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Abstract

Learning an informative representation with behavioral metrics is able to accelerate
the deep reinforcement learning process. There are two key research issues on
behavioral metric-based representation learning: 1) how to relax the computation
of a specific behavioral metric, which is difficult or even intractable to compute,
and 2) how to approximate the relaxed metric by learning an embedding space
for states. In this paper, we analyze the potential relaxation and/or approximation
gaps for existing behavioral metric-based representation learning methods. Based
on the analysis, we propose a new behavioral distance, the RAP distance, and
develop a practical representation learning algorithm on top of it with a theoretical
analysis. We conduct extensive experiments on DeepMind Control Suite with
distraction, Robosuite, and autonomous driving simulator CARLA to demonstrate
new state-of-the-art results.

1 Introduction

Deep reinforcement learning (RL) aims to interactively learn an optimal policy from high-dimensional
environmental observations or states in an end-to-end manner. In the literature, it has been demon-
strated that a robust representation of states, which are task-relevant and invariant to task-irrelevant
background information, is able to significantly speed up the RL process and makes the learned policy
more generalizable. Therefore, representation learning has played a key role in Deep RL algorithms
and attracts more and more attention in the RL community [4, 23, 17, 20].

Prior work on representation learning is focused on learning embeddings to represent states based
on a reconstruction loss [26, 25, 13]. Though promising results have been reported on some RL
application domains, policies learned with such representations usually fail to generalize well
in a complex environment because minimizing a reconstruction loss may potentially introduce
local (visual) features with task-irrelevant information. Another research direction is to apply data
augmentation techniques to learn robust state representations for an RL agent [19, 28, 27]. While data
augmentation-based approaches may be able to learn more robust feature representations, they do not
take the characteristics of Markov Decision Processes (MDPs), e.g., reward signals and dynamics
models, into consideration when learning representations. As a result, the learned representations may
not be informative for learning an optimal policy for the task of interest. A third research direction
is to construct some auxiliary tasks in addition to the prime RL task and learn state representations
by learning all the tasks simultaneously [14, 2, 21]. These approaches can be considered as shaping
the state representations implicitly by learning the auxiliary tasks, which do not have a guarantee for
learning a better policy, especially when the auxiliary tasks fail to benefit the learning of the RL task.

Recently, behavioral metrics, such as the bisimulation metric and its variants [7, 8, 3], have been
exploited in representation learning for deep RL. Behavioral metrics are originally proposed to
measure the behavioral similarity between states in terms of rewards and dynamics models, e.g, state
transition probabilities. The high-level idea is to learn state embeddings by preserving the behavioral
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similarity between states based on a specific behavioral metric [29, 1, 16, 4]. As behavioral metrics
provide a theoretical bound on the difference between the outputs of value function of a pair of
states, the learned representation enjoys a theoretical guarantee to capture behavioral structure in the
environment for policy learning. However, as behavioral metrics are expensive or even intractable to
compute, different approximation approaches and learning objectives have been proposed to make
behavioral metric-based representation learning for RL agents more efficient [29, 1, 16, 4].

Though behavioral metric-based representation learning methods have achieved state-of-the-art results
on some benchmark RL problems, they suffer from at least one of the following three issues: loss
function mismatch, relaxation of dynamics model divergence and the L1/L2 norm limitation.

• Loss function mismatch. In behavioral metric-based representation learning, a loss function
is to measure the difference between the distance between states on the embedding space
and their behavioral metric. As behavioral metrics are expensive or even intractable to
computers, approximation or relaxation are necessary. However, based on our analysis,
state-of-the-art methods adopt improper approximations, which may introduce a bias and
make the bound of the value function looser.

• Relaxation of dynamics model divergence. The bisimulation metric or its on-policy
invariant is one of the most widely used behavioral metrics, which requires estimating
the 1-Wasserstein distance between dynamics models. As the 1-Wasserstein distance is
usually difficult or intractable to estimate, prior methods propose some relaxations to replace
the estimation of the 1-Wasserstein, which may break some theoretical guarantees of the
bisimulation metric.

• The L1/L2 norm limitation. The L1 and the L2 norms are commonly-used distances with
zero self-distance. However, due to the two gaps mentioned above, the approximations or
relaxations of behavior metrics in prior approaches are potentially non-zero self-distance.
Using the L1 or L2 distance on embedding space is difficult to learn robust representation to
preserve the behavioral similarity between states.

