
c← cL ⊕ cR;
Bd+1 ← Bd ∪ c;
Ĝd+1 ←AugmentGraph(Ĝd, (cL, c), (cR, c));
PreCk.add(c);

end

D Online HCM and Generalization to Visual-Temporal Sequences

Online HCM learns a chunk hierarchy graph Ĝ from visual-temporal sequences. The chunk hierarchy
graph Ĝ can be initialized as an empty graph or a pre-trained chunk hierarchy graph. M retains
the frequency of each chunk in the belief set B and T retains the transition frequencies of visual-
temporally adjacent chunks sorted by temporal lags. Temporal lag is the time difference between
the end of the previous chunk and start of the next chunk. The pseudocode for the Visual-Temporal
HCM is shown in Algorithm 2.

At each parsing step, online HCM does the following:

1. Identifies the chunks biggest in volume that explain observation from the time point when
the last chunk ended to the current time point, and store them in the set of current chunks.

4

2. Identifies the currently ending chunks and their adjacent previous chunks and updates their
marginal and transition counts.

3. Modifies the set of chunks used to parse the sequence based on their adjacency.

4. Entries in M and T are subject to memory decay at the rate of θ. If any entry goes below
the deletion threshold DT , their corresponding entries in M , T , B and Ĝ are deleted.

If two parsed visual-temporally adjacent chunks violates the independence testing criterion and they
are within the proximity of each other under a padding threshold, they are grouped together into
a new chunk. The constituent parts of a chunk remains in the belief set, with the count frequency
subtracted by the estimation of the joint occurrence frequency.

Algorithm 2: Online HCM

input :Seq, Ĝ, θ, DT

output :Ĝ
M , T ← Ĝ.M , Ĝ.T ;
PreviousChunkBoundaryRecord← []; /* Record Chunk Endings */
ChunkTerminationTime.setall(-1);
while Sequence not over do

CurrentChunks, ChunkTerminationTime =
IdentifyTheLatestChunks(ChunkTerminationTime);

ObservationToExplain← refactor(Seq, ChunkTerminationTime);
for Chunk in CurrentChunks do

for CandidateAdjacentChunk in PreviousChunkBoundaryRecord do
if CheckAdjacency(Chunk, CandidateAdjacentChunk) then

M ,T ,B, Ĝ ← LearnChunking(Chunk, CandidateAdjacentChunk. M ,T ,B, Ĝ);
end

end
ChunkTerminationTime.update(CurrentChunks)

end
PreviousChunkBoundaryRecord.add(CurrentChunks);
Forgetting(M ,T ,B, Ĝ, θ, DT , PreviousChunkBoundaryRecord);

end

To process and update chunks online, HCM iterates through the visual temporal sequence, identifies
chunks, marks the termination time corresponding to each visual dimension and stores them in
ChunkTerminationTime. As multiple visual temporal chunks can be identified to occur simultaneously,
CurrentChunks stores the identified chunks that have not reached their ending points.

Once one or more chunks are identified to be ending at a time point, they are stored inside Previ-
ousChunkBoundaryRecord and their finishing time is updated for each visual pixel in ChunkTermina-
tionTime. Corresponding entries in M are updated. The chunks that finishes after the start of the
current chunk is checked with each current chunk on whether there is a visual temporal adjacency in
addition to a violation of the independence test.

If a pair of adjacent chunks cL and cR violate the independence testing criterion, they are combined
into one chunk cL ⊕ cR. A new entry is created in M with the joint occurrence frequency for
cL⊕ cR, this occurrence frequency is subtracted from the marginal record of cL and cR. Additionally,
other combinations that result in the same chunk will accumulate toward the count of cL ⊕ cR. The
constituents’ transition entries are set to 0. As a new chunk, cL ⊕ cR inherits the adjacency entries of
cR, and the marginal frequencies for cL and cR are each subtracted by 1.

E Proof of Recoverability

As the belief set B keeps changing when one modifies the chunks in a sequence, so does the parsing
length NB and the probability associated with the belief set PAB . This translates to a change of N
and a set of constraints on the probabilities defined on the augmented support set. We approach this
problem in the following steps:

5

• Formulate the definition of probabilities based on N .
• Identify all relevant changes of N before and after the chunk update.
• Translate this change of N to the constraints on probability updates.

We derive the relation between the probabilities when two chunks cL and cR ∈ Ad are concatenated
together to form a new chunk cL ⊕ cR and update the alphabet to Ad+1.

E.0.1 Summary N

Going from Ad to Ad+1, cL and cR are both chunks in Ad and merged together as a new chunk to
augment Ad. The chunks in Ad can be divided into three groups, cL, cR, and Ad \ {cL, cR}. The
relation between Nd and Nd+1 is:

Nd+1 =

[∑
c∈Ad−cL−cR

Nd(c)

]
+Nd+1(cL) +Nd+1(cR) +Nd+1(cL ⊕ cR) (6)

Additionally, Nd+1(cL) = Nd(cL) − Nd(cL → cR), Nd+1(cR) = Nd(cR) − Nd(cL → cR).
Chunking reduces the number of times sub-chunks are being parsed when sub-chunks occur right
after each other by twofold.

