
A Omitted Details from Main Body

A.1 Minimum Suboptimality Gap Assumption

It is known that without any instance-specific assumptions we cannot get o(
p
T ) regret. The

sub-optimality gap assumption is standard in the bandit literature and in the RL-literature that provides
o(
p
T ) regret guarantees. We remark that gapinf > 0 for all non-degenerate finite action-state spaces.

Notice that gap
h
(s, a) = V ⇤

h
(s) � Q⇤

h
(s, a), gapmin = inf h, s, a{gap

h
(s, a) : gap

h
(s, a) 6= 0}

(if this set is empty the MDP is degenerate). Notice that if there are multiple optimal actions ai
at some state s, then gap

h
(s, ai) = 0, so they will not be considered in the minimization. Thus,

the multiplicity of the optimal policies does not break the assumption. Note that gapmin = 0
only in an infinite state-action space such that for all " > 0, there are some h", s", a" such that
0 < V ⇤

h"
(s") � Q⇤

h"
(s", a")  " (i.e. we get arbitrarily close to an optimal action). Hence, it

quantifies the hardness of the underlying problem because it provides a gap between the reward of an
optimal policy and the reward of the non-optimal policies, so it shows how “easy” it is to distinguish
an optimal one.

A.2 Omitted Algorithms

Algorithm 4 Model-Free Sampling Routine

Require: Function class F , current sub-sampled dataset bZ , new element z = (s, a), failure proba-
bility � 2 (0, 1)

1: Let pz be the smallest number such that 1/pz is an integer and pz is greater than

min{1, Csensitivity bZ,F log(TN (F ,
p

�/(64T 3))/�)}

2: Let bz 2 C(S ⇥A, 1/16
p
64T 3/�) such that

sup
f2F

|f(z)� f(bz)|  1/16
p
64T 3/�

3: Add 1/pz copies of bz into bZ with probability pz
4: Return bZ

Algorithm 5 Model-Based Sampling Routine

Require: Function class F , current sub-sampled dataset bZ , new element z = (s, a, V ), failure
probability � 2 (0, 1)

1: Let pz be the smallest number such that 1/pz is an integer and pz is greater than

min{1, C · sensitivity bZ,F · log(TN (F ,
p
�/(64T 3))/�)}

2: Add 1/pz copies of z into bZ with probability pz
3: Return bZ

B Proof of Theorem 3.1

In this section, our main goal is to prove Theorem 3.1. Recall that we assume we have access to a set
F ✓ {f : S ⇥A! [0, H + 1]}, which we use to approximate the Q-function. For this set, we work
with Assumption 2.2 and Assumption 2.3.

The proofs of the supporting lemmas are postponed to Appendix B.1. Before we are ready to prove
our result, we need to discuss some results of prior works that are crucial to our proof.

The regret decomposition in [HZG21], gives us that
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Lemma B.1. [HZG21] For any MDP M we have that

E [Regret(K)] = E
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Moreover, for any ⌧ > 0 it holds with probability at least 1� dlog T ee�⌧
that

Regret(K)  2
KX

k=1

HX

h=1

gap
h
(sk

h
, ak

h
) +

16H2⌧
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The following lemma resembles Lemma 6.3 [HZG21]. Its proof is postponed to Appendix B.1.
Lemma B.2. If we pick

� = CH2 log(TN (F , �/T 2)/�) dimE(F , 1/T ) log2 T log
�
C(S ⇥A, �/T 2)T/�)

�
,

for come constant C and for h 2 [H], then we have that with probability at least 1� 2K�
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�
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h
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h
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h
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)
�
 CH4 dim2

E
(F , 1/T ) log2 T log(TN (F , �/T 2)/�) log(C(S ⇥A, �/T 2)T/�)

gapmin

.

We are now ready to state the regret bound of our algorithm. In particular the regret guarantee follows
from the regret decomposition and the bound we established before.
Lemma B.3. There exists a constant C and proper values of the parameter � of Algorithm 1 such

that with probability at least 1� dlog T ee�⌧ � 2K� the regret of the algorithm is bounded by

Regret(K)  CH5 dim2
E
(F , 1/T ) log2 T log(TN (F , �/T 2)/�) log(C(S ⇥A, �/T 2)T/�)

gapmin

+
16H2⌧

3
+ 2.