To address the aforementioned issues or gaps, in this paper, we first introduce a new behavior metric
namely the Reducing Approximation Gap (RAP) distance, and then develop a practical approximation
algorithm with consistency to its theoretical prototype. In this way, our algorithm is guaranteed to learn
a robust state representation to capture the behavioral similarity between states. We conduct extensive
experiments on DeepMind Control Suite (DMC) [24] with background distraction, Robosuite [30]
and autonomous driving simulator CARLA [6] to demonstrate new state-of-the-art results compared
with other behavior metric-based representation learning methods.

The contributions of this paper are two-fold: 1) we analyze the potential approximation gaps for
existing behavioral metric-based representation learning approaches, and 2) we introduce a new
behavior distance RAP and develop its practical approximation algorithm with theoretical guarantees.

2 Related Work

In RL, early research work has focused on learning state representations by designing and optimizing
some auxiliary objectives in addition to the RL task of interest. For instance, Hafner et al. [11] propose
to learn a dynamics model to predict future states with a reconstruction loss. Gelada et al. [9] aim to
learn state representations by predicting a dynamics model and a reward function on an embedding
space. Laskin et al. [17] apply contrastive learning with samples generated by the momentum encoder.
Hansen et al. [12] predict an inverse model as an auxiliary task for representation learning. Another
type of approaches aims to apply data augmentation techniques to improve representation learning.
For instance, Laskin et al. [18] conduct an extensive study of data augmentation for deep RL with
pixel-based input. Yarats et al. [28] adopt random crops on pixel-based input and add regularization
terms on the Q-function objectives. Lee et al. [19] introduce convolutional neural networks with
randomized parameters. Stooke et al. [23] use augmented samples for representation contrastive
learning. In contrast to these works, our proposed method aims to encode state representations into a
structural metric space based on behavioral metrics.

Recently, behavioral metric-based representation learning has attracted more and more attention in
the RL community. For instance, Zhang et al. [29] aim to learn representations by approximating
the bisimulation metric [7, 3] on an embedding space. Agarwal et al. [1] propose a behavioral
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metric considering a distance between action distributions given states for representation learning.
Kemertas and Aumentado-Armstrong [16] propose to improve the robustness of the representation
learning method proposed in [29] by adding norm constraints on the embedding space and intrinsic
rewards. Castro et al. [4] introduce a new behavioral distance and develop a sampling-based approach
to preserve the behavioral similarity between states on the embedding space. Chen and Pan [5]
propose to learn neural networks to approximate components in the bisimulation metric on the state
embedding space.

3 Preliminaries

Reinforcement Learning We consider a Markov Decision Process (MDP) defined by a tuple
⟨S,A,R, P, γ⟩, where S is the high-dimensional state space, A is the action space, P (s′|s,a) is the
transition distribution that captures the probability of entering a next state s′ ∈ S given a current
state s ∈ S and an action a ∈ A, R : S × A → R is the reward function and γ ∈ [0, 1) is the
discount factor. In the sequel, we use P as and ras to denote P (·|s, a) and R(s, a), respectively. A
policy π(a|s) is a probability distribution over each action a conditioned on a state s. The value
function V π : S → R for a given policy π at a state s is defined as the expected sum of discounted
future rewards,

V π(s) = E
at∼π(·|st)
st+1∼Pat

st

[ ∞∑
t=0

γtrat
st | s0 = s

]
.

The goal of reinforcement learning is to find an optimal policy π∗ = argmaxπ V
π that maximizes

the expected future rewards. In the scope of representation learning for deep RL, a state encoder
ϕ : S → Rn maps a high-dimensional state to a low-dimensional vector, with which a policy
π(a|ϕ(s)) is learned.

Bisimulation Metrics The bisimulation metric [7, 8] defines a pseudometric d : S × S → R
to measure the behavioral distance between states. Recently, a variant of the bisimulation metric,
on-policy bisimulation metric (or π-bisimulation metric) is proposed [3], which focuses on behaviors
relative to a particular policy π. The π-bisimulation metric consists of a reward difference term and a
Wasserstein distance in dynamics models between states.

Theorem 3.1 (π-bisimulation metric [3]). Let M be the set of all pseudometrics on space S. A
pseudometric transformation function Fπ

B : M → M is defined as,

Fπ
B(d)(si, sj) = |Eai∼π r

ai
si − Eaj∼π r

aj
sj |+ γW1(d)(P

π
si , P

π
sj ) (1)

where Eai∼π r
ai
si = Eai∼π(·|si) r

ai
si , Pπsi = Ea∼π(·|si) P asi and W1 is the 1-Wasserstein distance. Fπ

B
has a least fixed point dπB and dπB is a π-bisimulation metric.