Nd =
∑
c∈Ad

Nd(c) =

[∑
c∈Ad−cL−cR

Nd(c)

]
+Nd(cL) +Nd(cR) (7)

Comparing the above two equations we arrive at

Nd(cL) +Nd(cR) = Nd+1(cL) +Nd+1(cR) + 2Nd+1(cL ⊕ cR)

We know that Nd(cL → cR) = Nd+1(cL ⊕ cR) and therefore: Nd+1(cL) +Nd+1(cR) = Nd(cL) +
Nd(cR)− 2Nd(cL → cR). The relation between the parsing counts Nd and Nd+1 when switching
from the alphabet set Ad to Ad+1 by chunking cL and cR in Ad together is:

Nd+1 =

[∑
c∈Ad−cL−cR

Nd(c)

]
+Nd(cL) +Nd(cR)−Nd(cL → cR) (8)

Nd+1 = Nd −Nd(cL → cR) (9)

E.0.2 Marginal N

To proceed into formulating the joint probability given a particular belief space, we need to formulate
how the count of N(c) for a chunk changes when the belief space when switching from Ad to Ad+1,
with the same division as before.

Of course, the count function should be fixed. However, the probability function associated with the
chunks will change based on the update of the belief set. We use the update of the count function to
find the relation between the probability updates.

For all x in Ad − {cL, cR, cL ⊕ cR}: Nd+1(x) = Nd(x), Nd+1(cR) = Nd(cR) − Nd(cL → cR),
Nd+1(cL) = Nd(cL)−Nd(cL → cR), and Nd+1(cL ⊕ cR) = Nd(cL → cR).

E.1 Probability Density Switch when Ad expands to Ad+1

The constraint is: the number of counts N for all chunks defined for the support set Ad must remain
the same for the support set Ad+1, so that the definition of PAd

for all relevant chunks within Ad

remains the same when Ad expands to Ad+1.

The probability of a chunk occurring in the alphabet set Ad is defined as: PAd
(c) = limNd→∞

Nd(c)
Nd

.

Because Nd and Nd+1 are only a constant away, both go to infinity if one of them does, so there is a
relation between the definition of probability PAd

(c) and PAd+1
(c). For any chunk x in Ad that is not

cL and cR, Nd+1(x) = Nd(x), PAd+1
(x) = limNd+1→∞

Nd+1(x)
Nd+1

= limNd→∞
Nd(x)

Nd−Nd(cL→cR) .

6

That is, the probability of a chunk of this category at d and d+1 satisfies this relationship that

PAd+1
(x) = PAd

(x)
limNd→∞ Nd

limNd+1→∞ Nd−Nd(cL→cR) .

For cL and cR in Ad+1: PAd+1
(cL) = limNd+1→∞

Nd+1(cL)
Nd+1

, PAd
(cL) = limNd+1→∞

Nd(cL)
Nd

,

PAd+1
(cR) = limNd+1→∞

Nd+1(cR)
Nd+1

, PAd
(cR) = limNd→∞

Nd(cR)
Nd

.

Since Nd+1(cL) = Nd(cL) − Nd(cL ⊕ cR), PAd+1
(cL) = limNd+1→∞

Nd(cL)−Nd(cL⊕cR)
Nd+1

,

PAd+1
(cL) = limNd→∞

Nd(cL)−Nd(cL→cR)
Nd−Nd(cL→cR) , PAd+1

(cR) = limNd→∞
Nd(cR)−Nd(cL→cR)

Nd−Nd(cL→cR)

Finally, PAd+1
(cL ⊕ cR) = limNd+1→∞

Nd+1(cL⊕cR)
Nd+1

, PAd
(cL ⊕ cR) = limNd→∞

Nd(cL→cR)
Nd

.

Since Nd(cL → cR) = Nd+1(cL ⊕ cR), we have PAd+1
(cL ⊕ cR) = limNd→∞

PAd
(cL⊕cR)Nd

Nd+1
.

For summary probabilities: Nd+1 = Nd − Nd(cL ⊕ cR) = Nd − NdPd(cL ⊕ cR), and Nd+1

Nd
=

1− Pd(cL ⊕ cR).

E.1.1 Marginal Probabilities

The next level marginal probability follows the constraints when the support set changes from Ad to
Ad+1: Pd+1(x) =

Pd(x)
1−Pd(cL⊕cR) , Pd+1(cR) =

Pd(cR)−Pd(cL⊕cR)
1−Pd(cL⊕cR) , Pd+1(cL) =

Pd(cL)−Pd(cL⊕cR)
1−Pd(cL⊕cR) ,

Pd+1(cL ⊕ cR) =
Pd(cL⊕cR)

1−Pd(cL⊕cR) .

E.2 Hierarchical Generative Model

At the beginning of the generative process, the atomic alphabet set A0 is specified. Another param-
eter, d, specifies the number of additional chunks that are created in the process of generating the
hierarchical chunks. Starting from the alphabet A0 with initialized elementary chunks ci from the
alphabet, the probability associated with each chunk ci in A0 needs to satisfy the following criterion:∑

ci∈A0

PA0
(ci) = 1 (10)

Meanwhile, P (ci) ≥ 0, ∀ci ∈ A0.

