
Do Residual Neural Networks discretize Neural
Ordinary Differential Equations?

Michael E. Sander
ENS, CNRS
Paris, France

michael.sander@ens.fr

Pierre Ablin
Université Paris-Dauphine, CNRS

Paris, France
pierreablin@gmail.com

Gabriel Peyré
ENS, CNRS
Paris, France

gabriel.peyre@ens.fr

Abstract

Neural Ordinary Differential Equations (Neural ODEs) are the continuous analog
of Residual Neural Networks (ResNets). We investigate whether the discrete
dynamics defined by a ResNet are close to the continuous one of a Neural ODE.
We first quantify the distance between the ResNet’s hidden state trajectory and the
solution of its corresponding Neural ODE. Our bound is tight and, on the negative
side, does not go to 0 with depth N if the residual functions are not smooth with
depth. On the positive side, we show that this smoothness is preserved by gradient
descent for a ResNet with linear residual functions and small enough initial loss. It
ensures an implicit regularization towards a limit Neural ODE at rate 1

N , uniformly
with depth and optimization time. As a byproduct of our analysis, we consider the
use of a memory-free discrete adjoint method to train a ResNet by recovering the
activations on the fly through a backward pass of the network, and show that this
method theoretically succeeds at large depth if the residual functions are Lipschitz
with the input. We then show that Heun’s method, a second order ODE integration
scheme, allows for better gradient estimation with the adjoint method when the
residual functions are smooth with depth. We experimentally validate that our
adjoint method succeeds at large depth, and that Heun’s method needs fewer layers
to succeed. We finally use the adjoint method successfully for fine-tuning very
deep ResNets without memory consumption in the residual layers.

1 Introduction

Problem setup. Residual Neural Networks (ResNets) [20, 21] keep on outperforming state of the art
in computer vision [46, 6], and more generally skip connections are widely used in a various range of
applications [42, 14]. A ResNet of depth N iterates, starting from x0 ∈ Rd, xn+1 = xn + f(xn, θ

N
n)

and outputs a final value xN ∈ Rd where f is a neural network called residual function. In this work,
we consider a simple modification of this forward rule by letting explicitly the residual mapping
depend on the depth of the network:

xn+1 = xn +
1

N
f(xn, θ

N
n). (1)

On the other hand, a Neural ODE [8] uses a neural network φΘ(x, s), that takes time s into account,
to parameterise a vector field [24] in a differential equation, as follows,

dx

ds
= φΘ(x(s), s) with x(0) = x0, (2)

and outputs a final value x(1) ∈ Rd, the solution of Eq.(2). The Neural ODE framework enables learn-
ing without storing activations (the xn’s) using the adjoint state method, hence significantly reducing
the memory usage for backpropagation that can be a bottleneck during training [43, 34, 48, 16].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Input of the network

N
um

b
er

of
la

ye
rs

Neural ODE unlike

Input of the network

N
um

b
er

of
la

ye
rs

Neural ODE like

Input of the network

N
um

b
er

of
la

ye
rs

Neural ODE unlike

Input of the network

N
um

b
er

of
la

ye
rs

Neural ODE unlike

Figure 1: Trajectory of ResNets with 300 layers.
Left: we learn x → x2

2
, trajectories are smooth

and do not intersect. Right: we learn x → −x2

2
,

trajectories are not smooth and intersect.

Neural ODEs also provide a theoretical framework
to study deep learning models from the continu-
ous viewpoint, using the arsenal of ODE theory
[40, 25, 41]. Importantly, they can also be seen
as the continuous analog of ResNets. Indeed, con-
sider for N an integer, the Euler scheme for solving
Eq. (2) with time step 1

N starting from x0 and iter-
ating xn+1 = xn + 1

NφΘ(xn,
n
N). Under mild as-

sumptions on φΘ, this scheme is known to converge
to the true solution of Eq. (2) asN goes to +∞. Also,
if Θ = (θNn)i∈[N−1] and φΘ(.,

n
N) = f(., θNn), then

the ResNet equation Eq. (1) corresponds to a Euler
discretization with time step 1

N of Eq. (2). However,
for a given ResNet with fixed depth N and weights,
the activations in Eq. (1) can be far from the solution
of Eq. (2). This is illustrated in Figure 1 where we
show that a deep ResNet can easily break the topol-
ogy of the input space, which is impossible for a
Neural ODE. In this paper, we study the link between ResNets and Neural ODEs. We make the
following contributions:

• In Section 3, we propose a framework to define a set of associated Neural ODEs for a given ResNet.
We control the error between the discrete and the continuous trajectory. We show that without
additional assumptions on the smoothness with depth of the residual functions, this error does not
go to 0 as N → ∞ (Prop. 1). However, we show that under some assumptions on the weight
initialization, the trained parameters of a deep linear ResNet uniformly (with respect to both depth
and training time) approach a Lipschitz function as the depth N of the network goes to infinity,
at speed 1

N (Prop. 2 and Th. 1). This result highlights an implicit regularization towards a limit
Neural ODE.

• In Section 4, we investigate a simple technique to train ResNets without storing activations. Inspired
by the adjoint method, we propose to recover the approximated activations during the backward
pass by using a reverse-time Euler scheme. We control the error for recovering the activations and
gradients with this method. We show that if the residuals of the ResNet are bounded and Lipschitz
continuous, with constants independent of N , then this error scales in O(1

N) (Prop. 3). Hence,
the adjoint method needs a large number of layers to lead to correct gradients (Prop. 4). We then
consider a smoothness-dependent reconstruction with Heun’s method to bound the error between
the true and approximated gradient by a term that depends on 1

N times the smoothness in depth
of the residual functions, hence guaranteeing a better approximation when successive weights are
close one to another (Prop. 5 and 6).

• In Section 5, on the experimental side, we show that the adjoint method fails when training a
ResNet 101 on ImageNet. Nevertheless, we empirically show that very deep ResNets pretrained
with tied weights (constant weights: θNn = θ ∀n) can be refined -using our adjoint method- on
CIFAR-10 and ImageNet by untying their weights, leading to a better test accuracy. Last, but not
least, we show using a ResNet architecture with heavy downsampling in the first layer that our
adjoint method succeeds at large depth and that Heun’s method leads to a better behaved training,
hence confirming our theoretical results.

2 Background and related work

Neural ODEs. Neural ODEs are a class of implicit deep learning models defined by an ODE
where a neural network parameterises the vector field [44, 8, 40, 39, 45, 29, 36, 24]. Given an input
x0, the output of the model is the solution of the ODE (2) at time 1. From a theoretical viewpoint,
the expression capabilities of Neural ODEs have been investigated in [12, 41, 25] and the Neural
ODE framework has been used to better understand the dynamics of more general architectures that
include residual connections such as Transformers [38, 27]. Experimentaly, Neural ODEs have been
successful in a various range of applications, among which physical modelling [18, 11] and generative
modeling [8, 17]. However, there are many areas where Neural ODEs have failed to replace ResNets,
for instance for building computer vision classification models. Neural ODEs fail to compete with

2

ResNets on ImageNet, and to the best of our knowledge, previous works using Neural ODEs on
ImageNet consider weight-tied architectures and only achieves the same accuracy as a ResNet18 [50].
It has also been shown that Neural ODEs sometimes do not admit a continuous interpretation at all
[32].

Implicit Regularization of ResNets towards ODEs. Recent works have studied the link between
ResNets and Neural ODEs. In [9], the authors carry experiments to better understand the scaling
behavior of weights in ResNets as a function of the depth. They show that under the assumption that
there exists a scaling limit θ(s) = Nβ lim θN⌊Ns⌋ for the weights of the ResNets (with 0 < β < 1)
and if the scale of the ResNet is 1

Nα with 0 < α < 1 and α + β = 1, then the hidden state of the
ResNet converges to a solution of a linear ODE. In this paper, we are interested in the case where
α = 1, which seems more natural since it is the scaling that appears in Euler’s method with step
1
N . In addition, we do not assume the existence of a scaling limit θ(s) = lim θN⌊Ns⌋. In subsection
3.2, we demonstrate the existence of this scaling limit in the linear setting, under some assumptions.
The recent work [10] shows results regarding linear convergence of gradient descent in ResNets and
prove the existence of an 1

2 -Hölder continuous scaling limit as N → ∞ with a scaling factor for
the residuals in 1√

N
which is different from ours (1

N). In contrast, we show that our limit function
is Lipschitz continuous, which is a stronger regularity. This is to be linked with the recent work
of [31], where the authors show that whereas the 1√

N
scaling corresponds to the proper one for

standard i.i.d. initializations, 1
N is the proper scaling for smooth initialization to obtain non-trivial

behaviour (other choices lead to explosion or to identity [31]). More generally, recent works have
proved the convergence of gradient descent training of ResNet when the initial loss is small enough.
This include ResNet with finite width but arbitrary large depth [15, 26] and ResNet with both infinite
width and depth [28, 3]. These convergence proofs leverage an implicit bias toward weights with
small amplitudes. They however leave open the question of convergence of individual weights as
depth increases, which we tackle in this work in the linear case. This requires showing an extra bias
toward weights with small variations across depth.

Memory bottleneck in ResNets. Training deep learning models involve graphics processing units
(GPUs) where memory is a practical bottleneck [43, 34, 48]. Indeed, backpropagation requires to
store activations at each layer during the forward pass. Since samples are processed using mini
batches, this storage can be important. For instance, with batches of size 128, the memory needed to
compute gradients for a ResNet 152 on ImageNet is about 22 GiB. Note that the memory needed
to store the parameters of the model is only 220 MiB, which is negligible compared to the memory
needed to store the activations. Thus, designing deep invertible architectures where one can recover
the activations on the fly during the backpropagation iterations has been an active field in recent years
[16, 37, 23]. In this work, we propose to approximate activations using a reverse-time Euler scheme,
as we detail in the next subsection.