The following theorem shows that the difference in value function is bounded by dπB .

Theorem 3.2 (Value difference bound [3]). Given states si and sj , and policy π, we have

|V π(si)− V π(sj)| ≤ dπB(si, sj). (2)

MICo distance The MICo distance [4] is a variant of the π-bisimulation metric, which measures
the distribution distance between dynamics models by computing the distance between sampled next
states from the dynamics models in order to avoid the computation of the Wasserstein distance.

Theorem 3.3 (MICo distance [4]). Let M be the space of distance function d : S × S → R, if the
MICo metric function Fπ

M : M → M is defined as,

Fπ
M (d)(si, sj) = |Eai∼π r

ai
si − Eaj∼π r

aj
sj |+ γEs′i∼P

π
si

s′j∼P
π
sj

d(s′i, s
′
j), (3)

then Fπ
M has a unique fixed point dπM .

Theorem 3.4 (Value difference bound [4]). Given states si and sj , and policy π, we have

|V π(si)− V π(sj)| ≤ dπM (si, sj). (4)
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4 Approximation Gaps in Behavioral Metric-based Representation Learning

The high-level idea of behavioral metric-based representation learning is to learn an embedding space
such that after mapping states onto the embedding space, the behavioral similarity can be preserved.
We denote the state encoder by ϕω : S → Rn with parameters ω and the distance between states on
the embedding space Rn by d̂(ϕω(si), ϕω(sj)), e.g., d̂ can be the L2 norm distance. The problem of
representation learning in terms of ω can be cast as a minimization problem of the following expected
squared difference or loss between the distance on the embedding space, d̂(ϕω(si), ϕω(sj)), and the
corresponding behavior metric, dπ(si, sj), between any pair of states si and sj :

L(ϕω) = E
[(
d̂(ϕω(si), ϕω(sj))− dπ(si, sj)

)2]
. (5)

To develop a practical algorithm to minimize the above objective, prior approaches adopt different
approximation or relaxation strategies to make the resultant optimization problem computationally
tractable. As discussed above, there are three common issues underlying most prior approaches,
which introduce gaps between the practical algorithms and their theoretical prototypes, i.e., (5),
namely loss function mismatch, relaxation of dynamics model divergence, and the L1 or the L2 norm
limitation. We discuss these 3 gaps in detail in the following sections.

4.1 Loss Function Mismatch

In general, to learn the encoder ϕω by minimizing (5) is computationally intractable or expensive
because of the computation of the behavior metric dπ. We take MICo (MICo-based representation
learning [4]) as an example. By specifying the term dπ(si, sj) in (5) as the MICo distance defined in
(3), the loss of MICo becomes,

L(ϕω) = E


d̂(ϕω(si), ϕω(sj))−

∣∣Eai∼π rai
si − Eaj∼π r

aj
sj

∣∣− γEs′i∼Pπ
si

s′j∼Pπ
sj

d̂(ϕω̄(si), ϕω̄(sj))


2 , (6)

where ω̄ is a copy of parameters for the target network. However, the reward expectations Eai∼π r
ai
si

and Eaj∼π r
aj
sj in the 2nd term in (6) are computationally intractable and also difficult to estimate

even based on sampling. Thus, Castro et al. [4] propose to approximate the loss in (6) with the
following alternative loss,

L(ϕω) = E
ai∼π,aj∼π

s′i∼P
ai
si

,s′j∼P
aj
sj

[(
d̂(ϕω(si), ϕω(sj))−

∣∣rai
si − r

aj
sj

∣∣− γd̂(ϕω̄(si), ϕω̄(sj))
)2

]
. (7)

Note that in (7), the expectation operator on rewards is moved out of the absolute value operator of
the difference between rewards to avoid the estimation of expectation over rewards, Eai∼π r

ai
si and

Eaj∼π r
aj
sj , and enable sampling more efficient. However, such a revision introduces a gap between

solutions of minimizing (7) and (6), because in (7) the reference behavioral metric is no longer the
MICo distance but the “shift” MICo distance defined as follows.

Definition 4.1 (Shift MICo distance). The shift MICo distance function F̃π
M is defined as

F̃π
M (d)(si, sj) = Eai∼π

aj∼π
|rai

si − r
aj
sj |+ γEs′i∼P

π
si

s′j∼P
π
sj

d(s′i, s
′
j).