We assume that at each step the marginal and transitional probability of the previous steps are
known. The next chunk is chosen as the combined chunks with the biggest probability. The order
of construction in the generative model follows the rule that the combined chunk with the biggest
probability on the support set of pre-existing chunk sets is chosen to be added to the set of chunks.

cL ⊕ cR = argmax
cL,cR∈Ad\{0}

PAd
(cL ⊕ cR) (11)

Under the constraint that:
PAd

(cL)PAd
(cR) ≤ PAd

(cL ⊕ cR) ≤ min{PAd
(cL), PAd

(cR)} (12)
This can be calculated from the transitional and marginal probability of the previous step.

cL ⊕ cR = argmax
cL,cR∈Ad\{0}

PAd
(cL ⊕ cR) = argmax

cL,cR∈Ad\{0}
PAd

(cL)PAd
(cR|cL) (13)

In practice, after the chunks are specified in Ad, the probability value associated with chunks in A0

are sampled from a flat Dirichlet distribution, which is then sorted so that the smaller sized chunks
contain more of the probability mass and the null-chunk carries the biggest probability mass. Then,
the above constraint is checked for the assigned probability on each of the newly generated chunk
with their associated alphabet set Ai. This process repeats until the probability drawn satisfies the
condition for every newly created chunk.

At first, the set of chunks are A0, which is assigned each as an integer. Then d additional recombination
processes are carried out. In each process, two chunks are randomly chosen from the pre-existent
alphabet set to recombine into a new chunk, until d additional chunks are being created to augment
the set of chunks from A0 to Ad. The Dirichlet distribution is randomly generated in an unsorted
fashion, and then the biggest probability mass is assigned to 0. Constraints are checked recursively.

7

Theorem 1 (Marginal Probability Space Conservation). After the addition of cd,i ⊕ cd,j and the
change of probability, PAd

is still a valid probability distribution.
Proof: ∑

cd,k∈Ad

PAd
(cd,k) =

∑
cd,k∈Ad−1−cd−1,i−cd−1,j

PAd−1
(cd−1,k)+

+ PAd−1
(cd−1,i)− PAd−1

(cd−1,j |cd−1,i)PAd−1
(cd−1,i)

+ PAd−1
(cd−1,j) + PAd−1

(cd−1,j |cd−1,i)PAd−1
(cd−1,i)

= 1

(14)

□

Theorem 2 (Measure Space Preservation). Given that at the end of the generative process with depth
d one ends up having an alphabet set Ad, the probability space defined on Ai, which includes the
marginal and joint probability of any chunk and combinations of chunks in Ai, i = 0, 1, 2, . . . d,
which are predecessor alphabet sets of Ad, all values in the set Md and Td remain the same no
matter how the future support set changes according to the generative model.
Proof: By induction.

• Base case: starting from the initialized alphabet set A0, the probability of PA0(c), c ∈ A0,
and the probability of PA1(xy), x, y ∈ A0, for all valid c, x, y, when the alphabet is A1.
Going from A0 to A1, N0(c), N0 and N0(x → y) does not change, therefore PA0(c) and
PA0(x→ y) at the alphabet A1 is the same as that when the alphabet is A0.

• Induction Step: starting from the initialized alphabet set Ad, the probability of PAd
(c), c ∈

Ad, and the probability of PAd
(xy), x, y ∈ Ad, for all valid c, x, y, when the alphabet is

Ad+1. Going from Ad to Ad+1, Nd(c), Nd and Nd(x → y) does not change, therefore
PAd

(c) and PAd
(x→ y) at the alphabet Ad+1 is the same as that when the alphabet is Ad.

□

Theorem 3. The order of PAi
(xy), x, y ∈ Ai for any i = 0, 1, 2, . . . d at any previous belief space is

preserved throughout the update.
Proof: At the end of the generative process with depth d, one ends up having such an alphabet set:
Ad. The probability space defined on Ai, which includes the marginal and joint probability of any
chunk and combinations of chunks in Ai, i = 0, 1, 2, . . . d is preserved, hence the order is preserved.

□

The generative process can be described by a graph update path. The specification of the initial set of
atomic chunks A0 corresponds to an initial graph G0 with the atomic chunks as its vertices. At the i-th
iteration, as the generative graph goes from GAi to graph GAi+1 , two none zero chunks cL, cR chosen
from the pre-existent set of chunks Ai and are concatenated into a new chunk cL ⊕ cR, augmenting
Ai by one to Ai+1. The vertex set also increments from VAi

to VAi+1
= VAi

∪ cL ⊕ cR. Moreover,
two directed edges connecting the parental chunks to the newly-created chunk are added to the set of
edges: EAi

to EAi
= EAi

∪ (cL, cL ⊕ cR) ∪ (cR, cL ⊕ cR). The series of graphs created during the
chunk construction process going from GA0

to the final graph GAd
with d constructed chunks can be

denoted as a graph generating path P (GA0
,GAd

) = (GA0
,GA1

,GA2
, ...,GAd

).

E.3 Learning the Hierarchy

The rational chunking model is initialized with one minimally complete belief set, the learning
algorithm ranks the joint probability of every possible new chunk concatenated by its pre-existing
belief set, and picks the one with the maximal occurrence joint probability on the basis of the current
set of chunks as the next new chunk to enlarge the belief set. With the one-step agglomerated belief
set, the learning model parses the sequence again. This process repeats until the chunks in the belief
set pass the independence testing criterion.
Theorem 4 (Learning Guarantees on the Hierarchical Generative Model). As N →∞, the chunk
construction graph learned by the model Ĝ is the same as the chunk construction graph of the
generative model: Ĝ = G, which entails that they have the same vertex set: V̂ = VG and the same

8

edge set: Ê = EG . Additionally, the belief set learned by the chunk learning model Bd = Ad, and
the marginal probability evaluated on the learned belief set MBd

associated with each chunk is the
same as the marginal probability imposed by the generative model on the generative belief set MAd

.
Proof: Given that all of the empirical estimates are the same as the true probabilities defined by the
generative model, we prove that starting with B0, the learning algorithm will learn BD = AD. AD is
the belief set imposed by the generative model. We approach this proof by induction.