The choice of the parameter is

� = CH2 log(TN (F , �/T 2)/�) dimE(F , 1/T ) log2 T log
�
C(S ⇥A, �/T 2)T/�)

�
.

Proof. Throughout the proof, we condition on the events described in Lemma B.1, B.2 which happen
with probability at least 1� dlog T ee�⌧ � 2K�.

From Lemma B.1 we have that
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+ 2.

We can bound the first term on the RHS using Lemma B.2 as follows

2
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HX

h=1
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h
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h
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h
) = 2

KX

k=1

HX

h=1

�
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h
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h
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h
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h
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�

 CH5 dim2
E
(F , 1/T ) log2 T log(TN (F , �/T 2)/�) log(C(S ⇥A, �/T 2)T/�)
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.

Hence, for the total regret we have that

Regret(K)  CH5 dim2
E
(F , 1/T ) log2 T log(TN (F , �/T 2)/�) log(C(S ⇥A, �/T 2)T/�)

gapmin

+
16H2⌧

3
+ 2.
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We remark that the value of � we use in the main body is simply an upper bound on this value.

Finally, we state the bound on the adaptivity of our algorithm. In particular, since our algorithm is the
same as in [KSWY21], the logarithmic switching cost follows directly from their result.

Lemma B.4. [KSWY21] For any fixed h 2 [H], With probability 1� �, the sub-sampled dataset bZk

h

changes at most

O
⇣
log(TN (F ,

p
�/T 3)/�) dimE(F , 1/T ) log2 T

⌘

times.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1:

The proof of this theorem follows by using Lemma B.3 and taking a union on the result of Lemma B.4
and setting the error probability accordingly. ⇤

B.1 Supporting Lemmas: Theorem 3.1

In this section, we present the proof of Lemma B.2.

First, we need to show that the sub-sampled dataset is a good approximation of the original one. To
this end, we use Proposition 1 from [KSWY21].
Proposition B.5. [KSWY21] For any h, k 2 [H]⇥ [K] we let

bk
h
(·, ·) = sup

kf1�f2k2
Zk
h

�/100
|f1(·, ·)� f2(·, ·)|,

b
k

h
(·, ·) = sup

kf1�f2k2
Zk
h

100�
|f1(·, ·)� f2(·, ·)|.

Then, with probability at least 1� �/32 we have that

bk
h
(·, ·)  bk

h
(·, ·)  b

k

h
(·, ·).

We now present a generalized version of Lemma 11 [KSWY21] that will be used to bound the regret
of our algorithm. Essentially, this gives a bound on the summation of the bonus terms over a set of
episodes K 0 ✓ [K] in terms of the eluder dimension of the function class and the number of episodes.
Lemma B.6. For any set K 0 ✓ [K] , with probability at least 1� �/32 we have that

|K0|X
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h
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h
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h
)  H +H(H + 1) · dimE(F , 1/T ) + CH

p
dimE(F , 1/T )|K 0| · �,

where C > 0 is some constant.

Proof. Throughout the proof, we condition on the event defined in Proposition B.5. This gives us
that for any k 2 K 0, h 2 H

bk
h
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h
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, ak

h
) = sup

||f1�f2||2Zk
h

100�
|f1(skh, akh)� f2(s

k

h
, ak

h
)|.
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P
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0

i=1 b̄
ki
h
(ski

h
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) for each h 2 [H] separately.

Given some ✏ > 0, we define Lh = {(ski
h
, aki

h
) : ki 2 K 0, b̄ki

h
(ski

h
, aki

h
) > ✏}, i.e. the set of

state-action pairs at step h and some episode in K 0 where the bonus function has value greater than
✏. Consider some k 2 K 0. We denote Lh = |Lh|, eZk

h
= {(sk

h
, ak

h
) 2 Zk

h
, k 2 K 0} . Our goal is

to show that there is some zk
h
= (sk

h
, ak

h
) 2 Lh that is ✏-dependent on at least Lh/dimE(F , ✏) � 1

disjoint subsequences in Zk

h
\ Lh. We also denote N = Lh/dimE(F , ✏)� 1.
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To do that, we decompose Lh into N + 1 disjoint subsets and we denote the j-th subset by Lj

h
. We

use the following procedure. Initially we set Lj

h
= ; for all j 2 [N + 1] and consider every zk

h
2 Lh

in a sequential manner. For each such zk
h

we find the smallest index j, 1  j  N , such that zk
h

is
✏-independent of the elements in Lj

h
with respect to F . If there is no such j, we set j = N +1. Then,

we update Lj

h
 Lj

h
[ zk

h
. Notice that after we go through all the elements of Lh, we must have

that LN+1
h

6= ;. This is because every set Lj

h
, 1  j  N , contains at most dimE(F , ✏) elements.