Lemma 4.2 (Fixed-point). The shift MICo distance function F̃π
M has a unique fixed-point d̃πM .

Proof. (Sketch) This can be proved by following the proof of Theorem 3.3 by using Banach’s
fixed-point theorem. A detailed proof can be found in Appendix A.1.

The above lemma shows that the approximated distance on the embedding space d̂(ϕω(si), ϕω(sj))
still converges to the Shift MICo distance, d̃πM , by minimizing (7). However, as Eai∼π

aj∼π
|rai

si − r
aj
sj | ≥

|Eai∼π r
ai
si −Eaj∼π r

aj
sj |, we have the following theorem, whose proof can be found in Appendix A.2.
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Theorem 4.3 (Looser value difference bound). Given states si and sj , and a policy π, we have

|V π(si)− V π(sj)| ≤ dπM (si, sj) ≤ d̃πM (si, sj). (8)

Based on the above theorem, as the Shift MICo distance has looser value difference bound, it may be
less relevant to the value function. As a result, the learned representation may not be able to encode
the behavioral similarity between states accurately. Apart from MICo, other behavioral metric-based
methods, which consist of the on-policy reward difference term, such as DBC [29, 16] and AMBS [5],
also suffer from a similar approximation gap.

4.2 Relaxation of Dynamics Models Divergence

The π-bisimulation metric needs to compute the 1-Wasserstein distance W1 between dynamics
models to measure the distribution distance. In π-bisimulation metric-based representation learning,
one can learn the encoder ϕω by minimizing the following loss,

L(ϕω) = E
[(
d̂(ϕω(si), ϕω(sj))−

∣∣Eai∼π r
ai
si − Eaj∼π r

aj
sj

∣∣− γW1(d̂)(P
π
ϕω(si)

, Pπϕω(sj)
)
)2]

,

However, the 1-Wasserstein distance is computationally expensive or intractable. In DBC [29] the
2-Wasserstein distance W2 is proposed to replace W1, as W2 has a convenient closed-form of a
Gaussian distribution with respect to the L2 distance. Specifically, the loss function of DBC with
batched sampled transitions is defined as,

L(ϕω) = E
[(
d̂(ϕω(si), ϕω(sj))−

∣∣rai
si − r

aj
sj

∣∣− γW2(∥ · ∥2)(P̂ π̄ϕω(si)
, P̂ π̄ϕω(sj)

)
)2]

,

where ∥ · ∥2 is the L2 norm, P̂ is a dynamics model on the representation space, and π̄ is the expected
policy output. The use of W2 almost breaks all theoretical guarantees for the bisimulation metric. The
existence of unique fixed-point in the bisimulation metric requires the continuity and monotonicity
of W1 with respect to d [7]. The properties of continuity and monotonicity do not hold with W2.
Therefore there is no more guarantee about the fixed-point existence in DBC except that both the
dynamics model and the policy π are deterministic, in which case W2(d) degenerates to d and
Banach’s fixed-point exists [16]. However, this assumption may be too strong to hold in practice.

Instead of using the family of Wasserstein distances, in MICo as shown in (3) the sample-based
distribution divergence, Es′i∼Pπ

si
,s′j∼Pπ

sj
d(s′i, s

′
j), is used to measure the difference between dynamics

models. This sample-based distribution divergence can be considered as a Łukaszyk-Karmowski
metric. While a Wasserstein distance has zero self-distance, a Łukaszyk-Karmowski metric does not
satisfy the identity of indiscernibles. As a result, the approximated distance on the learned embedding
space based on the MICo distance, which involves a Łukaszyk-Karmowski metric to measure distance
between dynamics models, may also suffer from the violation issue of the identity of indiscernibles.

4.3 Limitation of Using the L1 or the L2 Norm on the Embedding Space

As mentioned in Section 4.1, to avoid the expensive or intractable computation of the expectation
over rewards, prior approaches, such as MICo, and DBC, use an alternative term to measure the
reward difference between states, Eai∼π

aj∼π
|rai

si − r
aj
sj |. In the following, we discuss the case that state

si and sj are identical.

Lemma 4.4. If si = sj , then Eai∼π
aj∼π

|rai
si − r

aj
sj | ≥ 0. The equality holds only if the reward function r

is constant w.r.t. action a or the policy π is deterministic.

Note that in most RL tasks, a stochastic policy is widely used for exploration and a reward function
is rarely constant w.r.t. actions. Therefore, in practice, Eai∼π

aj∼π
|rai

si − r
aj
sj | > 0 for most RL tasks.