Base Step: As the chunk learner acquires a minimal set of atomic chunks that can be used to explain
the sequence at first, the set of elementary atomic chunks learned by the model is the same as the
elementary alphabet imposed by the generative model, i.e. B0 = A0. Hence, the root of the graph,
which contains the nodes without their parents, is the same, Ĝ = G; put differently, V̂0 = V0

Additionally, the learning model approximates the probability of a specific atomic chunk as P̂A0
(ai).

As n→∞, for all chunks c in the set of atomic elementary chunks in B0, the empirical probability
evaluated on the support set is the same as the true probability assigned in the generative model with
the alphabet set A0:

P̂B0(c) = lim
n→∞

N0(c)

N0
= PA0(c) (15)

Induction hypothesis: Assume that the learned belief set Bd at step d contains the same chunks as
the alphabet set Ad in the generative model.

The HCM, by keeping track of the transition probability between any pairs of chunks, calculates
P̂Bd

(ci|cj) for all ci, cj in Bd. Afterwards, it finds the pair of chunks ci, cj , such that the chunk created
by combining ci and cj together contains the maximum joint probability violating the independence
test as candidate chunks to be combined together.

P̂Bd
(ci ⊕ cj) = sup

ci,cj∈Bd

P̂Bd
(ci)P̂Bd

(cj |ci) (16)

We know that in the generative step the suprimum of the joint probability with the support set Ad is
being picked to form the next chunk in the representation graph, so each step of the process at step d
satisfies the condition that:

PAd
(ci ⊕ cj) = sup

ci,cj∈Ad

PAd
(ci)PAd

(cj |ci) (17)

Since PAd
(cj |ci) = P̂Bd

(cj |ci), PAd
(ci) = P̂Bd

(ci), the chunks ci and cj chosen by the learning
model will be the same ones as those created in the generative model.

End step: The chunk learning process stops once an independence test has been passed, which
means that the sequence is better explained by the current set of chunks than any of the other possible
next-step chunk combinations. This is the case once the chunk learning algorithm has learned a belief
set Bd that is the same as the generative alphabet set Ad. At this point Ĝ = G □

F Experiment Detail

F.1 Chunk Recovery and Convergence

To test the model’s learning behavior on this type of sequential data, random graphs of chunk
hierarchies with an associated occurrence probability for each chunk are specified by the hierarchical
generative process. To do so, an initial set of specified atomic chunks A0 and a pre-specified level
of depth (new chunks) d is used to initiate the generation of a random hierarchical generative graph
G. In total, there are |A0|+ d number of chunks in the generative alphabet A, with chunk c having
an occurrence probability of PA(c) on the sample space A. Once a hierarchical generative model
is specified, it is then used to produce training sequences with varying length N to test the chunk
recovery.

To compare representation learned by the rational chunking model with the ground truth generative
model G, a discrete version of Kullback–Leibler divergence is used to evaluate learning performance:

KL(P ||Q) =
∑
c∈A

PA(c) log2(
PA(c)

QA(c)
) (18)

9

PA(c) is defined by the generative model. Q(c) is the learned probability of chunk c. To evaluate
QA(c), the learned representation is used to produce “imagined” sequences of length 1000. After
that, the occurrence probability of each chunk c in A(c) is used to evaluate Q, comparing the HCM’s
learned representation with the ground truth.

For comparison, we used the same sequence used for training HCM to train a 3-layer recurrent neural
network (one embedding layer with 40 hidden units, one LSTM layer with drop-out rate = 0.2, and
one fully connected layer, batch size = 5, sequence length = 3, epoch = 1, so that the data used for
training is the same as N) of the training sequence, and used it to generate predictive sequences with
of length 1000. The predicted sequence is parsed in the unit of the generative alphabet, producing
a discrete distribution on the same support set of the generative model. This distribution is used to
calculate KL. The rational chunking model is trained on the the sequence S with increasing sizes
(from 100 to 3000 with steps of 100) produced by the hierarchical generative graph. For each depth
d, 5 random chunk hierarchies with the same depth is randomly assigned. The sequence generated by
these random chunking graphs are then used to train both HCM and RNN.

Figure 1: Learning Comparison Between HCM and RNN with Varying Graph Depth

F.2 Transfer Between Environments with Overlapping and Interfering Structure

After training on a sequence, HCM acquires an interpretable representation. Knowing what the model
has learned enables us to directly know what type of hierarchical environment would facilitate or
interfere with the learned representations.

More formally, two HCM models might have acquired different hierarchical chunking graphs Gi and
Gj from their past experience. These might lie on the graph construction path (G0,G1,G2, ...,Gd).
The HCM with a chunk hierarchy graph ‘closer’ to the ground truth chunk Gd on the path, takes fewer
iteration to arrive at Gd. This also applies when the chunk hierarchies starting out are not along the
graph construction path but only showing partial overlap. In other words, if D(Gi,Gd) ≤ D(Gj ,Gd)
then representation learned by HMC with graph structure Gi is more facilitative than that with graph
structure Gj .