Adjoint Method. Consider a loss function L(xN) for the ResNet (1). The backpropagation
equations [5] are

∇θN
n−1

L =
1

N
[∂θf(xn−1, θ

N
n−1)]

⊤∇xnL, ∇xn−1L = [I +
1

N
∂xf(xn−1, θ

N
n−1)]

⊤∇xnL. (3)

Now, consider a loss function L(x(1)) for the Neural ODE (2). The adjoint state method [35, 8] gives

∇ΘL = −
∫ 0

T

∂Θ[φΘ(x(s), s)]
⊤∇x(s)Lds, −∇̇x(s)L(s) = [∂xφΘ(x(s), s)]

⊤∇x(s)L. (4)

Note that if Θ = (θNn)n∈[N−1] and φΘ(.,
n
N) = f(., θNn), then Eq. (3) corresponds to a Euler

discretization with time step 1
N of Eq. (4). The key advantage of using Eq. (4) is that one can recover

x(s) on the fly by solving the Neural ODE (2) backward in time starting from x(1). This strategy
avoids storing the forward trajectory (x(s))s∈[0,1] and leads to a O(1) memory footprint [8]. In
this work, we propose to use a discrete adjoint method by using a reverse-time Euler scheme for
approximately recovering the activations in a ResNet (Section 4). Contrarily to other models such as
RevNets [16] (architecture change) or Momentum ResNets [37] (forward rule modification) which
rely on an exactly invertible forward rule, the proposed method requires no change at all in the
network, but gives approximate gradients.

3

Notations. For k ∈ N, Ck is the set of functions f : Rd → Rd k times differentiable with continuous
kth differential. If f ∈ C1, ∂xf(x)[y] is the differential of f at x evaluated in y. ForK ⊂ Rd compact,
∥.∥ a norm and f a continuous function on Rd, we denote ∥f∥K∞ = supx∈K ∥f(x)∥.

3 ResNets as discretization of Neural ODEs

In this section we first show that without further assumptions, the distance between the discrete
trajectory and the solution of associated ODEs can be constant with respect to the depth of the
network if the residual functions lack smoothness with depth. We then present a positive result by
studying the linear case where we show that, under some hypothesis (small loss initialization and
initial smoothness with depth), the ResNet converges to a Neural ODE as the number of layers goes
to infinity. We show that this convergence is uniform with depth and optimization time.

3.1 Distance to an ODE

We first define associated Neural ODEs for a given ResNet.
Definition 1. We say that a neural network φΘ : Rd × R → Rd smoothly interpolates the ResNet
Eq. (1). if φΘ is smooth and ∀n ∈ {0, ..., N − 1}, φΘ(.,

n
N) = f(., θNn).

Note that we omit the dependency of Θ in N to simplify notations. For example, for a given
ResNet, there are two natural ways to interpolate it with a Neural ODE, either by interpolating the
residuals, or by interpolating the weights. Indeed, one can interpolate the residuals with φΘ(·, s) =
(n + 1 − Ns)f(., θNn) + (Ns − n)f(·, θNn+1) when s ∈ [nN ,

n+1
N], or interpolate the weights with

φΘ(·, s) = f(·, (n+1−Ns)θNn +(Ns−n)θNn+1) for s ∈ [nN ,
n+1
N]. If θNn = θN does not depend on

n, then both interpolations are identical and one can simply consider φΘ(x, s) = f(x, θN), ∀(x, s).
We now consider any smooth interpolation φΘ for the ResNet (1) and a Euler scheme for the Neural
ODE (2) with time step 1

N .

Proposition 1 (Approximation error). We suppose that φΘ is C1, and L-Lipschitz with respect to x,
uniformly in s. Note that this implies that the solution of Eq. (2) is well defined, unique, C2, and that
the trajectory is included in some compact K ⊂ Rd. Denote CN := ∥∂sφΘ + ∂xφΘ[φΘ]∥K×[0,1]

∞ .
Then one has for all n: ∥xn − x(n

N)∥ ≤ eL−1
2NL CN if L > 0 and ∥xn − x(n

N)∥ ≤ CN

2N if L = 0.

For a full proof, see appendix A.1. Note that this result extends Theorem 3.2 from [49] to the non-
autonomous case: our bound depends on ∂sφΘ. Finally, our bound is tight. Indeed, for φΘ(x, s) =

as+ b for a, b ∈ Rd, we get ∂sφΘ + ∂xφΘ[φΘ] = a, L = 0 and ∥x(1)− xN∥ = ∥a∥
2N .

Implication. The tightness of our bound shows that closeness to the ODE solution is not guar-
anteed, because we do not know whether CN/N → 0. Indeed, consider first the residual inter-
polation φΘ(x, s) =

(
(n+ 1−Ns)f(x, θNn) + (Ns− n)f(x, θNn+1)

)
)1s∈[n

N ,n+1
N] and the simple

case where ∂xφΘ[φΘ] = 0. We get ∂sφΘ(x, s) = N(f(x, θNn+1) − f(x, θNn))1s∈[n
N ,n+1

N], which
corresponds to the discrete derivative. It means that although there is a 1

N factor in our bound, the
time derivative term – without further regularity with depth of the weights, which is at the heart of
subection 3.2 – usually scales with N : CN

N = O(1). As a first example, consider the simple case
where f(x, θNn) = n. This gives xN = x0 +

(N−1)
2 while the integration of the Neural ODE (2)

leads to x(1) = x0 +
N
2 because φΘ(x, s) = Ns, so the ∥xN − x(1)∥ = 1

2 is not small. Intuitively,
this shows that weights cannot scale with depth when using the residual interpolation. Now, con-
sider the weight interpolation, θNn = (−1)n and suppose f is written as f(x, θ) = θ2. This gives
φΘ(., s) = (2Ns− (2n+ 1))2 when s ∈ [nN ,

n+1
N]. Integrating, we get x(1) = 1

3 while the output
of the ResNet is xN = 1. Hence ∥xN − x(1)∥ = 2

3 is also not small, even though the weights are
bounded. Thus, one needs additional regularity assumptions on the weights of the ResNet to obtain a
Neural ODE in the large depth limit. Intuitively if the weights are initialized close from one another
and they are updated using gradient descent, they should stay close from one another during training,
since the gradients in two consecutive layers will be similar, as highlighted in Eq. (3). Indeed, we
see that if xn and xn+1 are close, then ∇xn

L and ∇xn+1
L are close, and then if θNn and θNn+1 are

close, ∇θN
n
L and ∇θN

n+1
L are also close. In subsection 3.2, we formalize this intuition and present a

4

positive result for ResNets with linear residual functions. More precisely, we show that with proper
initialization, the difference between two successive parameters is in 1

N during the entire training.
Furthermore, we show that the weights of the network converge to a smooth function, hence defining
a limit Neural ODE.

3.2 Linear Case

As a further step towards a theoretical understanding of the connections between ResNets and Neural
ODEs we investigate the linear setting, where the residual functions are written f(x, θ) = θx for any
θ ∈ Rd×d. It corresponds to a deep matrix factorization problem [51, 4, 2, 1]. As opposed to these
previous works, we study the infinite depth limit of these linear ResNets with a focus on the learned
weights. We show that, if the weights are initialized close one to another, then at any training time,
the weights stay close one to another (Prop. 2) and importantly, they converge to a smooth function
of the continuous depth s as N → ∞ (Th. 1). All the proofs are available in appendix A.

Setting. Given a training set (xk, yk)k∈[n] in Rd, we solve the regression problem of mapping xk
to yk with a linear ResNet, i.e. f(x, θ) = θx, of depth N and parameters (θN1 , . . . , θ

N
N). The ResNet

therefore maps xk to ΠNxk where ΠN :=
∏N

n=1(Id +
θN
n

N) = (Id +
θN
N

N) · · · (Id + θN
1

N). It is trained
by minimizing the average errors ∥ΠNxk − yk∥22, which is equivalent to the deep matrix factorization
problem:

argmin(θN
n)i∈[N−1]

L(θN1 , . . . , θ
N
N) := ∥ΠN −B∥2Σ, (5)

where ∥A∥2Σ = Tr(AΣAT), Σ is the empirical covariance matrix of the data: Σ := 1
n

∑n
k=1 xkx

⊤
k ,

and B := 1
n

∑n
k=1 ykx

⊤
k Σ

−1. As is standard, we suppose that Σ is non degenerated. We denote by
M > 0 (resp. m > 0) its largest (resp. smallest) eigenvalue.

Gradient. We denote ΠN
:n := (Id +

θN
N

N) · · · (Id +
θN
n+1

N) and ΠN
n: := (Id +

θN
n−1

N) · · · (Id +
θN
1

N)

and write the gradient ∇N
n (t) = ∇θN

n
L(θN1 (t), ..θNn (t), .., θNN (t)). The chain rule gives N∇N

n =

ΠN⊤
:n (ΠN−B)ΣΠN⊤

n: . Intuitively, asN goes to +∞, the products ΠN , ΠN
:n and ΠN

n: should converge
to some limit, hence we see that N∇N

n scale as 1. Therefore, we train θNn by the rescaled gradient
flow dθN

n

dt (t) = −N∇N
n (t) to minimize L and denote ℓN (t) = L(θN1 (t), . . . , θNN (t)).

Two continuous variables involved. Our results involve two continuous variables: s ∈ [0, 1] is the
depth of the limit network and corresponds to the time variable in the Neural ODE, whereas t ∈ R+

is the gradient flow time variable. As is standard in the analysis of convergence of gradient descent
for linear networks, we consider the following assumption:

Assumption 1. Suppose that at initialisation one has
√
ℓN (0) < m

4
√
2Me3

and ∥θNn (0)∥ ≤ 1
4 .

Assumption 1 is the classical assumption in the literature [51, 3] to prove linear convergence of our
loss and that the θNn (t)’s stay bounded with t. Note that this bounded norm assumption implies that
1
N θn(0) = O(1

N). This is in contrast with classical initialization scales in the feedforward case where
the initialization only depends on width [19]. However this initialization scale is coherent with those
of ResNets for which the scale has to depend on depth [47, 31]. In addition, the experimental findings
in [9] suggest that the weights in ResNets scale in 1

Nβ with β > 0.