Besides, as mentioned in Section 4.2, a Łukaszyk-Karmowski metric measuring distance between
dynamics models does not satisfy the identity of indiscernibles. Therefore, the behavioral metric,
which is a sum of the reward difference term and the dynamics model distance term (no matter a
Wasserstein distance or a Łukaszyk-Karmowski metric), can be greater than zero on a pair of identical
states.
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Note that both the L1 and the L2 norms satisfy the identity of indiscernibles, i.e. when xi = xj ,
∥xi − xj∥1 = ∥xi − xj∥2 = 0. If we leverage the L1 or the L2 norm as the form of distance d̂ on
the embedding space to approximate the behavioral metric, then the identical states pairs has zero
distance on embedding space. However, the regression target, i.e., the behavioral metric, is greater
than zero on identical states. As a result, when minimizing regression loss between the L1 / L2 norm
and the behavioral metric, the representations for similar states, especially identical ones, will be
pushed apart in the embedding space.

Recently, AMBS [5] proposes to use neural networks to measure distance on state embedding space
rather than using the L1 or the L2 norm. However, in this case, the learned “behavior metric”
does not have theoretical support such as the fixed-point convergence guarantee. Besides, MICo
proposes a new form of distance on the embedding space, which is a sum of angular distance between
embeddings and the L2 norm of the embeddings. Note that the proposed distance has non-zero
self-distance.

5 The Proposed RAP Distance

We firstly propose a new behavioral metric to measure the state similarity without computing the
Wasserstein distance between dynamics models in Section 5.1. The proposed behavioral metric
namely the RAP distance enjoys theoretical properties such as fixed-point existence and a value
difference bound. We then present a practical algorithm to learn the state encoder by approximating
the RAP distance on the state embedding space in Section 5.2. Our algorithm uses the learned
estimation of reward functions and dynamics models to provide distance approximation which is
consistent to the behavioral metric. It addresses all the aforementioned approximation gaps and
preserves the theoretical guarantee about the value function difference bound. Particularly, the
approximation gap of loss function mismatch is addressed in Section 5.2, the relaxation of dynamics
model divergence is addressed in Section 5.1, and the limitation of the L1 or the L2 norm on the
embedding space is addressed in Section 5.3.

5.1 Definition and Properties of the RAP Distance

In order to avoid the high computational cost ofW1 or the approximation gap introduced by relaxation
to W2 as described in Section 4.2, we consider a distance measure between dynamics models Pπsi and
Pπsj with sampling. To be specific, our on-policy behavioral distance is defined as follows.

Definition 5.1 (the RAP distance). Let M be the space of distance function d : S ×S → R, the RAP
distance function Fπ

G : M → M is defined as,

Fπ
G(d)(si, sj) =

∣∣Eai∼π r
ai
si − Eaj∼π r

aj
sj

∣∣+ γEai∼π
aj∼π

d(E[s′i],E[s′j ]), (9)

where E[s′i] = Es′i∼Pai
si
[s′i] is the expectation value of next state over the dynamics model P ai

si .

We design the behavioral distance by measuring the expected states over dynamics models recursively,
which removes the requirement of sampling on P ai

si and P aj
sj but only performs sampling on the

policy π. In practice, the expected next states are generated by a learnable approximated dynamics
model as described in Section 5.2.

Theorem 5.2. Fπ
G is a contraction mapping w.r.t. the L∞ norm and has a unique fixed-point dπG.

Proof. Let d, d′ ∈ M. We have

|Fπ
G(d)(si, sj)−Fπ

G(d
′)(si, sj)| =

∣∣∣∣∣∣γ
∑
ai,aj

π(ai|si)π(aj |sj)(d− d′)(E[s′i],E[s′j ])

∣∣∣∣∣∣ ≤ γ∥d−d′∥∞.

Therefore, Fπ
G is a contraction mapping w.r.t. the L∞ norm and there exists a unique fixed-point for

Fπ
G due to Banach’s fixed-point theorem. This completes the proof.

Theorem 5.2 provides a convergence guarantee for the RAP distance that by iterating Fπ
G, distance d

will converge to the fixed-point dπG.
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Theorem 5.3 (Value function difference bound). Given states si and sj , and a policy π, we have
|V π(si)− V π(sj)| ≤ dπG(si, sj). (10)

The proof can be found in Appendix A.3. Theorem 5.3 demonstrates that the RAP distance between
states upper-bounds the difference of their states values.

5.2 Approximation of RAP

A straightforward way to learn a representation encoder to approximate the RAP distance on the
embedding space is to minimize the loss in (5). However, the approximation gap of loss function
mismatch as mentioned in Section 4.1 still exists if we relax the first term in (9) as Eai∼π

aj∼π
|rai

si − r
aj
sj |.

This leads to the learned metric having a looser value difference bound than the original behavioral
metric as proved in Section 4.1. Here, we propose another alternative relaxation of |Eai∼π r

ai
si −

Eaj∼π r
aj
sj | to address this issue. Let rs be a random variable over the action distribution defined

by p(rs = ras ) = π(a|s). We first analyze the difference between Eai∼π
aj∼π

[∣∣rai
si − r

aj
sj

∣∣2] and

|Eai∼π r
ai
si − Eaj∼π r

aj
sj |2,

Eai∼π
aj∼π

[∣∣rai
si − r

aj
sj

∣∣2]−|Eai∼π rai
si − Eaj∼π r

aj
sj |

2

= E
ai∼π

[
(rai

si )
2]+ E

aj∼π

[
(r

aj
sj )

2]−2Eai∼π
aj∼π

[
rai
si r

aj
sj

]
−
[

E
ai∼π

rai
si

]2

−
[

E
aj∼π

r
aj
sj

]2

+2

[
E

ai∼π
rai
si

] [
E

aj∼π
r
aj
sj

]
= E

ai∼π

[
(rai

si )
2]− [

E
ai∼π

rai
si

]2

+ E
aj∼π

[
(r

aj
sj )

2]−[
E

aj∼π
r
aj
sj

]2

−2Eai∼π
aj∼π

[
rai
si r

aj
sj

]
+2

[
E

ai∼π
rai
si

] [
E

aj∼π
r
aj
sj

]
= V ar[rsi ] + V ar[rsj ]− 2Cov[rsi , rsj ].

(11)

Since rsi and rsj are independent, Cov[rsi , rsj ] = 0. Therefore, we have the reward difference term

|Eai∼π r
ai
si − Eaj∼π r

aj
sj | =

√
Eai∼π
aj∼π

[∣∣rai
si − r

aj
sj

∣∣2]− V ar[rsi ]− V ar[rsj ]

and the revised RAP distance at fixed-point as

dπG(si, sj) =

√
Eai∼π
aj∼π

[∣∣rai
si − r

aj
sj

∣∣2]− V ar[rsi ]− V ar[rsj ]

+ γEai∼π
aj∼π

dπG(Es′i∼Pai
si
[s′i],Es′j∼P

aj
sj

[s′j ]). (12)

In (12), we successfully move the expectation operator on rewards out of the absolute value operator
without introducing any approximation gap caused by loss function mismatch. However, there
are three issues that need to be further addressed: 1) the square root introduces new bias under
sampling, 2) the variances V ar[rsi ] and V ar[rsj ] are intractable to compute, and 3) how to estimate
the expected next states Es′i∼Pai

si
[s′i] and E

s′j∼P
aj
sj

[s′j ].

In order to reduce the bias issue introduced by the square root, we try to remove the square root in the
loss of learning the RAP distance. We move the dynamics term in (12) to the left-hand side, then take
square on both sides and get(
dπG(si, sj)−γEai∼π

aj∼π
dπG(Es′i∼Pai

si
[s′i],Es′j∼P

aj
sj

[s′j ])

)2

=Eai∼π
aj∼π

[∣∣rai
si − r

aj
sj

∣∣2]−V ar[rsi ]−V ar[rsj ].
(13)

Let d̂(ϕω(si), ϕω(sj)) be the approximated RAP distance between si and sj parameterized by ω.
The loss for learning d̂(ϕω(si), ϕω(sj)) is to minimize the mean squared error between the left-hand
side and the right-hand side in (13):

L = E
[(

d̂(ϕω(si), ϕω(sj))− γEai∼π
aj∼π

dπG(Es′i∼Pai
si
[s′i],Es′j∼P

aj
sj

[s′j ])

)2

−
(
|rai

si − r
aj
sj |2 − V ar[rsi ]− V ar[rsj ]

) ]2
. (14)
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Such a loss consists of a pair of squared difference terms as the regression target, which approxi-
mate the squared difference between distances of current states and distances of dynamics models,
respectively.