Similarly, the chunk hierarchy Gi learned by an HCM might facilitate its performance in a new
environment where Gi lies along the graph construction path to the true Gd, i.e. there is partial overlap
between the chunk hierarchies.

We took a graph with the trained representation and make it learn from sequences generated from
a transfer and interfering environment. In the mean time, we used naive models separately to
learn representations from the facilitative and interfering environment with an increasing sequence
length from 50 to 1000. For all of the training models, the forgetting rate is set to 0.996, with the

10

deletion threshold being 0.01. An imaginative sequence with length 1000 is used to evaluate the
discrepancies between the non-naive learner, and the naive learner, with respect to the corresponding
facilitative/interfering environment.

Note that with the model that started out from a representation learned in an interfering environment,
it learns representation from the new environment as shown in figure 2, albeit slower than the naive
model.

Figure 2: The model started out from a representation learned in an interfering environment converges
in learning eventually, albeit slower than the naive model.

F.3 Visual Hierarchical Chunks

The visual hierarchical chunks are crafted as binary arrays. The dark pixels are encoded as 1 and
the background 0. Each image in the generative hierarchy is 25 dimensional (5 x 5) in the visual
domain and size 1 in the temporal domain. An empty array is included to denote no observation.
The alphabet A of the generative model include all 14 images in the generative hierarchy. In the
generative hierarchy, higher level chunks are a composition of the lower level chunks. The occurrence
probability for each generative visual chunk is drawn from a flat Dirichlet distribution with the empty
observation retaining the highest mass, to emulate the sparsity of observation signals.

f(x1, ..., xk;α1, ..., αK) =
1

B(a)

K∏
i=1

xαi−1
i (19)

Where the beta function when expressed using gamma function is: B(a) =
∏K

i=1 Γ(αi)

Γ(
∑K

i αi)
, and a =

(α1, .., αK). The parameters (α1, .., αK) with K = |A| are all set to one.

To generate the training sequence, PA(c), c1, ..., cK ∈ A is assigned by the sampled distribution.
Each image c in the hierarchy are sampled independently with probability PA(c)and appended to the
end of the sequence. As a result, there are visual correlations in the sequence defined by the hierarchy,
but temporally, each image slice is sampled independently. In total, the sequence is made up of 2000
images.

We use online HCM to learn representation from visual-temporal sequences (forgetting rate =
0.996, deletion threshold = 0.01). HCM learn to construct representations from simple to complex
(representation snapshots are collect at t = 10, t = 100, and t = 1000 respectively). Figure 3 shows
the construction images from simple to complex. Parent chunks are made from the concatenation of
their children chunks.

F.4 GIF Movement

Here, we take a GIF file of a squid jumping in the sea with bubbles rising in the background. The
entire animation is made up of 10 frames of 25 × 25 images. Each unique color of the GIF is
mapped to an integer, with the background having a value of 0. In this way, the animation sequence

11

Figure 3: Construction of Hierarchy for Visual Chunks

becomes an integer array with size T ×H ×W . T is the temporal dimension, H and W are the
respective spatial dimension of the sequence. In this way, the gif file is converted into a tensor with
size 10× 25× 25. The entire movement is repeated 100 times and trained on the online version of
HCM (forgetting rate = 0.996, deletion threshold = 0.01). Images are taking from the chunk learning
graph of HCM at the end of the training process.

F.5 Human Experiment

In the dataset from Wu et al. (2022), 47 participants are recruited from Amazon Mechanical Turk
for a sequence learning experiment. Specifically, they conduct a serial-reaction-time task. In this
task, participants are instructed to press the corresponding key on the keyboard upon observation
of consecutive sequential instructions. Participants are rewarded based on a combination of speed
and accuracy. Particularly, the training sequence is made up of sampling from the chunk [1,2,3]
and [4] independently without pauses in between. Participants chunking behavior inferred from the
reaction-time speed up is provided. If participants would be confident that some particular sequential
instructions will show up, then they will be more confident to predict within-chunk items compare to
between-chunk items and thereby speed up their reaction time.

The average chunk size across the training sequence is evaluated by averaging the size with a window
of 30 chunks. Longer chunks imply that the predictive horizon, i.e. how confident participants can
predict the upcoming sequential instructions, increases with practice.

To evaluate chunk learning of RNN on the same sequence, the probability estimate of each instruction
choice in RNN is compared with the human data by evaluating the predicted negative log probability
of the upcoming sequential instruction as a proxy of reaction time, since reaction time is often
modeled as the negative log of choice probability. This reaction time is then grouped into within and
between-chunk reaction time using mixtures of Gaussian classification method as in Wu et al. (2022).

We run online HCM on the same training sequence (forgetting rate = 0.90, deletion threshold = 0.1).
We recorded the sequence of chunks in addition to the probability of chunk activation as calculated

12

Figure 4: Comparison of chunk increase rate across three RNN models. Model0 is the architecture
used in the main paper.

from the marginal frequencies. The average chunk size evaluated on the chunk sequence is used as a
measure to compare with humans and RNNs. Additionally, the probability of within-chunk reaction
time is set to 1− 4ϵ with ϵ = 0.05 denoting the probability of choosing instructions outside of the
predicted chunks.

F.5.1 Size of RNN

We compared the chunk size increase rate across three RNN models varying in size as in Figure
4. Model0 is the RNN that we used in the experiment, which has the dimension of 40 embedding
dimensions, and 3 layers, each with 40 LSTM units and a dropout rate of 0.2, followed by a fully
connected feed-forward layer.

Model1 reduces the size of Model0 by half. Model1 has 20 embedding dimensions, and 3 layers,
each with 20 LSTM units and the same dropout rate, followed by a fully connected feed-forward
layer.

Model2 is about two times the size of Model0, with the same 40 embedding dimensions, and 5
layers LSTM neurons, each layer has 40 hidden units and a dropout rate of 0.2, followed by a fully
connected feed-forward layer.

In short, Model1 is half of the size of Model0, and Model2 is double the size of Model0. Across all
three RNN architectures, the chunk size only increased very slowly with increasing sequence length.

F.6 fMRI dataset

The data comes from the brain development dataset (fMRI), including the measurement of 50 children
(ages 3 - 13) and 33 young adults (ages 18 - 39). The experiment measures the resting state activities
of subjects in the scanner, watching the PIXAR movie ‘Partly Cloudy’. The data is down sampled to
4mm resolution, with a repetition time (TR) of 2 secs. Each session translates to 168 TRs in total.
Signals of the fMRI BOLD activity are extracted using the MSDL labeled atlas of brain spontaneous
activity Varoquaux et al. (2011) that segments regions of the brain and defines a functional parcellation
of the brain’s localized regions. In this way, the brain activities of each participant are extracted into
a time series with 39 non-overlapping functional dimensions. Confounds from the original data file is
extracted from the signal. The preprocessing pipeline, including the transformation from 4D images
to 2D masked array, is obtained using the nilearn package offered by Abraham et al. (2014) heavily
based on scikit-learn Pedregosa et al. (2011).

Upon exposure to a time series, online HCM (forgetting rate = 1.0, deletion threshold = 0.1) constructs
chunks from their constituents and arrives at a nested hierarchy of chunk relations. The independent
chunk activation frequencies n within the hierarchy are identified upon another independent parse of
the sequence.

13

In the movie, 19 scenes are tagged with their corresponding content. After running HCM on the data,
one can obtain the chunk activation information after every tagged scene for each participant.

The 19 scenes are then categorized into 5 coarse categories: anger, pain, social, compassion, and
sadness. The chunk activation probability is evaluated as the probability of one chunk being identified
within 3 TRs after a tagged scene happens. Thereby, one can arrive at the chunk activation probability
for each subject with the five tagged emotional categories.

F.6.1 More examples

Figure 5 shows more examples of scene-tagged brain chunk activities.

An additional example of hierarchical structure learned by HCM that describes the nested hierarchical
relationship between brain activation regions that are related to social and emotion recognition as
well as theory-of-mind circuits is shown in Figure 6.

Figure 7 shows the conditional probability of scene contents given the activation of size-2 chunks.
Brain functional regions such as ’D ACC’ and ’R A Ins’ show a multi-faceted prospect in reacting to
scenes with a diverse range of categories, whereas chunks such as ’Striate’ and ’R Par’ activate only
to the scene when it contained greetings and a hug.

Figure 5: Additional Examples of Scene-Tagged Chunks of Brain Area Activation.

14

Figure 6: Additional example of hierarchical relationship between activation chunks of brain areas.

Figure 7: Conditional probability chunk activation given scene content.

G Translating representation learned by HCM into nth order Markov Chain

Given an HCM that has learned a set of chunks B. The storage of this representation demands the
storage of |B| number of frequencies for each learned chunk entry, and the storage of the transition
probability in a matrix with size |B| × |B|.
Translating this HCM representation into an nth order Markov chain in the most parsimonious way
would demand the storage of each individual state specific to each chunk. Thereby, a Markov chain

15

that contains the full information as in the chunks and transitions between chunks learned by HCM
requests the number of states n =

∑
c∈B |c|, where |c| denotes the size of each chunk. So this Markov

chain needs to store the probability of
∑

c∈B |c| number of states and a transition probability matrix
of

∑
c∈B |c| ×

∑
c∈B |c|, which is a matrix much bigger than |B| × |B|.

With regard to chunk size, for a learned graph with hierarchy depth d, the worst case scenario of the
maximum chunk size will be 2d. The upper bound of the maximum chunk size grows exponentially
with depth d. Therefore, the number of states for an equivalent Markov chain will be bounded by
|B| × 2d.

H Memory Analysis

We analyze the memory demand to store each chunk in the case of optimal encoding, and provide
examples of why chunking is beneficial for encoding by formulating an Expected Unit of Explanatory
Power (EUEP) measure.

Given a set of chunks B, each chunk c ∈ B with size |c|. The observational sequence S is tiled
by chunks. The minimal code length I(ci) assigned to each chunk ci ∈ B to distinguish one from
another is bounded by the optimal code length − log2 P (ci).

I(ci) = − log2 P (ci) (20)

A chunk that occurs quite frequently contains a low information content, and correspond to a small
code length, hence it is easier for the agent to encode this chunk.

The average length of sequence spent per bit of information to store a specific chunk ci is: |ci|
I(ci)

.

The bigger this length per bit ratio is, the more efficient storage is optimized to encode a chunk ci
with occurrence probability P (ci).

We denote the expectation of this unit length per code across all possible chunks as Expected Unit
Explanatory Power (EUEP):

EUEP =
∑
ci∈B

p(ci)
|ci|
I(ci)

=
∑
ci∈B

p(ci)
|ci|

− log2 P (ci)
(21)

Note I(ci) denotes the information content for a specific event.

H.1 Example

Given the following sequence S:
11122221112222

We compare two belief sets B1 = {111, 2222} with c1 being 111 and c2 being 2222 and the second
belief set B2 = {1, 2} with c1 and c2 being the single atomic units in the sequence.

In the first case, S will be parsed by B1 as c1, c2, c1, c2, whereas in the second case, the parsing by
B2 will become c1, c1, c1, c2, c2, c2, c2, c1, c1, c1, c2, c2, c2, c2.

For the first example: P (c1) =
1
2 , P (c2) =

1
2 . Their corresponding information contents are:

I(c1) = − log2(P (c1)) = − log2(0.5) (22)

I(c2) = − log2(P (c2)) = − log2(0.5) (23)

The expectation of unit length explaining this sequence per bit are:

EUEP =
∑
ci∈B1

p(ci)
|ci|
I(ci)

= 0.5× |111|
− log2(0.5)

+ 0.5× |2222|
− log2(0.5)

= 3.5 (24)

For the second example:

The information content for each chunk is:

16

I(c1) = − log2(P (c1)) = − log2(6/14) (25)

I(c2) = − log2(P (c2)) = − log2(8/14) (26)

The expectation of unit length explaining this sequence per bit are:

EUEP =
∑
ci∈B2

p(ci)
|ci|
I(ci)

= 6/14× |1|
− log2(6/14)

+ 8/14× |2|
− log2(8/14)

= 1.05 (27)

From the above two examples, the first chunking method B1 with chunks {c1 = 111, c2 = 2222}
is more efficient compared to the second chunking method B2 with chunks {c1 = 1, c2 = 2}. It
explains 3.5 sequential units per bit of encoding compared to 1.05 sequential units per bit.

I Sensitivity Analysis

I.1 Sensitivity to Noisy Observations

One interesting question is how sensitive is HCM’s learning performance to noisy observations. To
examine HCM’s sensitivity to noisy observations, we generate sequences from random hierarchical
generative graphs with an increasing level of depth (from 3 to 8), taking 5 sample graphs of each
level of depth. Each of the random graphs is used to generate training sequences increasing from
length 100 to 900.

To simulate noisy observations, we add an ϵ probability of switching to an alternative atomic unit for
each unit in the sequence. That is, for each sequential element, there is a (1− ϵ) probability that the
element stays the same, and a ϵ probability of flipping to any other atomic unit with equal probability.
We took an exponentially increasing level of ϵ ranging from 0 to 0.1, and trained the rational HCM
algorithm on these noise-perturbed sequences.

Shown in Figure 8 is the learning performance with an increasing depth of the random generative
model. The learned representation is evaluated on the underlying ground truth in the generative
model. Learning converges in all cases. Thus, HCM’s performance is fairly robust to low levels of
noise.

I.2 Sensitivity to Phase Shift

Another question we investigated was the performance of the model in response to a phase shift of
the sequence, in other words, where the start of the sequence is. To investigate this question, we
generated random hierarchical chunking model with depth d = 5 of random hierarchical graphs.
For each generative model, we shifted the sequence rightwards n steps, ranging from 0 to 19, and
evaluated the learning performance with an increasing length of the sequence. In Figure 9, we plot
the sensitivity of of HCM’s learning convergence to phase shift. There was no systematic influence
of phase on learning performance.

J Comparison with PARSER

To position HCM better in relation to other models, we compared HCM’s fitting on human data with
the most related cognitive algorithm, PARSER.

Figure 10 shows the comparison of chunk size increase between HCM, RNN, PARSER and human
behavior. HCM and PARSER continue to learn and build up longer chunks as they go through
the sequence. Evaluating the average rate of chunk growth also showed that both PARSER and
HCM are more similar to participants’ than the RNNs. The negative log-probabilities of sequence
elements generated by the HCM, RNN and PARSER were both significantly related to human reaction
times (that reflect the certainty of their internal predictions). Yet the relationship was substantially
stronger between HCM (β = 16.74, p ≤ 0.001) and human participants than PARSER (β = 11.070,
p ≤ 0.001) compared to that of the RNN (β = 9.24, p ≤ 0.001).

17

Figure 8: Learning Performance of HCM with an increasing level of noise-perturbed sequence.

K Learning Motifs

There are situations when there is an underlying structure governing seemingly disparate sequences,
for example, the sequences “12221212” and “34443434”. We show a method to use HCM to learn
such underlying structure. We denote such structures as motifs, and formulate a projecting function
that maps a sequence from the observational space to some projected space, followed by illustrations
of examples showing how the motifs can be learned by HCM. Finally, we show an experiment
demonstrating HCM’s motif learning ability.

Definition 12 (Projecting Function f(S))
A projecting function f : O→ P maps a sequence in observation space to a projected space.

The projection almost always maps from a higher dimensional space to a lower dimensional space
because the intention is to discover common, overlapping parts that are shared between disparate
sequences in the observation space.

Definition 13 (Motif)
A motif m is a chunk in the projected space, made up of concatenation of elements in the projected
space.

Definition 14 (Injection Function g(m) → c)
An injection function maps from motifs back to chunks in observational space f : P→ O.

18

Figure 9: Learning performance of HCM with increasing phase shift steps.

Figure 10: Model comparison for human SRT data.

K.1 Example

We here demonstrate an example of observational sequences with any underlying motif, and illustrate
why motif learning is useful for encoding or prediction. The projecting function, when applying to
sequences with an underlying motif, is used so that similar motifs between projected representations
can be clustered and identified as a whole.

19

Let’s say the model has observed the following sequences: ABBAAABBB, CDDCCCDDD, and
EFFEEEFFF : The observation set is O = {A,B,C,D,E, F}, which are the set of observations
that entail a chunk.

Now, the projecting function maps the first two distinct atomic sequential units separately as X and
Y , i.e. f(A)→ X , f(B)→ Y , f(C)→ X , f(D)→ Y , f(E)→ X , f(F)→ Y .

When this projection function is applied to every single chunk, then f(ABBAAABBB),
f(CDDCCCDDD) and f(EFFEEEFFF) all map to the same sequence XY Y XXXY Y Y in
the projected space. The probability of observing such sequence in the projected space sums up the
individual sequences in the observational space P (XY Y XXXY Y Y) = P (ABBAAABBB) +
P (CDDCCCDDD) + P (EFFEEEFFF).

K.2 Simulation Demonstration

We show a simulation to demonstrate that HCM learns motifs. In this experiment, HCM learns 40
trials of sequences. Each sequence is 12 units in length. There is an underlying structure in the motif
space that generates sequences of every trial. In each trial, the sequence is made up of letters sampled
from the set {R,B,G, T, P, Y }. Shown in Figure 11 as an example, sequences generated from a
projected motif space can be BBBGBGBGGGGB as the first trial, and RRRYRYRYYYYR as the
second trial, etc.

Figure 11: Learning projected motif chunks.

HCM learns from these sequences one after another. In each trial, the projecting function that maps
the first two distinct elements to X and Y is applied to the sequence. HCM gradually learns and
constructs motifs composed of Xs and Y s in the projected space by constructing atomic units in
the motif space and combining motifs together to bigger motifs. This way, HCM learns a belief
set B of motifs. Each motif contains an estimated probability of occurrence, and thereby enables
the evaluation of sequence information content − log p calculated by the probability of motifs that
are used to parse a sequence, when the sequence is displayed to HCM. Smaller − log p implies less
information content in the sequence.

The left plot of Figure 11 shows the information content contained in every sequential trial. The right
plot of Figure 11 shows the imagination accuracy, which is the case that when HCM generates a
sequence with the same length, the percentage of agreement with the sequence with such underlying
motif. Both plots show convergence as the number of trials n increases. Within 40 trials of sequences,
HCM learns the underlying structure generating the sequence. Furthermore, given a novel sequence
such as TTTPTPTPPPPT , the observation of T and P as distinct entities enable HCM to predict
the entire sequence after observing the only the first 4 elements, even if this sequence has never
appeared before.

Code and data for the experiments are available with this link: https://github.com/swu32/HCM

20

https://github.com/swu32/HCM

References
Alexandre Abraham, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais, Andreas Mueller,

Jean Kossaifi, Alexandre Gramfort, Bertrand Thirion, and Gael Varoquaux. Machine learning
for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8, 2014. ISSN 1662-5196.
doi: 10.3389/fninf.2014.00014. URL https://www.frontiersin.org/article/10.3389/
fninf.2014.00014.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Gael Varoquaux, Alexandre Gramfort, Fabian Pedregosa, Vincent Michel, and Bertrand Thirion.
Multi-subject dictionary learning to segment an atlas of brain spontaneous activity. In Proceedings
of the 22nd International Conference on Information Processing in Medical Imaging, IPMI’11, pp.
562–573, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 9783642220913.

Shuchen Wu, Noémi Éltető, Ishita Dasgupta, and Eric Schulz. E pluribus unum but how? chunking
as a rational solution to the speed-accuracy trade-off, Feb 2022. URL psyarxiv.com/sjh27.

21

https://www.frontiersin.org/article/10.3389/fninf.2014.00014
https://www.frontiersin.org/article/10.3389/fninf.2014.00014
psyarxiv.com/sjh27

	Definitions
	Independence Test as a Chunking Criterion
	Independence Test as a Halting Criterion

	Rational Chunking Algorithm
	Online HCM and Generalization to Visual-Temporal Sequences
	Proof of Recoverability
	Summary N
	Marginal N

	Probability Density Switch when Ad expands to Ad+1
	Marginal Probabilities

	Hierarchical Generative Model
	Learning the Hierarchy

	Experiment Detail
	Chunk Recovery and Convergence
	Transfer Between Environments with Overlapping and Interfering Structure
	Visual Hierarchical Chunks
	GIF Movement
	Human Experiment
	Size of RNN

	fMRI dataset
	More examples

	Translating representation learned by HCM into nth order Markov Chain
	Memory Analysis
	Example

	Sensitivity Analysis
	Sensitivity to Noisy Observations
	Sensitivity to Phase Shift

	Comparison with PARSER
	Learning Motifs
	Example
	Simulation Demonstration