We now prove an implicit regularization result showing that if at initialization, in addition to assump-
tion 1, the weights are close from one another (O(1

N)), they will stay at distance O(1
N): the discrete

derivative stay in O(1
N), which is a central result to consider the infinite depth limit in our Th. 1.

Proposition 2 (Smoothness in depth of the weights). Suppose assumption 1. Suppose that there
exists C0 > 0 independent of n and N such that ∥θNn+1(0) − θNn (0)∥ ≤ C0

N . Then, ∀t ∈ R+,
∥θNn (t)∥ < 1

2 , and θNn (t) admits a limit ψN
n as t→ +∞. Moreover, there exists C > 0 such that

∀t ∈ R+, ∥θNn+1(t)− θNn (t)∥ ≤ C
N .

For a full proof, see appendix A.2. The inequality ∥θNn+1(t)− θNn (t)∥ ≤ C
N corresponds to a discrete

Lipschitz property in depth. Indeed, for s ∈ [0, 1] and t ∈ R+, let ψN (s, t) = θN⌊Ns⌋(t). Then

5

our result gives ∥ψN (n+1
N , t) − ψN (n

N , t)∥ ≤ C
N which implies that ∥ψN (s1, t) − ψN (s2, t)∥ ≤

C|s1−s2|+ C
N . We now turn to the infinite depth limit N → ∞. Th. 1 shows that there exists a limit

function ψ such that ψN converges uniformly to ψ in depth s and optimization time t. Furthermore,
this limit is Lipschitz continuous in (s, t). In addition, we show that the ResNet ΠN converges to the
limit Neural ODE defined by ψ that is preserved along the optimization flow, exhibiting an implicit
regularization property of deep linear ResNets towards Neural ODEs.
Theorem 1 (Existence of a limit map). Suppose assumption 1, ∥θNn+1(0)− θNn (0)∥ ≤ C0

N for some
C0 > 0 and that there exists a function ψinit : [0, 1] → Rd×d such that ψN (s, 0) → ψinit(s) in ∥.∥∞
uniformly in s as N → ∞, at speed 1

N . Then the sequence (ψN)N∈N uniformly converges (in ∥.∥∞
w.r.t (s, t)) to a limit ψ Lipschitz continuous in (s, t) and ∥ψ − ψN∥∞ = O(1

N). Furthermore, ΠN

uniformly converges as N → ∞ to the mapping x0 → x1 where x1 is the solution at time 1 of the
Neural ODE dx

ds (s) = ψ(s, t)x(s) with initial condition x0.

0 5 10 15

Training iteration

10

100

1000

2000

5000

9000

D
ep

th
N

‖ΨN(t, .)−Ψ(t, .)‖2

10−5

10−3

10−1

Figure 2: L2 norm ∥ΨN (t, .)−Ψ(t, .)∥2 (w.r.t
depth s) for different training iterations t (hori-
zontal axis) and different depth N (vertical axis).
As predicted by Th. 1, this distance goes to 0 as
N → +∞.

We illustrate Th. 1 in Figure 2. The assumption on
the existence of ψinit ensures a convergence at speed
1
N to a Neural ODE at optimization time 0. Note that
for instance, the constant initialization θNn (0) = θ0 ∈
Rd×d satisfies this hypothesis. In order to prove Th.
1, for which a full proof is presented in appendix A.5,
we first present a useful lemma: the weights of the
network have at least one accumulation point.
Lemma 1 (Existence of limit functions). For s ∈
[0, 1] and t ∈ R+, let ψN (s, t) = θN⌊Ns⌋(t). Under
the assumptions of Prop. 2, there exists a subse-
quence ψσ(N) and ψσ : [0, 1] × R+ → Rd×d Lips-
chitz continuous with respect to both parameters s
and t such that ψσ(N) → ψσ uniformly (in ∥.∥∞ w.r.t
(s, t)).

Lemma 1 is proved in appendix A.3, and gives us the existence of a Lipschitz continuous accumulation
point, but not the uniqueness nor the convergence speed. For the uniqueness, we show in appendix
A.5 that, under the assumptions of Th. 1, one has that any accumulation point of ψσ satisfies the limit
Neural ODE

∂tψσ(., t) = F (ψσ(., t)), ψσ(., 0) = ψinit(., 0),

and show that F satisfies the hypothesis of the Picard–Lindelöf theorem, hence showing the unique-
ness of ψ. We finally show that, as intuitively expected, trajectories of the weights of our linear
ResNets of depth N and 2N remain close one to each other. This gives the convergence speed in
Th. 1. See appendix A.4 for a proof.
Lemma 2 (Closeness of trajectories). Suppose asumption 1, ∥θNn+1(0) − θNn (0)∥ ≤ C0

N for some
C0 > 0 and that ∥θNn (0)− θ2N2n (0)∥ = O(1

N). Then ∀t ∈ R+, ∥θNn (t)− θ2N2n (t)∥ = O(1
N).

4 Adjoint Method in Residual Networks

In this section, we focus on a particularly useful feature of Neural ODEs and its applicability to
ResNets: their memory free backpropagation thanks to the adjoint method. We consider a ResNet
(1) and try to invert it using reverse mode Euler discretization of the Neural ODE (2) when φΘ is
any smooth interpolation of the ResNet. This corresponds to defining x̃N = xN and iterate for
n ∈ {N − 1, . . . 0}:

x̃n = x̃n+1 −
1

N
f(x̃n+1, θ

N
n). (6)

We then use the approximated activations (x̃n)n∈[N] as a proxy for the true activations (xn)n∈[N] to
compute gradients without storing the activations:

∇̃θN
n−1

L =
1

N
[∂θf(x̃n−1, θ

N
n−1)]

⊤∇x̃n
L, ∇x̃n−1

L = [I +
1

N
∂xf(x̃n−1, θ

N
n−1)]

⊤∇x̃n
L. (7)

The approximate recovery of the activations in Eq. (6) is implementable for any ResNet: there is no
need for particular architecture or forward rule modification. The drawback is that the recovery is

6

only approximate. We devote the remainder of the section to the study of the corresponding errors and
to error reduction using second order Heun’s method. We first show that, if f(., θNn) and its derivative
are bounded by a constant independent of N , then the error for reconstructing the activations in the
backward scheme (6) is O(1

N). Proofs of the theoretical results are in appendix A.

Error for reconstructing activations. We consider the following assumption:

Assumption 2. There exists constants Cf and Lf such that ∀N ∈ N, ∀n ∈ [N − 1], ∥f(., θNn)∥∞ ≤
Cf and ∥∂x[f(., θNn)]∥∞ ≤ Lf .

Then the error made by reconstructing the activations is in O(1
N).

Proposition 3 (Reconstruction error). With assumption 2, one has ∥xn−x̃n∥ ≤ (eLf −1)Cf

N +O(1
N2).

Prop. 3 shows a slow convergence of the error for recovering activations. This bound does not
depend on the discrete derivative f(., θNn+1)− f(., θNn), contrarily to the errors between the ResNet
activations and the trajectory of the interpolating Neural ODE in Prop 1. In summary, even though
regularity in depth is necessary to imply closeness to a Neural ODE, it is not necessary to recover
activations, and neither gradients, as we now show.

Error in gradients when using the adjoint method. We use the result obtained in Prop. 3 to
derive a bound in O(1

N2) on the error made for computing gradients using formulas (7).

Proposition 4 (Gradient error). Suppose assumption 2. Suppose in addition that ∂xf(., θ) admits a
Lipschitz constant Ldf , ∂θf(., θ) admits a Lipschitz constant ∆, and an upper bound Ω, all of which
are independent of θ. Then one has ∥∇̃θN

n
L−∇θN

n
L∥ = O(1

N2).

For a proof, see appendix A.7, where we give the dependency of our upper bound as a function of
∆, Lf , Cf ,Ω and Ldf .

Smoothness-dependent reconstruction with Heun’s method. The bounds in Prop. 3 and 4 do not
depend on the smoothness with respect to the weights of the f(., θNn). Only the magnitude of the
residuals plays a role in the correct recovery of the activations and estimation of the gradient. Hence,
there is no apparent benefit of having such a network behave like a Neural ODE. We now turn to
Heun’s method, a second order integration scheme, and show that in this case smoothness in depth of
the network improves activation recovery. A HeunNet [30] of depth N with parameters θN1 , . . . , θ

N
N

iterates for n = 0, . . . , N − 1:

yn = xn +
1

N
f(xn, θ

N
n) and xn+1 = xn +

1

2N
(f(xn, θ

N
n) + f(yn, θ

N
n+1)). (8)

These forward iterations can once again be approximately reversed by doing for n = N − 1, . . . , 0:

ỹn = x̃n+1 −
1

N
f(x̃n+1, θ

N
n+1) and x̃n = x̃n+1 −

1

2N
(f(x̃n+1, θ

N
n+1) + f(ỹn, θ

N
n)), (9)

which also enables approximated backpropagation without storing activations. When discretizing an
ODE, Heun’s method has a better O(1

N2) error, hence we expect a better recovery than in Prop. 3.
Indeed, we have:

Proposition 5 (Reconstruction error - Heun’s method). Assume assumption 2. Denote by L′
f the

Lipschitz constant of x 7→ 1
2 (f(x, θ

N
n+1) + f(x− 1

N f(x, θ
N
n+1), θ

N
n)), by Lθ the Lispchitz constant

of θ 7→ f(·, θ) and by L′
θ that of θ 7→ ∂xf(., θ). Let C ′

f = 1
4L

′
θLθ. Finally, define ∆N

θ :=

maxn ∥θNn+1 − θNn ∥2. Using Heun’s method, we have: ∥xn − x̃n∥ ≤ (e
L′
f −1)C′

f

L′
fN

×∆N
θ +O(1

N2).

This bound is very similar to that in proposition 3, with an additional factor ∆N
θ . Hence, we see that

under the condition that ∆N
θ = O(1

N), the reconstruction error ∥xn − x̃n∥ is in O(1
N2). In the linear

case, we have proven under some hypothesis in Prop. 2 that such a condition on ∆N
θ holds during

training. Consequently, the smoothness of the weights of a HeunNet in turns helps it recover the
activations, while it is not true for a ResNet. This provides better guarantees on the error on gradients:

7

Proposition 6 (Gradient error - Heun’s method). Suppose assumption 2. Suppose in addition that
∂xf(., θ) admits Lipschitz constant, ∂θf(., θ) admits a Lipschitz constant and an upper bound, all of

which are independent of θ. Then one has ∥∇̃θN
n
L−∇θN

n
L∥ = O(

∆N
θ

N2 + 1
N3).

Just like with activation, we see that Heun’s method allows for a better gradient estimation when
the weights are smooth with depth. Equivalently, for a fixed depth, this proposition indicates that
HeunNets have a better estimation of the gradient with the adjoint method than ResNets which
ultimately leads to better training and overall better performances by such memory-free model.

5 Experiments

We now present experiments to investigate the applicability of the results presented in this paper. We
use Pytorch [33] and Nvidia Tesla V100 GPUs. Our code is available on GitHub. All the experimental
details are given in appendix B, and we provide a recap on ResNet architectures in appendix C.

0 20 40 60
Training epochs

25%
30%

40%

60%

T
ra

in
er

ro
r

0 20 40 60
Training epochs

25%
30%

40%

60%

T
es

t
er

ro
r

Adjoing Method

Usual Backprop

2 4 8 10 12
Number of blocks per layer

50%

60%

70%

80%
85%
90%
95%

T
es

t
ac

cu
ra

cy

Usual scaling

Scaling 1/N

(a) (b) (c)

Figure 3: (a) Test accuracy on CIFAR-10 as a function of the number of blocks in each layer of the ResNet.
Within each layer, weights are tied (3 runs). (b) Failure of the adjoint method with a ResNet-101 on ImageNet
(the approximated gradients are only used in the third layer of the network, that contains 23 blocks). (c) Relative
error between the approximated gradients using adjoint method and the true gradient, whether using a ResNet
or a HeunNet. Each point corresponds to one parameter.

5.1 Validation of our model with step size 1
N

The ResNet model (1) is different from the classical ResNet because of
the 1

N term. This makes the model depth aware, and we want to study
the impact of this modification on the accuracy on CIFAR and ImageNet.

Table 1: Test accuracy (ResNet-101)
ResNet-101 Ours

CIFAR-10 95.5± 0.1% 95.5± 0.1%

ImageNet 77.8% 77.9%

We first train a ResNet-101 [20] on CIFAR-10 and Im-
ageNet using the same hyper-parameters. Experimental
details are in appendix B and results are summarized
in table 1, showing that the explicit addition of the step
size 1

N does not affect accuracy. In strike contrast, the
classical ResNet rule without the scaling 1

N makes the network behave badly at large depth, while
it still works well with our scaling 1

N , as shown in Figure 3 (a). On ImageNet, the scaling 1
N also

leads to similar test accuracy in the weight tied setting: 72.5% with 4 blocks per layer, 73.2% with 8
blocks per layer and 72% with 16 blocks per layer (mean over 2 runs).

5.2 Adjoint method

New training strategy. Our results in Prop. 3 and 4 assume uniform bounds in N
on our residual functions and their derivatives. We also formally proved in the linear
setting that these assumptions hold during the whole learning process if the initial loss
is small. A natural idea to start from a small loss is to consider a pretrained model.

Table 2: Test accuracy (ResNet)
Before F.T. After F.T

CIFAR-10 95.25± 0.2 % 95.65± 0.1 %

ImageNet 73.1 % 75.1 %

In addition, we also want our pretrained model to
verify assumption 2 so we consider the following
setup. On CIFAR (resp. ImageNet) we train a ResNet
with 4 (resp. 8) blocks in each layer, where weights
are tied within each layer. A first observation is that
one can transfer these weights to deeper ResNets without significantly affecting the test accuracy of

8

https://github.com/michaelsdr/resnet_nodes

the model: it remains above 94.5% on CIFAR-10 and 72% on ImageNet. We then untie the weights
of our models and refine them. More precisely, for CIFAR, we then transfer the weights of our model
to a ResNet with 4, 4, 64 and 4 blocks within each layer and fine-tune it only by refining the third
layer, using our adjoint method. We display in table 2 the median of the new test accuracy, over 5
runs for the initial pretraining of the model. For ImageNet, we transfer the weights to a ResNet with
100 blocks per layer and fine-tune the whole model with our adjoint method for the residual layers.
Results are summarized in table 2. To the best of our knowledge, this is the first time a Neural-ODE
like ResNet achieves a test-accuracy of 75.1% on ImageNet.

Failure in usual settings. In Prop. 3 we showed under assumption 2, that is if the residuals are
bounded and Lipschitz continuous with constant independent of the depth N , then the error for
computing the activations backward would scale in 1

N as well as the error for the gradients (Prop. 4).
First, this results shows that the architecture needs to be deep enough, because it scales in 1

N : for
instance, we fail to train a ResNet-101 [20] on the ImageNet dataset using the adjoint method on its
third layer (depth 23), as shown in Figure 3 (b).

Success at large depth. To further investigate the applicability of the adjoint method for training
deeper ResNets, we train a simple ResNet model on the CIFAR data set. First, the input is processed
by a 5 × 5 convolution with 16 out channels, and the image is down-sampled to a size 10 × 10.

2 4 8 16 32 64

Depth

15%

20%

30%

40%

50%

60%

T
es

t
er

ro
r

ResNet + Adjoint Method

ResNet + Backprop

HeunNet + Adjoint Method

HeunNet + Backprop

Figure 4: Comparison of the best test errors
as a function of depth when using Euler or
Heun’s discretization method with or without
the adjoint method.

We then apply a batch norm, a ReLU and iterate relation
(1) where f is a pre-activation basic block [21]. We con-
sider the zero residual initialisation: the last batch norm of
each basic block is initialized to zero. We consider differ-
ent values for the depth N and notice that in this setup, the
deeper our model is, the better it performs in term of test
accuracy. We then compare the performance of our model
using a ResNet (forward rule (1)) or a HeunNet (forward
rule (8)). We train our networks using either the classical
backpropagation or our corresponding proxys using the
adjoint method (formulas (6) and (9)). We display the final
test accuracy (median over 5 runs) for different values of
the depth N in Figure 4. The true backpropagation gives
the same curves for the ResNet and the HeunNet. Ap-
proximated gradients, however, lead to a large test error at
small depth, but give the same performance at large depth,
hence confirming our results in Prop. 4 and 6. In addition,
at fixed depth, the accuracy when training a HeunNet with
the adjoint method is better (or similar at depths 2, 32 and
64) than for the ResNet with the adjoint method. This is to
be linked with the two different bounds in Prop. 4 and 6:
for the HeunNet, smoothness with depth, which is expected at large depth, according to the theoretical
results for the linear case (Prop. 2), implies a faster convergence to the true gradients for the HeunNet
than for the ResNet. We finally validate this convergence in Figure 3 (c): the deeper the architecture,
the better the approximation on the gradients. In addition, the HeunNet approximates the true gradient
better than the ResNet.

Conclusion, limitations and future works

We propose a methodology to analyze how well a ResNet discretizes a Neural ODE. The positive
results predicted by our theory in the linear case are also observed in practice with real architectures:
one can successfully use the adjoint method to train ResNets (or even more effectively HeunNets)
using very deep architectures on CIFAR, or fine-tune them on ImageNet, without memory cost in the
residual layers. However, we also show that for large scale problems such as ImageNet classification
from scratch, the adjoint method fails at usual depths.

Our work provides a theoretical guarantee for the convergence to a Neural ODE in the linear setting
under a small loss initialization. A natural extension would be to study the non-linear case. In
addition, the adjoint method is time consuming, and an improvement would be to propose a cheaper
method than a reverse mode traversal of the architecture for approximating the activations.

9

Acknowledgments

This work was granted access to the HPC resources of IDRIS under the allocation 2020-
[AD011012073] made by GENCI. This work was supported in part by the French government
under management of Agence Nationale de la Recherche as part of the “Investissements d’avenir”
program, reference ANR19-P3IA-0001 (PRAIRIE 3IA Institute). This work was supported in part by
the European Research Council (ERC project NORIA). M. S. thanks Mathieu Blondel and Zaccharie
Ramzi for helpful discussions.

References
[1] Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit

acceleration by overparameterization. In International Conference on Machine Learning, pages
244–253. PMLR, 2018.

[2] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019.

[3] Raphaël Barboni, Gabriel Peyré, and François-Xavier Vialard. Global convergence of resnets:
From finite to infinite width using linear parameterization. arXiv preprint arXiv:2112.05531,
2021.

[4] Peter Bartlett, Dave Helmbold, and Philip Long. Gradient descent with identity initializa-
tion efficiently learns positive definite linear transformations by deep residual networks. In
International conference on machine learning, pages 521–530. PMLR, 2018.

[5] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of machine learning
research, 18, 2018.

[6] Irwan Bello, William Fedus, Xianzhi Du, Ekin Dogus Cubuk, Aravind Srinivas, Tsung-Yi Lin,
Jonathon Shlens, and Barret Zoph. Revisiting resnets: Improved training and scaling strategies.
Advances in Neural Information Processing Systems, 34, 2021.

[7] Haim Brezis and Haim Brézis. Functional analysis, Sobolev spaces and partial differential
equations, volume 2. Springer, 2011.

[8] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in neural information processing systems, pages 6571–6583,
2018.

[9] Alain-Sam Cohen, Rama Cont, Alain Rossier, and Renyuan Xu. Scaling properties of deep
residual networks. In International Conference on Machine Learning, pages 2039–2048. PMLR,
2021.

[10] Rama Cont, Alain Rossier, and RenYuan Xu. Convergence and implicit regularization properties
of gradient descent for deep residual networks. arXiv preprint arXiv:2204.07261, 2022.

[11] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley
Ho. Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2019.

[12] Christa Cuchiero, Martin Larsson, and Josef Teichmann. Deep neural networks, generic
universal interpolation, and controlled odes. SIAM Journal on Mathematics of Data Science,
2(3):901–919, 2020.