The reward variance V ar[rs] is computationally intractable, but we can learn a neural network
approximator to estimate it by assuming that the reward rs on state s is Gaussian distributed. Let
rψ be the learned reward function approximation parameterized by ψ, which outputs a Gaussian
distribution, rψ(s) = {µ̂(rs), σ̂(rs)}, where µ̂(rs) and σ̂(rs) are the mean and the standard deviation,
respectively.

Similarly, in order to estimate the expected next states Es′∼Pa
s
[s′] with a neural network ap-

proximator on the embedding space, we learn a dynamics model P̂ taking input of state em-
bedding ϕ(s) and action a and outputs a Gaussian distribution over the next state embedding,
P̂ (ϕω(s),a) = {µ̂(P̂ a

ϕω(s)), σ̂(P̂
a
ϕω(s))}, where µ̂(P̂ a

ϕω(s)) and σ̂(P̂ a
ϕω(s)) are the mean vector and

the standard deviation vector for predictive embeddings of the next state, respectively.

The RAP distance between expected next states, dπG(E[s′i],E[s′j ]), can be approximated by
d̂(µ̂(P̂ ai

ϕω(si)
), µ̂(P̂

aj

ϕω(sj)
)). The variance V ar[rs] can be replaced by the learned reward function

output as (σ̂(rs))
2. By replacing the dynamics term and reward variance terms in (14), we propose

the RAP loss defined as

LRAP (ϕω) = ED

[(
d̂(ϕω(si), ϕω(sj))− γd̂(µ̂(P̂ ai

ϕω̄(si)
), µ̂(P̂

aj

ϕω̄(sj)
))
)2

−
(
|rai

si − r
aj
sj |2 − (σ̂(rsi))

2 −
(
σ̂(rsj )

)2)]2
, (15)

where ω̄ is a copy of parameter with stop gradient and ϕω̄ is the encoder in the target network and D
is the replay buffer or the set of data that RL algorithm, e.g. SAC [10], learns from. The loss (15) is
trained over the transitions sampled from D.

5.3 Explicit Form of Distance on the Embedding Space

As discussed in Section 4.3, the behavioral metric is usually with non-zero self-distance. Besides, the
distance measured between the next-state distributions in the RAP distance is a Łukaszyk-Karmowski
metric [22], which also has non-zero self-distance. Here, we adopt the approximation form of distance
on the embedding space as proposed in MICo [4].

Definition 5.4 (MICo approximation). Let d̂G : Rn × Rn → R be a distance function on representa-
tion space Rn, x,y ∈ Rn and k > 0. d̂G is defined as d̂G(x,y) = ∥x∥22+ ∥y∥22+kθ(x,y), where θ
is angular function evaluating the absolute angle between vectors x and y, and k is a hyperparameter.
In practice, we set k = 10−5 for our method.

As the above form of distance produces non-zero self-distance, with d̂G the approximation of the
RAP distance will not push apart similar states on the embedding space.

Lemma 5.5 (Non-zero self-distance). The self-distance of d̂G is not restrict to zero: d̂G(x,x) =
2∥x∥22 ≥ 0. The equality holds only if all the elements of x are zero.

5.4 Implementation

  

Actor

Critic SAC loss

  
Critic

Actor

SAC loss

Figure 1: Network architec-
ture of our method.

The network architecture of our method is shown in Figure 1. Our
method is built upon SAC [10]. Actor and critic networks take input
of state representation ϕω(s). The SAC objectives and the RAP re-
gression loss LRAP (ϕω) are optimized jointly. More implementation
details can be found in Appendix B. The source code is available at
https://github.com/jianda-chen/RAP_distance.

8

https://github.com/jianda-chen/RAP_distance


6 Experiment

In this section, we evaluate the efficiency, robustness and generalization ability of the representation
learned by our method on three RL benchmarks: 1) Distracting DeepMind Control Suite (DMC) [24],
2) Robosuite [30], and 3) CARLA [6]. These are all control tasks in continuous action spaces with
visual input. We compare our method with several baselines and state-of-the-art methods including
metric-based representation learning and data augmentation: 1) SAC [10], a baseline RL method for
continuous control, 2) MICo [4], a sample-based behavioral metric-based representation learning
method for RL, 3) DBC [29], a representation learning method by approximating the bisimulation
metric with the L1 norm, 4) RobustDBC [16], a DBC-styled method with intrinsic rewards and
inverse dynamics, and 5) DrQ [28], an image augmentation method on pixel inputs RL.

(a) (b)

Figure 2: Illustrations of observations in DMC: (a) original background setting; and (b) natural video
background setting. From left to right: cartpole-swingup, cheetah-run, finger-spin, and walker-walk.