Moreover, by definition, every element zk
h
2 LN+1

h
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disjoint subsequences in Zk

h
\ Lh.

Furthermore, since b̄k
h
(sk

h
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h
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h
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k

h
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h
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h
and for each such subsequence, by the definition of ✏-dependence, it holds that
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Moreover, notice that we get by definition that b̄k  H + 1. Hence, we have that
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dimE(F , 1/|K 0|)|K 0|�
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p
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for some constant C > 0, where the second to last inequality can be obtained by bounding the
summation by the integral and the last one by the definition of the eluder dimension. Summing up all
the inequalities for h 2 [H], we get the result.

We need the Azuma-Hoeffding inequality to bound a martingale difference sequence. For complete-
ness, we present it here as well.
Lemma B.7. [CBL06] Let {xi}ni=1 be a martingale difference sequence with respect to some

filtration {Fi} for which |xi| M for some constant M , xi is Fi+1 measurable and E[xi|Fi] = 0.
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Then, for any 0 < � < 1, we have that with probability at least 1� � it holds that

nX

i=1

xi M
p

2n log(1/�).

The following lemma that appears in [KSWY21] shows that the estimate of the Q-function upper
bounds the optimal one.
Lemma B.8. [KSWY21] With probability at least 1� �/2 we have that for all (k, h) 2 [K]⇥ [H]
and all (s, a) 2 S ⇥A
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We now present a lemma that bounds the number of rounds that the suboptimilaty gap falls in some
interval. It is inspired by Lemma 6.2 [HZG21].
Lemma B.9. If we pick

� = CH2 log(TN (F , �/T 2)/�) dimE(F , 1/T ) log2 T log
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�
,
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Proof. We keep h fixed.

We denote by K 0 the set of episodes where the gap at step h is at least 2n, i.e.
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The goal is to bound the quantity
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with functions f1(|K 0|), f2(|K 0|) and then use the fact that f1(|K 0|)  f2(|K 0|) to derive an upper
bound on |K 0|.
For the lower bound, we have that
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where the first inequality holds by the definition of the policy ⇡ki , the second one follows because
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(·, ·) which happens with probability at least 1 � �/2 (see

Lemma B.8) and the third one by the definition of ki.
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where we define ✏k
h0 =

⌦
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We now take the summation over all k 2 |K 0|, h  h0  H and we get

|K0|X

i=1

⇣
Qki

h
(ski

h
, aki

h
)�Q

⇡ki
h

(ski
h
, aki

h
)
⌘


|K0|X

i=1

HX

h0=h

✏ki
h0 +

|K0|X

i=1

HX

h0=h

bki
h0(s

ki
h0 , a

ki
h0).

We will bound each of the two terms on the RHS separately.
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If we take the union bound over all k 2 [K] we have that with probability at least 1� |K 0|�
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We now focus on the second term. Using Lemma B.6 we get that
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We are now ready to prove Lemma B.2.

Proof of Lemma B.2: Throughout this proof we condition on the event described in Lemma B.9 which
happens with probability at least 1� 2K�. Since gapmin > 0 whenever we do not take the optimal
action, we have that either V ⇤
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where the first inequality holds by the definition of the intervals, the second due to the properties of
the indicator function, the third because of Lemma B.9 and in the last two steps we just manipulate
the constants. ⇤

C Proof of Theorem 3.2

In this section, our main goal is to prove Theorem 3.2. We work with Assumption 2.4. We follow the
same regret decomposition as in Appendix B.

We first present a lemma that is crucial in bounding the regret of the algorithm.
Lemma C.1. If we pick
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We are now ready to state the regret bound of our algorithm.
Lemma C.2. There exists a constant C and proper values of the parameter � of Algorithm 1 such

that with probability at least 1� dlog T ee�⌧ �H(K +3)� the regret of the algorithm is bounded by

Regret(K)  CH5 log(TN (F , 1/T )/�) dim2
E
(F , 1/T )

gapmin

+
16H2⌧

3
+ 2.

The value of the parameter is

� = 4H2 log(2N (F , 1/T )/�) + 4/H
⇣
C +

p
H2/4 log(4(K(K + 1)/�))

⌘
.

where N (F , 1/T ) = argmaxh2[H] N (Fh, 1/T ).

In particular, the dependence of the regret in the time horizon T is logarithmic.

Proof. Throughout the proof, we condition on the events described in Lemma B.1, C.1 which happen
with probability at least 1� dlog T ee�⌧ �H(K + 3)�.
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From Lemma B.1 we have that

Regret(K)  2
KX

k=1

HX

h=1

gap
h
(sk

h
, ak

h
) +

16H2⌧

3
+ 2.

We can bound the first term on the RHS using Lemma C.1 as follows

2
KX

k=1

HX

h=1

gap
h
(sk

h
, ak

h
) = 2

KX

k=1

HX

h=1

�
V ⇤
h
(sk

h
)�Q⇤

h
(sk

h
, ak

h
)
�
 2CH5 log(TN (F , 1/T )/�) dim2

E
(F , 1/T )

gapmin

.

This gives us the result.

We remark that the value of � we use in the main body is simply an upper bound on this value.

The only thing that we need to do now is to bound the number of rounds that we update our policy.
Since we are using exactly the same sensitivity score and update probability as in [KSWY21], this
follows from their result.
Lemma C.3. [KSWY21] With probability at least 1� �/32 for any fixed h 2 [H] we have that the

sub-sampled dataset bZk

h
, k 2 [K] changes at most

Smax = C · log(TN (Fh,
p
�/(64T 3))/�) dimE(Fh, 1/T ) log

2 T

times.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2:

=The proof of this theorem follows by combining Lemma C.2 and taking a union on the result of
Lemma C.3 and setting the error probability accordingly. ⇤

C.1 Supporting Lemmas: Theorem 3.2

In this section our goal is to prove the supporting lemmas of Theorem 3.2.

Recall that our approach is to modify the algorithm in [KSWY21] to work in this setting and use a
similar analysis as in Appendix B. Unlike Appendix B where we approximate the optimal Q-function,
here we try to estimate the true transition kernel. Let Zk

h
= {
�
s⌧
h
, a⌧

h
, V ⌧

h+1(·)
�
}⌧2[k�1] be the dataset

up to episode k and bZk

h
the sub-sampled dataset. In each episode k, we update our policy whenever

we add an element in the dataset for some h 2 [H]. Recall that whenever we perform an update our
policy becomes:

Qk

H+1(s, a) = 0,

V k

H+1(s) = 0,

Qk

h
(s, a) = min{rh(s, a) + h bP k

h
(·|s, a), V k

h+1i+ bk
h
(s, a), H},

V k

h
(s) = max

a2A
Qk

h
(s, a)

for some bP k

h
, bk

h
(·, ·) that we will define shortly. We get the policy ⇡k

h
(s) by picking greedily the

action that maximizes the estimate Qk

h
(s, a).

The least-squares estimate of the model is

bP k+1
h

= arg min
P2Ph

kX

k0=1

⇣
hP (·|sk

0

h
, ak

0

h
), V k

0

h+1i � yk
0

h

⌘2
, yk

0

h
= V k

0

h+1(s
k
0

h+1).

Recall the definition of the function class that we use in the derivation of our results.
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Definition C.4. Let V be the set all measurable functions that are bounded by H . We now let
f : S ⇥A⇥ V ! R and define the following set:

Fh =

⇢
f : 9Ph 2 Ph so that f(s, a, V ) =

Z

S
Ph(s

0|s, a)V (s0)ds0, 8(s, a, V ) 2 S ⇥A⇥ V
�
.

(1)

Recall that in this setting the norm of a function with respect to a dataset Z is

||f ||Z =
s X

z=(sz,az,Vz(·))2Z

(f(sz, az, Vz(·))2.

Recall also that the bonus function is
bk
h
(s, a) = sup

f1,f22Fh:min{||f1�f2|| bZk
h
,T (H+1)2}�

|f1(s, a, V k

h+1(·))� f2(s, a, V
k

h+1(·))|.

The parameter � will be defined later in a way that will ensure optimism.

First, we need to show that at for every k 2 [K], h 2 [H], the sub-sampled dataset approximates the
original one. