
A �-BCTW Results

The following proves Proposition 1.

Proof. Under �-BCTW, the conditional probability of sr1:n given the actions a1:n can be expressed
as

⇠(sr1:n|a1:n) =
nY

i=1

P̂ (sri|asr1:i�1, ai)

=
nY

i=1

kY

j=1

P̂
(j)([sri]j |[sri]<j , asr1:i�1, ai)

(a)
=

nY

i=1

kY

j=1

0

@
X

T2Td+j�1

2��(T)
P̂ ([sri]j |T ([si�1ai][sri]<j), sr1:i�1)

1

A

=
X

T12Td

. . .

X

Tk2Td+k�1

0

@
kY

j=1

2��(t)

1

A

0

@
kY

j=1

nY

i=1

P̂ ([sri]j |T ([si�1ai][sri]<j), sr1:i�1)

1

A

(b)
=

X

T2Td⇥...⇥Td+k�1

2��(T)
P̂ (sr1:n|a1:n, T).

Note that (a) follows from Equation 5 and (b) follows by definition.

The following proof of Theorem 3 follows the same steps as Theorem 1 in [4].

Proof.
nX

k=1

X

r1:k

µ(r<k|ao<k) (µ(rk|aor<kaok)� ⇠(rk|aor<kaok))
2

=
nX

k=1

X

r<k

µ(r<k|ao<k)
X

rk

(µ(rk|aor<kaok)� ⇠(rk|aor<kaok))
2

(a)

nX

k=1

X

r<k

µ(r<k|ao<k)
X

rk

µ(rk|aor<kaok) ln
µ(rk|aor<kaok)

⇢(rk|aor<kaok)

=
nX

k=1

X

r1:k

µ(r1:k|ao1:k) ln
µ(rk|aor<kaok)

⇠(rk|aor<kaok)

=
nX

k=1

X

r1:n

µ(r1:n|ao1:n) ln
µ(rk|aor<kaok)

⇠(rk|aor<kaok)

=
X

r1:n

µ(r1:n|ao1:n)
nX

k=1

ln
µ(rk|aor<kaok)

⇠(rk|aor<kaok)

(b)
=

X

r1:n

µ(r1:n|ao1:n) ln
µ(r1:n|ao1:n)
⇠(r1:n|ao1:n)

=
X

r1:n

µ(r1:n|ao1:n) ln
µ(r1:n|ao1:n)
⇢(r1:n|ao1:n)

+
X

r1:n

µ(r1:n|ao1:n) ln
⇢(r1:n|ao1:n)
⇠(r1:n|ao1:n)

(c)
 D1:n(µ||⇢) +

X

r1:n

µ(r1:n|ao1:n) ln
⇢(r1:n|ao1:n)

w
⇢
0⇢(r1:n|ao1:n)

= D1:n(µ||⇢)� lnw⇢
0

15

The inequality in (a) follows as
P

i(yi � zi)2
P

i yi ln
yi

zi
for yi, zi � 0,

P
i yi = 1,

P
i zi = 1.

The equality in (b) follows by definition as ⇠(r1:n|ao1:n) :=
Qn

k=1 ⇠(rk|aor<kaok). Finally, (c)
follows by definition of a mixture environment model. Note that a �-BCTW mixture environment
model is a model where ⇠(rk|aor<kaok) = p̂(rk|sra<ksak).

B Dynamics for epidemic processes on contact networks

S E I R
 � �

⇢

Figure 5: SEIRS compartmental model on contact networks with transmission rate = 1�(1��)kt

!
(where � is the contact rate), latency rate �, recovery rate � and loss of immunity rate ⇢.

Recall that the state of the epidemic process on contact networks is given by (Gt, ⇣t) at time t where
Gt = (V, Et) is the temporal graph at time t and ⇣t : V ! {S,E, I, R} ⇥ {1, ⌘1, ⌘2} maps each
node to its label and one of three immunity levels. Let ⇣t(v) = (⇣1,t(v), ⇣2,t(v)) where ⇣1,t maps a
node to its infection status and ⇣2,t maps a node to its immunity level. The agent performs an action
at. Quarantine actions modify the underlying connectivity of the graph Gt by removing any edges
that contain a quarantined node; this leads to the graph at time t+ 1 Gt+1. Vaccinate actions modify
⇣2,t such that vaccinated nodes have updated immunity levels in ⇣2,t+1. The infection status label of
every node evolves according to the following equations:

⌧(⇣1,t+1(v)|⇣1,t(v), st) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

1�(1��)kt

⇣2,t(v)
if ⇣1,t+1(v) = E and ⇣1,t(v) = S

1� 1�(1��)kt

⇣2,t(v)
if ⇣1,t+1(v) = S and ⇣1,t(v) = S

� if ⇣1,t+1(v) = I and ⇣1,t(v) = E

1� � if ⇣1,t+1(v) = E and ⇣1,t(v) = E

� if ⇣1,t+1(v) = R and ⇣1,t(v) = I

1� � if ⇣1,t+1(v) = I and ⇣1,t(v) = I

⇢ if ⇣1,t+1(v) = S and ⇣1,t(v) = R

1� ⇢ otherwise,

(6)

where kt denotes the number of Infectious, connected neighbours that v has at time t.

The observations resemble the testing for an infectious disease with positive + and negative �
outcomes. Recall that the observations on each node are from O = {+,�, ?} where ? indicates the
corresponding individual has unknown/untested status. At time t, node v 2 V emits an observation
according to the following distribution:

⇠
v
t (+|⇣1,t(v) = S) = ↵SµS , ⇠

v
t (+|⇣1,t(v) = E) = ↵EµE ,

⇠
v
t (�|⇣1,t(v) = S) = ↵S(1� µS), ⇠

v
t (�|⇣1,t(v) = E) = ↵E(1� µE),

⇠
v
t (?|⇣1,t(v) = S) = 1� ↵S , ⇠

v
t (?|⇣1,t(v) = E) = 1� ↵E ,

⇠
v
t (+|⇣1,t(v) = I) = ↵IµI , ⇠

v
t (+|⇣1,t(v) = R) = ↵RµR,

⇠
v
t (�|⇣1,t(v) = I) = ↵I(1� µI), ⇠

v
t (�|⇣1,t(v) = R) = ↵R(1� µR),

⇠
v
t (?|⇣1,t(v) = I) = 1� ↵I , ⇠

v
t (?|⇣1,t(v) = R) = 1� ↵R.

(7)

Here, ↵S ,↵E ,↵I ,↵R denote the fraction of Susceptible, Exposed, Infectious and Recovered indi-
viduals, respectively, that are tested on average at each time step. The parameters µS , µE , µI , µR

denote the probability that a node that is Susceptible, Exposed, Infectious, Recovered respectively
tests positive. Table 1 lists the transition and observation model parameters that were used in all
experiments.

� � � ⇢ ↵S ↵E ↵I ↵R µS µE µI µR

0.2 0.3 0.08 0.1 0.1 0.1 0.8 0.05 0.1 0.9 0.9 0.1
Table 1: Transition and observation model parameters.

16

C Extra Experimental Results

a)

b)

Figure 6: a) Experiment 5 � = 1, ⌘1 = 2, ⌘2 = 4. b) Experiment 6 � = 1, ⌘1 = 10, ⌘2 = 20.

Figure 6 depicts the agents behaviour over two experiments with differing vaccination efficacy and
an infection rate weighting of � = 1. With � = 1, an observed positive node is equivalent in cost
to quarantining a node or vaccinating two nodes. In Experiment 5 (Figure 6a)), the agent learns
to perform quarantine and vaccination actions almost equally frequently and slightly more often
that doing nothing. Whilst there is no clear discernible pattern in the agent’s policy and it appears
almost random, the learning curve shows that the agent has learnt to perform better than random. In
Experiment 6 the agent prefers to do nothing most of the time and quarantine/vaccinate less. This
difference between Experiments 5 and 6 can be attributed to the increased efficacy of vaccination
actions in reducing the infection rate throughout an episode. In comparison to Experiments 1 and 2
(Figure 3), where � = 10, the action percentages indicate that the agent is more conservative; the
agent tends to be less active in managing the epidemic and is more likely to do nothing. This difference
in behaviour directly reflects the different cost function between the two sets of experiments.

C.1 Additional Domains

Biased rock paper scissors (RPS). This domain is taken from [30]. Biased RPS is an environment
where the agent repeatedly plays RPS against the environment which has a slight bias in its strategy.
The environment plays randomly unless it won the previous round playing rock. In this case, the
environment will always play rock at the current time step. This bias can be simply captured by a
predicate IsRockAndLoset�1 (h) which returns whether the environment played rock and the agent
lost at the previous time step. A set of 1000 predicates were generated including predicates that
detect whether the nth bit of the suffix of the history equals 1, Su�xN � (= 1)(h), and uninformative
predicates such as returning whether a random bit equals 1.

Stop Heist. The Stop Heist environment is an environment exhibiting history dependency where
the agent acts as the surveillance team for a bank. At every time step, the agent receives a binary
observation representing whether a known suspect arrives at the bank. The suspect’s arrival times are
determined by a Hawkes process. As a Hawkes process is self-exciting, recent arrivals increase the
chance of arriving in the near term. The chance that a suspect performs a heist is also modelled as a
self-exciting process, increasing the more frequently the suspect arrives. The agent has two actions it
can perform: Do Nothing or Stop Suspect. The agent incurs a penalty of -100 if the suspect performs
a heist and the agent chose to Do Nothing. If the agent chooses to Stop Suspect and the suspect was
performing a heist, it receives a reward of 100. If the agent performs Stop Suspect but the suspect
did not plan to perform a heist, it receives a minor penalty of -1. Otherwise, the agent receives 0
reward. This environment requires the agent to capture predicates that maintain some knowledge of
the history of arrivals. To facilitate this, predicates of the following form were provided:

• Percento,n � (� p)(h) for various values of o 2 O, n 2 N and p 2 [0, 1].

Percento,n computes the percentage of times that observation o was received in the past n steps.
(� p) returns whether the provided argument is greater than p. A set of 1000 predicates were generated

17

for various values of n and p as well as including uninformative predicates such as returning whether
a random bit equals 1.

Jackpot. The Jackpot environment is an environment where the agent plays a betting game against
the environment at every time step. At every time step, the agent can choose to either Bet or Pass.
If the agent performs Pass, it receives 0 reward. The environment is initiated with a pre-defined
list of numbers. If the agent chooses to Bet on a time step that is a multiple of a number in the
pre-defined list of numbers, it receives reward 1 with 70% chance. If instead the agent chooses to
Bet on a time step that is not a multiple of a number in the pre-defined list of numbers, then the
agent receives reward -1 with 70% chance. The observation received at every time step is constant
and is uninformative. This environment requires the agent to capture predicates that provide some
knowledge about arithmetic and also be able to count the time steps. Predicates of the following form
were provided:

• Count � IsMultiplej (h) for various values of j 2 N.

Count returns the number of steps that have occurred in the provided history h and IsMultiplej
returns whether the provided argument is a multiple of j. A set of 1000 predicates were generated for
various values of j 2 N as well as including uninformative predicates such as returning whether a
random bit equals 1.

Taxi. The Taxi environment is the well-known environment first introduced in [31]. The agent
acts as a Taxi in a grid world and must move to pick up a passenger and drop the passenger off at
their desired destination. Instead of the 5x5 grid traditionally considered, we consider a 2x5 grid
with no intermediate walls. We also change the reward for dropping the passenger at its destination
successfully to 100. These modifications were made to shrink the planning horizon as well as make
the original problem less sensitive to parameters for the three algorithms tested. Four destination
locations are still used. The predicates available to the agent are suffix predicates that determine
whether different bits of the history sequence are equal to 1. The agent will be able to recover the
original MDP if it captures the suffix predicates that comprise the last observation received.

D Predicates

We assume that the agent has a background theory � consisting of:

• a graph G = (V, E) that captures, either exactly or approximately, the structure of the initial
graph G0 but not the disease status of nodes (the connectivity between people could be
inferred from census data, telecommunication records, contact tracing apps, etc);

• the transition and observation functions of a dynamics model (i.e. Equations 6 and 7 for an
SEIRS model) of the underlying disease but not the parameters. This information would
be provided by experts in the chosen domain, i.e. epidemiologists working on epidemic
modelling.

The agent has access to the following functions:

• Encodei splits the possible range of its argument into 2i equal sized buckets and encodes
its argument by the number of whichever bucket it falls into. If the range is unbounded, it is
first truncated.

• Bit i takes a bit string and returns the ith bit.
• NaiveInfectionRatet,⌫ takes a history sequence h 2 H and computes the infection rate at

time t over the set of nodes ⌫ ✓ V as the observed infection rate plus a constant multiplied
by the number of nodes observed as unknown.

• InfectionRateOfChanget,⌫ takes a history sequence h 2 H and computes the change in
infection rate between timesteps t� 1 and t over the set of nodes ⌫ ✓ V .

• PercentActiona,N takes a history and returns the percentage of time action a was selected
in the last N timesteps.

• ActionSequenceIndicatora1 :k
is an indicator function returning 1 if the last k actions

performed match a1:k and 0 otherwise.

18

• MARewardw takes a history and returns the moving average of the reward over a window
of size w.

• RateOfChange takes two real numbers and computes the ratio between them.
• ParticleFilter✓,M takes a history sequence and approximates the belief state using the

transition and observation models given by ✓ and M particles.
• ParticleInfRate takes a belief state represented by a set of particles and computes the

expected infection rate.

Function composition is handled by the (reverse) composition function

� : (a ! b) ! (b ! c) ! (a ! c)

defined by ((f � g) x) = (g (f x)).

The set of predicates generated using the above functions were of the following form:

(1) NaiveInfectionRatet,⌫ �Encode5 �Bit i � (= 1)(h) for various i , ⌫ ✓ V , t = 1

(2) InfectionRateOfChanget,⌫ �Encode7 �Bit i � (= 1)(h) for various i , ⌫ ✓ V , t = 1

(3) PercentActiona,N �Encode8 �Bit i � (= 1)(h) for all a 2 A and various values of N
(4) ActionSequenceIndicatora1 :k

(h) for various a1 :k , k � 1

(5) �s.RateOfChange(MARewardw1 (s),MARewardw2 (s)) � (� 1)(h) for w1, w2 2 N
(6) ParticleFilter✓,M �ParticleInfRate �Encode5 �Bit i � (= 1)(h) for various ✓,M = 100

The choice of subsets of nodes were limited to 20% percentile ranges of the nodes ranked by
betweenness centrality and degree centrality. Note that retrieving a subset of the bits from an encoded
value essentially selects a range that the encoded value falls within. For example, suppose we have
two bits encoding values from 0 to 3. The largest bit indicates whether the encoded value is greater
than 2 or not.

Table 2 lists the number of each type of predicate that were generated in the initial set. Table 3 details
the type of predicates that were chosen in each experiment.

Predicate type Number generated
(1) 55
(2) 80
(3) 693
(4) 633
(5) 8
(6) 20

Table 2: Number of predicates generated of each type. In total there are 1489 predicates generated.

Predicate Type

Experiment FS Method (1) (2) (3) (4) (5) (6) Total
1 RF-BDD 8 7 17 2 0 0 34
2 RF-BDD 3 9 9 2 0 0 23
3 Random Forest 16 0 6 0 8 0 30
4 Random Forest 10 0 12 0 8 0 30
5 RF-BDD 6 9 9 5 0 0 29
6 RF-BDD 10 4 16 4 0 0 34

Table 3: Number of predicates generated of each type for each experiment.

As can be seen from Table 3, the RF-BDD feature selection method was able to pick out predicates
that provided information about the current infection rate (type (1)), its rate of change (type (2)),
action percentages (type (3)) and a few action sequence indicators (type (4)). This behaviour was
consistent across all experiments where RF-BDD was used.

19

Random Forest feature selection chose predicates that provided information about the current infection
rate (type (1)), action percentages (type (3)), and the reward rate of change (type (5)).

Note that predicates on the infection rate as computed by particle filtering were not selected by either
method. This can be attributed to the particle degeneracy issue that occurs in high dimensional
problems [46]. When the size of the state space is very high dimensional and the number of particles
used is not sufficient, the particle set can collapse to a very small number of points when updated,
resulting in poor estimates.

It is likely that the difference in performance when comparing Experiments 1, 2, 3, and 4 (see
Appendix C stems from the fact that RF-BDD chose type (2) predicates whereas Random Forest
chose type (5) predicates. It is unlikely that type (4) predicates provided much useful information as
the sequences chosen were not insightful and varied across the four experiments. In contrast, type (2)
predicates inform the agent about the infection rate of change, which can provide useful information
about the next state of the epidemic process provided the transition is sufficiently smooth.

E Feature Selection Using Binary Decision Diagrams

x1

x2

x3

0 0

x3

0 0

x2

x3

0 1

x3

0 1

Figure 7: Full binary tree representation of the boolean function f(x1, x2, x3) = 1 if x1 and x3.

x1

x3

0 1

Figure 8: Reduced BDD for the boolean function f(x1, x2, x3) = 1 if x1 and x3.

Figure 7 depicts the full binary tree representation of the boolean function f(x1, x2, x3) =
1 if x1 and x3. Dotted lines indicate a path that is traversed when the boolean variable at the node
equals 0 and solid lines are traversed when the boolean variable equals 1. We will always place
variables xi higher in the tree than variables xj if i < j. Figure 8 depicts the same Boolean function
but in reduced BDD form; as can be seen, the redundant feature x2 has been eliminated.

We now consider the properties of reduced BDDs that make them appropriate for feature extraction.
Every Boolean function f : {0, 1}n ! {0, 1} corresponds to a 2n bit string representing the
function’s output on a canonical ordering of its input. More specifically, let � be the 2n bit string
representing f . Then � starts with f(0, . . . , 0) and continues with f(0, . . . , 0, 1), f(0, . . . , 1, 0),
f(0, . . . , 1, 1), . . ., until f(1, . . . , 1, 1). The 2n bit string is known as a Boolean function’s truth
table. For example, the truth table of f(x1, x2, x3) = 1 if x1 and x3 is 00000101. The truth table

20

also corresponds to the sequence of outputs we would get from the BDD representing the Boolean
function if we traversed the BDD by taking 0 paths before 1 paths. We now define the notion of a
bead.
Definition 3 (Bead). A bead of order n is a truth table � such that there does not exist a string ↵ of
length 2n�1 such that � = ↵↵.

In other words, a bead is a truth table that does not repeat itself at its mid-point. Now note that every
node in a BDD can be identified with a substring of the truth table. Consider the full binary tree in
Figure 7 again. The root node of the BDD can be identified with the full truth table of length 23. The
nodes one layer below correspond to a length 22 partition of of the truth table. The full identification
is shown in Figure 9. Depending on the truth table, nodes in a non-reduced BDD can correspond to
either beads and non-beads. A key property of reduced BDD structures is that they only maintain
nodes corresponding to beads.

00000101

0000

00

0 0

00

0 0

0101

01

0 1

01

0 1

Figure 9: Full binary tree of the f(x1, x2, x3) = 1 if x1 and x3 with nodes identified with corre-
sponding beads.

Theorem 4. Suppose G = (V,E) is a reduced BDD representing a Boolean function f of n variables
with truth table �. Let h be a function mapping all nodes v 2 V to its relevant substring of �. Then
h(v) is a bead for all nodes v 2 V .

Proof. First note that the terminal nodes always correspond to the length 1 beads 0 and 1. We thus
focus on internal nodes. Suppose an internal node v is such that h(v) is not a bead. Then its two
children v0 and v1 found by following paths 0 and 1 respectively have equivalent representations, i.e.
h(v0) = h(v1). This means that the two strings h(v0) and h(v1) are the same length. The substrings
being the same length implies that both nodes are of the same depth in a full tree representation of the
BDD and hence are labelled with the same Boolean variable. Furthermore, having the same substring
also means that the subtrees starting with v0 and v1 as the root are the same. Thus, nodes v0 and v1

are equivalent, contradicting the claim that the BDD is reduced.

The following proposition shows that conditionally redundant features correspond directly to non-
beads in any BDD representation of a given decision rule.
Proposition 2. Let Gx be a BDD representation of the decision rule F r

�,D : S� ⇥A ! {0, 1}. Then
any node in Gx labelled with a conditionally redundant feature will correspond to a non-bead.

Proof. Let �1 = {p1, . . . , pn} be the predicate set and a predicate pi labels nodes on the ith depth of
Gx. Recall that a feature pj is conditionally redundant iff for all s 2 S�1 , F

r
�1,D

(s, a) = F
r
�2,D

(s0, a)
where �2 = �1 \ {pj} and s

0 = s1:j�1sj+1:n.

Suppose that a predicate pj is conditionally redundant. Let a 2 {0, 1}j�1 and b 2 {0, 1}n�j . Since
pj is conditionally redundant, we must have F�1(a0b) = F�2(ab). Similarly, F�1(a1b) = F�2(ab).
Thus, F�1(a0b) = F�1(a1b). Therefore any node labelled by pj has a truth table that repeats a binary
string of length 2j�1 about its midpoint and is thus a non-bead.

21

Theorem 4 guarantees that a BDD reduction procedure will remove all non-beads and Proposition 2
guarantees that conditionally redundant features correspond to non-beads in any BDD representation
of a decision rule. Thus, Theorem 4 and Proposition 2 provide the basis upon which BDD reduction
can be utilised to remove conditionally redundant features. The proof of Theorem 2 follows directly
from combining Proposition 2 and Theorem 4.

Whilst Theorem 2 shows that BDD reduction can remove conditionally redundant features, it is
important to note that the definition of a conditionally redundant feature is dependent upon the
ordering of the predicates. This is part of the motivation for performing RF-BDD.

F Coding MDP Sequences and a CostM Counter-example

F.1 Coding MDP Sequences

To evaluate candidate state abstractions, the �MDP approach ranks mappings based on the code length
of the state-action-reward sequence. For this approach to be well formed, the underlying interaction
sequence must be ergodic: the frequencies of every finite substring of the sequence converge
asymptotically. Consider the set of states {st1 , . . . , stk} transitioned to from a particular state s and
action a. This set of states will be an i.i.d. sequence generated according to ✓

a
s,s0 = P(sti = s

0|s, a).
The state sequence can then be considered a combination of i.i.d. sequences and the probability of
the state sequence conditioned on actions is given by

P(s1:n|a1:n, ✓) =
Y

s,a

tkY

j=t1

P(sj |s, a) =
Y

s,a

tkY

j=t1

✓
a
s,sj =

Y

s,a

Y

s0

�
✓
a
s,s0

�na
s,s0 (8)

In practice, ✓ is unknown and we instead rely on estimates ✓̂. If ✓as,s0 is estimated by a frequency

estimator ✓̂as,s0 =
na
s,s0

na
s

, then the code length of s1:n given a1:n is given by

CL(s1:n|a1:n) = � logP(s1:n|a1:n, ✓̂) = �
X

s,a

X

s0

n
a
s,s0 log(✓̂

a
s,s0) =

X

s,a

CL(✓̂a
s) , (9)

where ✓̂a
s = (✓̂as,s0)s0 and CL(✓̂a

s) = �
P

s0 n
a
s,s0 log(✓̂

a
s,s0) = n

a
sH(na

s/n
a
s). Similarly, the code

length for the reward sequence is given by CL(r1:n|s1:n, a1:n) =
P

s,a,s0 CL(✓̂a
s,s0), where ✓̂a

s,s0 =

(✓̂a,rs,s0)r and CL(✓̂a
s,s0) :=

P
s,a,s0 n

a,r
s,s0 log(✓

a,r
s,s0).

F.2 CostM Counter-example

o o
0

0.1

0.9 0.9

0.1

Figure 10: A diagram illustrating the observation transition probabilities of the environment in the
counter-example.

22

Consider the counter-example presented in Figure 10. The environment emits two observations o, o0
and two rewards 0, 1 with the following distribution:

p(ot|ht�1, at�1) =

⇢
0.9 if ot = ot�1

0.1 otherwise.
if ot 6= ot�1:

p(rt|ht�1, at�1, ot) =

⇢
0.1 if rt = 1

0.9 if rt = 0

if ot = ot�1:

p(rt|ht�1, at�1, ot) =

⇢
0 if rt = 1

1 if rt = 0

Note that the given percept dynamics of the given environment are effectively independent of the
actions performed. Now consider two candidate MDP mappings �0 and �1. For all ht 2 H,

�0(ht) =

⇢
1 if ot�1 6= ot

0 otherwise.
�1(ht) = 0 .

Clearly the mapping �0 is more informative and provides direct indication of the dynamics under
which positive reward is received. Let us consider CostM in the limit normalised by n. For ergodic
sequences, the frequency estimates will converge to the true probabilities. Thus we have

lim
n!1

CostM (n,�)

n
= lim

n!1

CL(s1:n|a1:n) + CL(r1:n|s1:n, a1:n) + CL(�)

n

(a)
= � lim

n!1

X

s,a

X

s0

n
a
s,s0

n
log

✓
n
a
s,s0

na
s

◆
� lim

n!1

X

s,a

X

r

n
ar
s

n
log

✓
n
ar
s

na
s

◆

(b)
= �

X

s,a

p�(s, a)
X

s0

p�(s
0|s, a) log p�(s0|s, a)�

X

s,a

p�(s, a)
X

r

p�(r|s, a) log p�(r|s, a)

(c)
= �

X

s

p�(s)
X

s0

p�(s
0|s) log(p�(s0|s))�

X

s

p�(s)
X

r

p�(r|s) log p�(r|s)

(d)
=

X

s

p�(s)H�(S
0|S = s) +

X

s

p�(s)H�(R|S = s)

Here (a) follows by definition, (b) follows since the frequency estimates converge, (c) follows since
the actions do not affect the state or reward probabilities and (d) uses the definition of conditional
entropy where we subscript by � to indicate that the distribution is under the � mapping.

We can now compute limn!1

CostM (n,�0)
n :

X

s

p�0(s)H�0(S
0|S = s) = p�0(s = 0)H�0(S

0|S = 0) + p�0(s = 1)H�0(S
0|S = 1)

= 0.9 · 0.47 + 0.1 · 0.47
= 0.47

X

s

p�0(s)H�0(R|S = s) = p�0(S = 0)H�0(R|S = 0) + p�0(S = 1)H�0(R|S = 1)

= 0.9 · 0 + 0.1 · 0.47
= 0.047

23

We thus have that limn!1

CostM (n,�0)
n = 0.47 + 0.047 = 0.517. For �1 we have

X

s

p�1(s)H�1(S
0|S = s) = 0

X

s

p�1(s)H�1(R|S = s) = p�1(S = 0)H�1(R|S = 0) + p�1(S = 1)H�1(R|S = 1)

= 0.08

We then have limn!1

CostM (n,�1)
n = 0.08. Thus the uninformative mapping �1 minimises CostM

even though it is less predictive of the rewards. As mentioned earlier, this phenomenon occurs due to
the heavy weighting given to the code length of the state sequence. Even if the model is no good
for predicting reward, a simple transition model can cause decreases in the state sequence code
length that can offset increases in the reward sequence code length. This issue will be exacerbated
in environments where the reward signal is sparse; the cost associated with being unable to predict
a sparse reward is negligible relative to the modest reduction in complexity of the state transition
model.

24

	Introduction
	Background and Related Work
	The General Reinforcement Learning Setting
	AIXI agent and its Monte-Carlo approximation
	State Abstraction and Feature Reinforcement Learning
	Knowledge Representation and Reasoning Formalism

	The -AIXI-CTW Agent
	Shrinking the Model Class via Feature Selection
	-Binarized Context Tree Weighting
	Expectimax Approximation With UCT

	Experiments
	Simple Domains
	Epidemic Control over Contact Networks
	Results

	Conclusion
	-BCTW Results
	Dynamics for epidemic processes on contact networks
	Extra Experimental Results
	Additional Domains

	Predicates
	Feature Selection Using Binary Decision Diagrams
	Coding MDP Sequences and a CostM Counter-example
	Coding MDP Sequences
	CostM Counter-example