Distracting DeepMind Control Suite To evaluate the generalization ability and robustness of our
method, we perform experiments on 2 settings, original background and natural video background
settings, in DMC [24]. We render 84×84 pixels as observation at each time step and stack frames
as state. In the original background setting, we use the default background provided by DMC
(as shown in Figure 2a). For the natural video background distracting setting, we follow [29] to
replace the background with natural video sampled from Kinetics dataset [15] (as shown in Figure 2b).
We sample 1000 continuous frames from the video dataset as background for training RL agents
and evaluate agents on another 1000 continuous frames. The video background is considered as
distraction to RL algorithm. For each setting, we train and evaluate on 4 tasks: cartpole-swingup,
cheetah-run, finger-spin, and walker-walk. Each task is trained using 1 million environment steps.

Figure 3: Experimental results on DMC with original background. Each curve is average on 3 runs.

Figure 4: Results on natural video background settings in DMC. Each curve is average on 3 runs.

Figure 3 shows the training curves in original background settings. It confirms that our method RAP
can accelerate the training and has comparable results to data augmentation method DrQ. Figure 4
shows the training curves in natural video background settings. Our method RAP outperforms DBC
and MICo on all 4 tasks. It also converges to higher score than DrQ in 1 task and learns much faster
in 3 tasks. The new SOTA results verify that our method of reducing the gaps in approximation of
behavioral distance can improve the efficiency and robustness for deep RL and they also confirm that
our method is able to learn generalizable state representation in complex environments.
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Figure 5: Illustrations in Robosuite. Left: Door
Opening. right: Two Arm Peg-In-Hole.

Robosuite Robosuite [30] is a robotic simu-
lator with various manipulation tasks based on
MuJoCo engine. To evaluate the robustness of
methods, we use the distraction settings for Ro-
bosuite by randomizing the colors of robot arms
and table, the lighting source and luminance,
and the camera position. The color, lighting and
camera position are changed at the beginning of
an episode but are consistent within the episode. Our experiment is performed by controlling the
Panda arms. The control rate is 20Hz and the episode length is 500 steps. We evaluate on two tasks:
Door Opening and Two Arm Peg-In-Hole. Figure 5 shows illustrations of observations of two tasks.
We compare our method with behavioral metric methods MICo and DBC, and data augmentation
method DrQ. Table 1 shows the training scores in 500k environment steps. Our method RAP outper-
forms the others. The converge scores are around 7× and 1.4× compared to the second-best method
in Door Opening and Two Arm Peg-In-Hole, respectively. It shows the robustness of our RAP in
environments with random distractions.

Table 1: Experimental results on Robosuite trained with 500K environment steps.
Task RAP(Ours) SAC MICo DBC DrQ
Door Opening 102.19 ± 26.11 8.84±9.89 6.06±6.57 3.15±3.54 14.63±19.57
Two Arm Peg-In-Hole 307.27±25.70 191.29±34.88 123.69±23.25 219.56±36.87 156.86±33.57

Figure 6: Training curves on CARLA.

CARLA In order to validate the generalization abil-
ity and learning efficiency in natural scenarios, we
construct experiments on an autonomous driving sim-
ulator CARLA [6], which provides 3D realistic on-
world scenarios. The goal of this task is to control
a vehicle driving as far as possible on a high-way
map (Town 4) in 1000 time steps. The reward func-
tion followed [29] is designed to encourage driving
far and avoid collisions with other vehicles. The
observation is formed as 420 × 84 pixels of a 300 de-
grees ego-centric view, constructed by concatenating
five cameras. In order to evaluate the generalization
ability, we randomly sample a kind of weather in
each episode starts. The weather (sunlight, rain, etc.),
which affects the visual observation, can be consid-
ered as real-world distraction to RL agents. Figure 6 shows the comparison results of our RAP and
other SOTA methods. Our method achieves comparable scores with data augmentation method DrQ,
and its score is higher than behavioral metric DBC and MICo. It shows that our RAP is able to
generalize well in tasks with real-world scenarios.

7 Conclusion

Representation learning is one of the most critical problems in high-dimensional deep RL. In this
paper, we propose a new behavioral metric and a practical representation learning algorithm on top of
the new behavioral metric for deep RL. We provide theoretical analysis for our proposed metric as
well as the representation learning algorithm. We conduct empirical studies on multiple RL domains
to verify the effectiveness of our proposed method.
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