[13] Jean-Pierre Demailly. Analyse numérique et équations différentielles-4ème Ed. EDP sciences,
2016.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

10

[15] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pages
1675–1685. PMLR, 2019.

[16] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual
network: Backpropagation without storing activations. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems. Curran Associates, Inc., 2017.

[17] Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud.
Ffjord: Free-form continuous dynamics for scalable reversible generative models. arXiv
preprint arXiv:1810.01367, 2018.

[18] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In
Advances in Neural Information Processing Systems, pages 15353–15363, 2019.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks, 2016.

[22] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015.

[23] Jörn-Henrik Jacobsen, Arnold W.M. Smeulders, and Edouard Oyallon. i-revnet: Deep invertible
networks. In International Conference on Learning Representations, 2018.

[24] Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

[25] Qianxiao Li, Ting Lin, and Zuowei Shen. Deep learning via dynamical systems: An approxima-
tion perspective. arXiv preprint arXiv:1912.10382, 2019.

[26] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. On the linearity of large non-linear models: when
and why the tangent kernel is constant. Advances in Neural Information Processing Systems,
33, 2020.

[27] Yiping Lu, Zhuohan Li, Di He, Zhiqing Sun, Bin Dong, Tao Qin, Liwei Wang, and Tie-Yan Liu.
Understanding and improving transformer from a multi-particle dynamic system point of view.
arXiv preprint arXiv:1906.02762, 2019.

[28] Yiping Lu, Chao Ma, Yulong Lu, Jianfeng Lu, and Lexing Ying. A mean field analysis of deep
resnet and beyond: Towards provably optimization via overparameterization from depth. In
International Conference on Machine Learning, pages 6426–6436. PMLR, 2020.

[29] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. In International Conference
on Machine Learning, pages 3276–3285. PMLR, 2018.

[30] Mehrdad Maleki, Mansura Habiba, and Barak A Pearlmutter. Heunnet: Extending resnet using
heun’s method. In 2021 32nd Irish Signals and Systems Conference (ISSC), pages 1–6. IEEE,
2021.

[31] Pierre Marion, Adeline Fermanian, Gérard Biau, and Jean-Philippe Vert. Scaling resnets in the
large-depth regime. arXiv preprint arXiv:2206.06929, 2022.

[32] Katharina Ott, Prateek Katiyar, Philipp Hennig, and Michael Tiemann. Resnet after all: Neural
{ode}s and their numerical solution. In International Conference on Learning Representations,
2021.

11

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[34] Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and Jian Sun. Large kernel matters–
improve semantic segmentation by global convolutional network. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4353–4361, 2017.

[35] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC press, 1987.

[36] Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
Journal of Mathematical Imaging and Vision, pages 1–13, 2019.

[37] Michael E. Sander, Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. Momentum residual
neural networks. In Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 9276–9287. PMLR, 18–24
Jul 2021.

[38] Michael E Sander, Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. Sinkformers: Transform-
ers with doubly stochastic attention. In Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research,
pages 3515–3530. PMLR, 18–24 Jul 2022.

[39] Qi Sun, Yunzhe Tao, and Qiang Du. Stochastic training of residual networks: a differential
equation viewpoint. arXiv preprint arXiv:1812.00174, 2018.

[40] Y Teh, Arnaud Doucet, and E Dupont. Augmented neural odes. Advances in Neural Information
Processing Systems 32 (NIPS 2019), 32(2019), 2019.

[41] Takeshi Teshima, Koichi Tojo, Masahiro Ikeda, Isao Ishikawa, and Kenta Oono. Universal ap-
proximation property of neural ordinary differential equations. arXiv preprint arXiv:2012.02414,
2020.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[43] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin Xu,
and Tim Kraska. Superneurons: Dynamic gpu memory management for training deep neural
networks. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 41–53, 2018.

[44] E Weinan. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 5(1):1–11, 2017.

[45] E Weinan, Jiequn Han, and Qianxiao Li. A mean-field optimal control formulation of deep
learning. Research in the Mathematical Sciences, 6(1):10, 2019.

[46] Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, 2021.

[47] Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. Advances
in neural information processing systems, 30, 2017.

[48] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international
conference on computer vision, pages 2223–2232, 2017.

[49] Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, Sekhar Tatikonda, Xenophon Papademetris, and
James Duncan. Adaptive checkpoint adjoint method for gradient estimation in neural ode. In
International Conference on Machine Learning, pages 11639–11649. PMLR, 2020.

[50] Juntang Zhuang, Nicha C Dvornek, Sekhar Tatikonda, and James S Duncan. Mali: A memory
efficient and reverse accurate integrator for neural odes. arXiv preprint arXiv:2102.04668, 2021.

[51] Difan Zou, Philip M Long, and Quanquan Gu. On the global convergence of training deep
linear resnets. arXiv preprint arXiv:2003.01094, 2020.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] , all the
assumptions are stated.

(b) Did you include complete proofs of all theoretical results? [Yes] , the proofs are in the
supplementary material.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] , in appendix
B

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] , in appendix B

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] , see Figure 4 and table 2

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] for Pytorch, CIFAR,

ImageNet
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

APPENDIX

In Section A we give the proofs of all the propositions, lemmas and the theorem presented in this
work.

Section B gives details for the experiments in the paper.

We also give a recap on ResNet architectures in Section C.

A Proofs

A.1 Proof of Prop. 1

Our proof is inspired by [13].

Proof. We denote h = 1
N and sn = nh. We define

εn = x(sn+1)− x(sn)− hφΘ(x(sn), sn).

We have that φΘ(x(sn), sn) = ẋ(sn).

Taylor’s formula gives
x(sn + h) = x(sn) + hẋ(sn) +R1(h)

with ∥R1(h)∥ ≤ 1
2h

2∥ẍ∥∞. This implies that

∥εn∥ ≤ 1

2
h2∥ẍ∥∞.

The true error we are interested in is the global error en = x(sn)− xn. One has

en+1 − en = x(sn+1)− x(sn) + xn − xn+1 = εn + h(φΘ(x(sn), sn)− φΘ(xn, sn)).

Because φΘ is L-Lipschitz, this gives ∥en+1 − en∥ ≤ ∥εn∥+ hL∥en∥ and hence

∥en+1∥ ≤ (1 + hL)∥en∥+ ∥εn∥.

Because h = 1
N , we have

∥en+1∥ ≤ (1 +
L

N
)∥en∥+

1

2N2
∥ẍ∥∞.

this implies from the discrete Gronwall lemma, since e0 = 0 that

∥en∥ ≤ eL − 1

2NL
∥ẍ∥∞.

Note that we have ẍ = ∂sφΘ + ∂xφΘ[φΘ]. This gives the desired result.

A.2 Proof of Prop. 2

Proof. Recall that we denote ΠN =
∏N

n=1(Id +
θN
n

N), ΠN
:n = (Id +

θN
N

N) . . . (Id +
θN
n+1

N) and

ΠN
n: = (Id +

θN
n−1

N) . . . (Id +
θN
1

N). We denote ∇N
n = ∇θN

n
L. One has

N∇N
n = ΠN⊤

:n (ΠN −B)ΣΠN⊤
n: .

One has as in [51] that

σ2
max(Π

N
n:)σ

2
max(Π

N
:n)∥Π−B∥2ΣM ≥ N2∥∇N

n ∥2 ≥ σ2
min(Π

N
n:)σ

2
min(Π

N
:n)∥Π−B∥2Σm.

where σmax(A) (resp. σmin(A)) denotes the largest (resp. smallest) singular value of A. We first
show that ∀t ∈ R+, ∥θNn (t)∥ < 1

2 . Denote

t∗ = inf{t ∈ R+,∃n ∈ [N − 1], ∥θNn (t)∥ ≥ 1/2}.

14

One has that ∀t ∈ [0, t∗], σ2
min(Π

N
:n) ≥ (1− 1

2N)2(N−n) and σ2
min(Π

N
n:) ≥ (1− 1

2N)2(n−1) which
implies that

N2∥∇N
n (t)∥2 ≥ 2(1− 1

2N
)2N−2ℓN (t)m ≥ 2

e
ℓN (t)m.

Similarly one has N2∥∇N
n (t)∥2 ≤ 2eℓN (t)M . To summarize, we have the PL conditions for

t ∈ [0, t∗]:
2

e
mℓN (t) ≤ N2∥∇N

n (t)∥2 ≤ 2eMℓN (t).

As a consequence, one has

dℓN

dt
(t) = −N

N∑
n=1

∥∇N
n (t)∥2 ≤ −2

e
mℓN (t)

and thus ℓN (t) ≤ e−
2
emtℓN (0).

We have θNn (t∗) = θNn (0) +N
∫ t∗

0
∇N

n and ∥∇N
n ∥ ≤

√
2eM
N

√
ℓN so that

∥θNn (t∗)∥ ≤ ∥θNn (0)∥+
√
2eM

∫ t∗

0

e−
1
emt

√
ℓN (0)dt <

1

4
+

1

4
< 1/2.

This is absurd by definition of t∗ and thus shows that ∀t ∈ R+, ∥θNn (t)∥ < 1
2 . We also see that ∇N

n is
integrable so that θNn (t) admits a limit as t→ ∞.

We now show our main result. Note that we have the relationship (I+
θN
n+1

N)⊤∇n+1 = ∇n(I+
θN
n

N)⊤

so that

∇N
n+1 −∇N

n = (I +
θN⊤
n+1

N
)−1(

∇N
n θ

N⊤
n − θN⊤

n+1∇N
n

N
).

Because ∥(I +A)−1∥ ≤ 2 if ∥A∥ ≤ 1
2 this gives ∥∇N

n+1 −∇N
n ∥ ≤ 2

N ∥∇N
n ∥. Integrating we get

∥θNn+1(t)− θNn (t)∥ ≤ ∥θNn+1(0)− θNn (0)∥+ 2

∫ t

0

∥∇N
n ∥.

This gives

∥θNn+1(t)− θNn (t)∥ ≤ O(
1

N
) +

1

N
2

∫ t

0

√
2eMℓN (0)e−

1
emtdt = O(

1

N
),

which is the desired result.

A.3 Proof of lemma 1

Proof. We adapt a variant of the Ascoli–Arzelà theorem [7]. We showed in Prop. 2 that there exists
C > 0 that only depends on the initialization such that, ∀t ≥ 0,∀i ∈ [N − 1],

∥θNn+1(t)− θNn (t)∥ ≤ C

N
.

This implies that

∥θNj (t)− θNi (t)∥ ≤ C
|j − i|
N

.

We also have that

∥θNn (t1)− θNn (t2)∥ = ∥N
∫ t2

t1

∇N
n ∥ ≤ C ′|t1 − t2|

with C ′ ≥ 0.

Its follows that ∥ψN (s1, t1)−ψN (s2, t2)∥ ≤ ∥ψN (s1, t1)−ψN (s1, t2)∥+∥ψN (s1, t2)−ψN (s2, t2)∥
and thus

(i) ∥ψN (s1, t1)− ψN (s2, t2)∥ ≤ C ′|t1 − t2|+ C|s1 − s2|+
C

N
.

15

We also have
(ii) ∀N ∈ N, ∥ψN∥∞ ≤ 1

2
.

These two properties are essential to prove our lemma. We proceed as follows.

1) First, we denote ((sj , tj))j∈N = (Q ∩ [0, 1]) × Q+. Since we have the uniform bound (ii), we
extract using a diagonal extraction procedure a subsequence ψσ(N) such that ∀j ∈ N,

ψσ(N)(sj , tj) → ψ(sj , tj)

(we denote the limit ψ(sj , tj)).

2) We show the convergence ∀s ∈ [0, 1] and t ∈ R+.

Let ε > 0, s ∈ [0, 1] and t ∈ R+. Since ((sj , tj))j∈N is dense in [0, 1]× R+, there exists k ∈ N such
that |sk − s| < ε and |tk − t| < ε. Let N,M ∈ N.

We have

∥ψσ(N)(s, t)−ψσ(M)(s, t)∥ ≤ ∥ψσ(N)(s, t)−ψσ(N)(sk, tk)∥+∥ψσ(N)(sk, tk)−ψσ(M)(sk, tk)∥+
∥ψσ(M)(sk, tk)− ψσ(M)(s, t)∥
so that

∥ψσ(N)(s, t)−ψσ(M)(s, t)∥ ≤ 2Cε+2C ′ε+
C

σ(N)
+

C

σ(M)
+ ∥ψσ(N)(sk, tk)−ψσ(M)(sk, tk)∥.

Since (ψσ(N)(sk, tk))N∈N is a Cauchy sequence, this gives for N,M big enough that
∥ψσ(N)(s)− ψσ(M)(s, t)∥ ≤ (2(C + C ′) + 1)ε

and thus (ψσ(N)(s, t)) is a Cauchy sequence in Rd×d. As such, it converges and one has
ψσ(N)(s, t) → ψ(s, t).

3) Recall that one has

∥ψσ(N)(s1, t1)− ψσ(N)(s2, t2)∥ ≤ C|s1 − s2|+
C

σ(N)
+ C ′|t1 − t2|

so that letting N → ∞ gives
∥ψ(s1, t1)− ψ(s2, t2)∥ ≤ C|s1 − s2|+ C ′|t1 − t2|

and ψ is Lipschitz continuous.

4) Let us finally show that the convergence is uniform in (s, t). Let s ∈ [0, 1], ε > 0 and δ > 0 such
that if |s− u| < δ, ∀t ∈ R+,

∥ψN (s, t)− ψN (u, t)∥ ≤ ε+
C

N
and ∥ψ(s, t)− ψ(u, t)∥ ≤ ε. There exists a finite set of {sj}kj=1 such that

[0, 1] ⊂ ∪k
j=1]sj −

δ

2
, sj +

δ

2
[.

For our s, there exists j ∈ {1, . . . , k} such that ∥s− sj∥ ≤ δ.

There also exists t0 ≥ 0 such that if t ≥ t0,

∥ψσ(N)(s, t)− ψσ(N)(s, t0)∥ ≤
√
2eM

∫ t

t0

e−
1
emz

√
ℓN (0)dz ≤ ε.

We have:

∥ψσ(N)(s, t0) − ψ(s, t0)∥ ≤ ∥ψσ(N)(s, t0) − ψσ(N)(sj , t0)∥ + ∥ψσ(N)(sj , t0) − ψ(sj , t0)∥ +
∥ψ(sj , t0)− ψ(s, t0)∥
and thus:

∥ψσ(N)(s, t0) − ψ(s, t0)∥ ≤ 2ε + C
σ(N) + maxj∈{1,...,k} ∥ψσ(N)(sj , t0) − ψ(sj , t0)∥ ≤ 4ε for N

big enough.

Finally, ∥ψσ(N)(s, t) − ψ(s, t)∥ ≤ ∥ψσ(N)(s, t) − ψσ(N)(s, t0)∥ + ∥ψσ(N)(s, t0) − ψ(s, t0)∥ +
∥ψ(s, t0)− ψ(s, t)∥ ≤ 6ε

for N big enough, independently of t and s. This concludes the proof.

16

A.4 Proof of lemma 2

Proof. We group terms 2 by 2 in the product Π2N . One has (I + θ2N
2n

2N)(I +
θ2N
2n−1

2N) = (I +
θ̃N
n

N) with

θ̃Nn = (
θ2N2n + θ2N2n−1

2
+
θ2N2n θ

2N
2n−1

4N
),

So that Π2N = Π̃N where Π̃N is defined as ΠN with θ̃Nn . One has by Prop. 2 that

θ̃Nn = θ2N2n +O(
1

N
).

We will show that θ̃Nn = θNn +O(1
N).

Let DN
n = ∥θNn − θ̃Nn ∥ and DN = 1

N

∑N
n=1Dn. We have

2DN
n Ḋ

N
n = −N⟨∇N

n − ∇̃N
n , θ

N
n − θ̃Nn ⟩.

In addition, we have

N(∇N
n − ∇̃N

n) = ΠN⊤
:n (ΠN −B)ΣΠN⊤

n: − Π̃N⊤
:n (Π̃N −B)ΣΠ̃N⊤

n:

so that

N(∇N
n −∇̃N

n) = (ΠN
:n−Π̃N

:n)
⊤(ΠN−B)ΣΠN⊤

n: +Π̃N⊤
:n (ΠN−B)Σ(ΠN

n:−Π̃N
n:)

⊤+Π̃N⊤
:n (ΠN−Π̃N)ΣΠ̃N⊤

n: .

Note also that since the Jacobian of (θ1, .., θN) → ΠN is

J(θ1,..,θN)(H1, ..,HN) =
1

N

N∑
n=1

ΠN
:nHnΠ

N
n:

and the θNn ’s are such that ∥θNn ∥ ≤ 1
2 , there exists a constant K > 0 such that ∥ΠN

:n − Π̃N
:n∥ ≤ KDN .

Again because ∥θNn ∥ ≤ 1
2 and ∥θ̃Nn ∥ ≤ 1

2 , this gives

N∥∇n − ∇̃n∥ ≤ αKDN
√
ℓN + β∥ΠN − Π̃N∥

for some constants α, β. Finally, we have

ḊN
n ≤ 1

2
(αKDN

√
ℓN + β∥ΠN − Π̃N∥)

which gives ∀t

2DN
n (t) ≤ αK

∫ t

0

DN
√
ℓN + β

∫ t

0

∥ΠN − Π̃N∥+O(
1

N
). (10)

We now focus on the β term involving ∥ΠN − Π̃N∥. Denote ∆N = ΠN − Π̃N . One has

∆̇N = − 1

N
(

N∑
n=1

ΠN
:nΠ

N⊤
:n (ΠN −B)ΣΠN⊤

n: ΠN
n: + Π̃N

:nΠ̃
N⊤

:n (Π̃N −B)ΣΠ̃N⊤
n: Π̃N

n:),

and equivalently:

∆̇N = − 1
N (

∑N
n=1[Π

N
:nΠ

N⊤
:n − Π̃N

:nΠ̃
N⊤
:n](ΠN −B)ΣΠN⊤

n: ΠN
n: +Π̃N

:nΠ̃
N⊤
:n (ΠN −B)Σ[ΠN⊤

n: ΠN
n: −

Π̃N⊤
n: Π̃N

n:] + Π̃N
:nΠ̃

N⊤
:n (ΠN − Π̃N)ΣΠ̃N⊤

n: Π̃N
n:).

Note that similarly to ∥ΠN − Π̃N∥ there exist K ′ such that ∥ΠN
:nΠ

N⊤
:n − Π̃N

:nΠ̃
N⊤
:n ∥ ≤ K ′D so that

∥∆̇N +
1

N

N∑
n=1

Π̃N
:nΠ̃

N⊤
:n ∆N Π̃N⊤

n: Π̃N
n:∥ ≤ aK ′D

√
ℓN .

Let us denote by H the operator:

H(∆) =
1

N

N∑
n=1

Π̃N
:nΠ̃

N⊤
:n ∆ΣΠ̃N⊤

n: Π̃N
n:.

17

Our (PL) conditions precisely write −∆⊤H(∆) ≤ −λ∥∆∥2 for some λ > 0. Let φN = 1
2∥∆

N∥2.
One has

dφN

dt
= ⟨∆N , ∆̇N +H(∆N)⟩ − ⟨∆N , H(∆N)⟩

so that
dφN

dt
≤ (aK ′D

√
ℓN)

√
2φN − 2λφN .

Since ∥∆N∥ =
√

2φN we get

d∥∆N∥
dt

=
dφN

dt√
2φN

.

We finally have
d∥∆N∥

dt
≤ aK ′DN

√
ℓN − λ∥∆N∥.

Integrating, we get

∥∆N (t)∥ ≤ −λ
∫ t

0

∥∆N∥+
∫ t

0

aK ′DN
√
lN +O(

1

N
)

and then ∫ t

0

∥∆N∥ ≤ 1

λ

∫ t

0

aK ′DN
√
lN +O(

1

N
).

Plugging this into (10) leads to

0 ≤ 2DN
n (t) ≤ αK

∫ t

0

DN
√
ℓN +

β

λ

∫ t

0

aK ′DN
√
ℓN +O(

1

N
).

Let n(t) be such that DN
n(t)(t) = maxi∈[1,N]D

N
i (t). We have

0 ≤ 2DN
n(t)(t) ≤ µ

∫ t

0

DN
n(τ)(τ)

√
ℓN (τ)dτ +O(

1

N
)

for some constant µ > 0. And since
√
ℓN is integrable, we get by Gronwall’s inequality that

DN
n = O(1

N) ∀n ∈ [1, N]. We showed:

θ2N2n = θNn +O(
1

N
).

A.5 Proof of Th. 1

We first prove the following lemma 3 before proving Th. 1.
Lemma 3. Under the assumptions of Th. 1, let σ be such that ψσ(N) → ψσ uniformly (in ∥.∥∞ w.r.t
(s, t)). Then one has Πσ(N)(t) → Π(t) uniformly (in t) where Π(t) maps x0 to the solution at time 1
of the Neural ODE dx

ds = ψσ(s, t)x(s) with initial condition x0.

Proof. Consider for x0 ∈ Rd with ∥x0∥ = 1 the discrete scheme

xn+1 = xn +
1

σ(N)
θσ(N)
n (t)xn,

the ODE
dx

ds
= ψσ(s, t)x(s),

and the Euler scheme with time step 1
σ(N) for its discretization

yn+1 = yn +
1

σ(N)
ψσ(

n

σ(N)
, t)yn.

18

We know by Prop. 1, since x0 has unit norm that

∥x(n

σ(N)
)− yn∥ ≤ e

1
2 − 1

σ(N)
∥∂sψσ(., t) + ψ2

σ(., t)∥K×[0,1]
∞

where K is a compact that contains all the trajectory starting from any unit norm initial condition.
Since ∀t ∈ R+, ∥∂sψσ(s, t)∥ ≤ C and ∥ψσ(s, t)

2∥ ≤ 1
2 , there exists C̃ > 0 and independent of t

such that

∥x(n

σ(N)
)− yn∥ ≤ C̃

σ(N)

Now, let en = yn − xn. We have

en+1 = en(1 +
1

σ(N)
ψσ(

n

σ(N)
, t)) +

1

σ(N)
(ψσ(

n

σ(N)
, t)− ψσ(N)(

n

σ(N)
, t))xn.

Since ∥θNn ∥ ≤ 1
2 and x0 has unit norm, there exists M > 0 independent of x0 such that, ∀n and N ,

∥xn∥ ≤M . Thus

∥en+1∥ ≤ ∥en∥(1 +
1

2σ(N)
) +

1

σ(N)
sup

(s,t)∈[0,1]×R+

∥ψσ(s, t)− ψσ(N)(s, t)∥M.

The fact that sup(s,t)∈[0,1]×R+
∥ψσ(s, t)− ψσ(N)(s, t)∥ → 0 (uniform convergence of ψσ(N) to ψσ)

along with the discrete Gronwall’s lemma leads to ∥en∥ = o(1) independent of t and x0. More
precisely,

sup
t∈R+,x0∈Rd,∥x0∥=1

∥Πσ(N)(t)x0 −Π(t)x0∥ → 0

as N → ∞. We obtain the uniform convergence with t.

We can now prove our Th. 1.

Proof. Consider (ψσ(N))N a sub-sequence of (ψN)N as in lemma 1 that converges to some ψσ .

1) We first prove the uniqueness of the limit.

We want to show that ψσ does not depend on σ. This will imply the uniqueness of any accumulation
point of the relatively compact sequence (ψN)N and thus its convergence.

We have ∀s ∈ [0, 1],

∂tψσ(N)(s, t) = −Π
σ(N)⊤
:⌊σ(N)s⌋(t)(Π

σ(N)(t)−B)Π
σ(N)⊤
⌊σ(N)s⌋:(t).

As N → ∞, we have thanks to lemma 3 that the right hand term converges uniformly to

−Π⊤
:s(t)(Π(t)−B)Π⊤

s:(t)

where Π maps x0 to the solution at time 1 of the Neural ODE dx
ds = ψσ(s, t)x(s) with initial

condition x0, Π:s(t) maps x0 to the solution at time s of the Neural ODE dx
ds = ψσ(s, t)x(s)

with initial condition x0 and Πs:(t) maps x0 to the solution at time 1 − s of the Neural ODE
dx
ds = ψσ(s, t)x(s) with initial condition x0.

This uniform convergence makes it possible to consider the limit ODE as N → ∞:

∂tψσ(., t) = F (ψσ(., t)), ψσ(., 0) = 0d×d (11)

where ∀s ∈ [0, 1],
F (ψσ(s, t)) = −Π⊤

:s(t)(Π(t)−B)Π⊤
s:(t).

We now show that F is Lipschitz continuous which will guarantee uniqueness through the Pi-
card–Lindelöf theorem. Recall that we have ∀(s, t) ∈ [0, 1]× R+:

∥ψσ(s, t)∥ ≤ 1

2
.

19

Let ψ1, ψ2 with ∥ψ1(s, t)∥ ≤ 1
2 and ∥ψ2(s, t)∥ ≤ 1

2 and Π1(t), Π2(t) the corresponding flows.

Let x0 in Rd with unit norm, x1 (resp. x2) be the solutions of dx
ds = ψ1(s, t)x(s) (resp. dx

ds =
ψ2(s, t)x(s)) with initial condition x0. Let y = x1 − x2.

One has Π1(t)x0 = x1(1) and Π2(t)x0 = x2(1). One has ẏ = ψ1x1 −ψ2x2 = ψ2y+(ψ1 −ψ2)x1.
Hence, since y(0) = 0, ∥y(s)∥ ≤

∫ s

0
∥ψ2∥∥y∥+ ∥ψ1 − ψ2∥∞|∥x1∥∞, we have

∥y(s)∥ ≤ 1

2
∥y(s)∥+ ∥ψ1 − ψ2∥∞.∥Π1(t)∥

and since ∀t ∈ R+, ∥Π1(t)∥ ≤ 2e we get

∥Π1(t)x0 −Π2(t)x0∥ = ∥y(1)∥ ≤ α∥ψ1 − ψ2∥∞
for some α > 0. The same arguments go for Π:s and Πs:.

Since we only consider maps ψσ such that ∥ψσ(s, t)∥ ≤ 1
2 , this implies that the product is also

Lipschitz and thus F is Lipschitz. This guarantees the uniqueness of a solution ψ to the Cauchy
problem and we have that ψN → ψ uniformly.

2) We now turn to the convergence speed.

We have ∥ψ2N − ψN∥ ≤ D
N for some D > 0 thanks to lemma 2. For k ∈ N, we have that

∥ψ2kN − ψN∥ ≤
k−1∑
i=0

∥ψ2i+1N − ψ2iN∥ ≤ D

N

k−1∑
i=0

1

2i
≤ 2D

N
.

Letting k → ∞ finally gives ∥ψ − ψN∥ ≤ 2D
N .

A.6 Proof of Prop. 3

Proof. We denote rn = x̃n − xn.

One has rN = 0 and

rn = x̃n+1 −
1

N
f(x̃n+1, θ

N
n)− xn+1 +

1

N
f(xn, θ

N
n),

that is
rn = rn+1 +

1

N
(f(xn+1 −

1

N
f(xn, θ

N
n), θNn)− f(x̃n+1, θ

N
n)).

Since

f(xn+1 −
1

N
f(xn, θ

N
n), θNn) = f(xn+1, θ

N
n)− 1

N
∂xf(xn+1, θ

N
n)[f(xn, θ

N
n)] +O(

1

N2
)

this gives

rn = rn+1 +
1

N
(f(xn+1, θ

N
n)− f(x̃n+1, θ

N
n))− 1

N2
∂xf(xn+1, θ

N
n)[f(xn, θ

N
n)] +O(

1

N3
).

Denoting
KN = sup

n∈[N−1]

∥∂xf(., θNn)∥K∞∥f(., θNn)∥K∞,

we have the following inequality:

∥rn∥ ≤ (1 +
Lf

N
)∥rn+1∥+

1

N2
KN +O(

1

N3
)

and since rN = 0, the discrete Gronwall lemma leads to ∥rn∥ ≤ eLf −1
LfN

KN +O(1
N2). In addition,

one has KN ≤ LfCf so that

∥rn∥ ≤ eLf − 1

N
Cf +O(

1

N2
).

20

A.7 Proof of Prop. 4

Proof. 1) We first control the error made in the gradient with respect to activations.

Denote
gn = ∇x̃n

L−∇xn
L.

One has using formulas (3) and (7) that

gn = gn+1 +
1

N
(∂xf(x̃n, θ

N
n)− ∂xf(xn, θ

N
n))⊤∇x̃n+1

L+
1

N
∂xf(xn, θ

N
n)⊤gn+1.

Since
∥∂xf(xn, θNn)⊤gn+1∥ ≤ Lf∥gn+1∥

and because
∥(∂xf(x̃n, θNn)− ∂xf(xn, θ

N
n))⊤∇x̃n+1

L∥ ≤ Ldf∥x̃n − xn∥g,
where g is a bound on ∇x̃n+1

L, we conclude by using Prop. 3 and the discrete Gronwall’s lemma.

2) We can now control the gradients with respect to the parameters θNn ’s.

Denote
tn = ∇̃θN

n
L−∇θN

n
L.

We have
Ntn = −[∂θf(xn, θ

N
n)− ∂θf(x̃n, θ

N
n)]⊤∇xn

L− [∂θf(x̃n, θ
N
n)]⊤gn.

Hence N∥tn∥ ≤ Lθ∥xn − x̃n∥g + Cθ∥gn∥ where g is a bound on ∇xn
L.

Using our bound on ∥gn∥ and Prop. 3 we get

N∥tn∥ ≤ Lθ(e
Lf − 1)gCf

N
+

(eLf − 1)(eLf − 1)CfLdfgCθ

LfN
+O(

1

N2
)

and thus
tn = O(

1

N2
).

A.8 Proof of Prop. 5

In the following, we let for short fn(x) = f(x, θNn), and we define

φn(x) =
1

2

(
fn(x) + fn+1(x+

1

N
fn(x))

)
and ψn(x) =

1

2

(
fn+1(x) + fn(x− 1

N
fn+1(x))

)
(12)

so that Heun’s forward and backward equations are

xn+1 = xn +
1

N
φn(xn) and x̃n = x̃n+1 −

1

N
ψn(x̃n+1).

We have the following lemma that quantifies the reconstruction error over one iteration:
Lemma 4. For x ∈ R, we have as N goes to infinity

ψn(x+
1

N
φn(x))− φn(x) =

1

4N
(Jn+1(x)− Jn(x)) [fn+1(x)− fn(x)] +O(

1

N2
),

where Jn = ∂xfn(x) is the Jacobian of fn.

Proof. As N goes to infinity, we have the following expansions of (12):

φn(x) =
1

2
(fn(x) + fn+1(x)) +

1

2N
Jn+1(x)[fn(x)] +O(

1

N2
),

ψn(x) =
1

2
(fn(x) + fn+1(x))−

1

2N
Jn(x)[fn+1(x)] +O(

1

N2
).

21

As a consequence, we have

ψn(x+
1

N
φn(x)) =

1

2
(fn(x) + fn+1(x))−

1

2N
Jn(x)[fn+1(x)]

+
1

4N
(Jn(x)[fn(x) + fn+1(x)] + Jn+1(x)[fn(x) + fn+1(x)]) +O(

1

N2
).

Putting everything together, we find that the zero-th order in ψn(x+
1
Nφn(x))− φn(x) cancels, and

that the first order simplifies to 1
4N (Jn+1(x)− Jn(x)) [fn+1(x)− fn(x)].

We now turn the the proof of the main proposition:

Proof. We let rn = x̃n − xn the reconstruction error. We have rN = 0, and we find

rn = x̃n − xn (13)

= x̃n+1 −
1

N
ψn(x̃n+1)− xn+1 +

1

N
φn(xn) (14)

= rn+1 −
1

N
(ψn(x̃n+1)− ψn(xn+1))−

1

N
(ψn(xn+1)− φn(xn)) . (15)

Using the triangle inequality, and the L′
f−Lispchitz continuity of ψn, we get

∥rn∥ ≤ (1 +
L′
f

N
)∥rn+1∥+

1

N
∥ψn(xn+1)− φn(xn)∥.

The last term is controlled with the previous Lemma 4:

∥ψn(xn+1)− φn(xn)∥ ≤ 1

4N
∥ (Jn+1(xn)− Jn(xn)) [fn+1(xn)− fn(xn)]∥+O(

1

N2
) (16)

≤
C ′

f∆
N
θ

N
+O(

1

N2
). (17)

We therefore get the recursion

∥rn∥ ≤ (1 +
L′
f

N
)∥rn+1∥+

C ′
f∆

N
θ

N2
+O(

1

N3
).

Unrolling the recursion gives,

∥rn∥ ≤
(eL

′
f − 1)C ′

f

L′
fN

∆N
θ +O(

1

N2
).

A.9 Proof of Prop. 6

Proof. 1) We first control the error made in the gradient with respect to activations. We have the
following recursions:

∇xnL = (I +
1

N
∂xφn(xn+1))

⊤∇xn+1L and ∇x̃nL = (I +
1

N
∂xφn(x̃n+1))

⊤∇x̃n+1L

Letting r′n = ∇xn
L−∇x̃n

L, we have

r′n = r′n+1 +
1

N
∂xφn(xn+1)

⊤r′n+1 +
1

N
(∂xφn(xn+1)− ∂xφn(x̃n+1))

⊤ ∇x̃n+1L

Therefore, using the triangle inequality, and letting g a bound on the norm of the gradients ∇x̃n+1
L

and ∆ a Lipschitz constant of ∂xφn, we find

∥r′n∥ ≤ (1 +
L′
f

N
)∥r′n+1∥+

1

N
g∆∥xn+1 − x̃n+1∥

22

The last term is controled with the previous proposition, and we find

∥r′n∥ ≤ (1 +
L′
f

N
)∥r′n+1∥+

(eL
′
f − 1)C ′

fg∆

L′
fN

2
∆N

θ +O(
1

N3
),

which gives by unrolling:

∥r′n∥ ≤
(eL

′
f − 1)2C ′

fg∆

L′2
f N

∆N
θ +O(

1

N2
).

2) We can now control the gradients with respect to parameters. Since Heun’s method involves
parameters θNn both for the computation of xn and xn+1, the gradient formula is slightly more
complicated than for the classical ResNet. It is the sum of two terms, the first one ∇1

θN
n
L corresponding

to iteration n and the second one ∇2
θN
n
L corresponding to iteration n− 1.

We have

∇1
θN
n
L =

1

2N

(
∂θf(xn, θ

N
n) +

1

N
∂xf(yn, θ

N
n+1)∂θf(xn, θ

N
n)

)⊤

∇xn
L

and

∇2
θN
n
L =

1

2N

(
∂θf(yn−1, θ

N
n−1)

)⊤
(I +

1

N
∂xf(xn−1, θ

N
n−1))

⊤∇xn−1
L.

The gradient ∇θN
n
L is finally

∇θN
n
L = ∇1

θN
n
L+∇2

θN
n
L.

Overall, these equations map the activations xn and xn−1, and the gradients ∇xn−1L and ∇xnL to
the gradient ∇θN

n
, which we rewrite as

∇θN
n
L = Ψ(xn, xn−1,∇xn

L,∇xn−1
L),

where the function Ψ is explicitly defined by the above equations. With the memory-free backward
pass, the gradient is rather estimated as

∇̃θN
n
L = Ψ(x̃n, x̃n−1,∇x̃nL,∇x̃n−1L).

The function Ψ is Lispchitz-continuous since all functions involved in its composition are Lipschitz-
continuous and the activations belong to a compact set, and its Lipschitz constant scales as 1

N . We
write its Lipschitz constant as LΨ

N , and we get:

∥∇θN
n
L− ∇̃θN

n
L∥ = ∥Ψ(xn, xn−1,∇xn

L,∇xn−1
L)−Ψ(x̃n, x̃n−1,∇x̃n

L,∇x̃n−1
L)∥ (18)

≤ LΨ

N
(∥xn − x̃n∥+ ∥xn−1 − x̃n−1∥+ ∥∇xn

L−∇x̃n
L∥+ ∥∇xn−1

L−∇x̃n−1
L∥).

(19)

Using the previous propositions, we get:

∥∇θN
n
L− ∇̃θN

n
L∥ = O(

∆N
θ

N2
+

1

N3
).

B Experimental details

In all our experiments, we use Nvidia Tesla V100 GPUs.

23

B.1 CIFAR

For our experiments on CIFAR-10 (training from scratch), we used a batch-size of 128 and we
employed SGD with a momentum of 0.9. The training was done over 200 epochs. The initial learning
rate was 0.1 and we used a cosine learning rate scheduler. A constant weight decay was set to
5× 10−4. Standard inputs preprocessing as proposed in Pytorch [33] was performed.

For our finetuning experiment on CIFAR-10, we used a batch-size of 128 and we employed SGD
with a momentum of 0.9. The training was done over 5 epochs. The learning rate was kept constant
to 10−3. A constant weight decay was set to 5× 10−4. Standard inputs preprocessing as proposed in
Pytorch was also performed.

For our experiment with our simple ResNet model that processes the input by a 5× 5 convolution
with 16 out channels, we used a batch-size of 256 and we employed SGD with a momentum of 0.9.
The training was done over 90 epochs. The learning rate was set to 10−1 and was decayed by a factor
10 every 30 epochs. A constant weight decay was set to 5× 10−4. Standard inputs preprocessing as
proposed in Pytorch was also performed.

B.2 ImageNet

For our experiments on ImageNet (training from scratch), we used a batch-size of 256 and we
employed SGD with a momentum of 0.9. The training was done over 100 epochs. The initial learning
rate was 0.1 and was decayed by a factor 10 every 30 epochs. A constant weight decay was set to
10−4. Standard inputs preprocessing as proposed in Pytorch was performed: normalization, random
croping of size 224× 224 pixels, random horizontal flip.

For our finetuning experiment on ImageNet, we used a batch-size of 256 and we employed SGD with
a momentum of 0.9. The training was done over 3 epochs. The learning rate was kept constant to
5× 10−4. A constant weight decay was set to 10−4. Standard inputs preprocessing as proposed in
Pytorch was performed: normalization, random croping of size 224× 224 pixels, random horizontal
flip.

C Architecture details

In computer vision, the ResNet as presented in [20] first applies non residual transformations to
the input image: a feature extension convolution that goes to 3 channels to 64, a batch norm, a
non-linearity (ReLU) and optionally a maxpooling.

It is then made of 4 layers (each layer is a series of residual blocks) of various depth, all of which
perform residual connections. Each of the 4 layers works at different scales (with an input with a
different number of channels): typically 64, 128, 256 and 512 respectively. There are two types of
residual blocks: Basic Blocks and Bottlenecks. Both are made of a successions of convolutions conv,
batch normalizations bn [22] and ReLU non-linearity σ. For example, a Basic Block iterates (in a
pre-activation [21] fashion):

x→ x+ bn(conv(σ(bn(conv(σ(x)))))).

Finally, there is a classification module: average pooling followed by a fully connected layer.

24

	Introduction
	Background and related work
	ResNets as discretization of Neural ODEs
	Distance to an ODE
	Linear Case

	Adjoint Method in Residual Networks
	Experiments
	Validation of our model with step size 1N
	Adjoint method

	Proofs
	Proof of Prop. 1
	Proof of Prop. 2
	Proof of lemma 1
	Proof of lemma 2
	Proof of Th. 1
	Proof of Prop. 3
	Proof of Prop. 4
	Proof of Prop. 5
	Proof of Prop. 6

	Experimental details
	CIFAR
	ImageNet

	Architecture details

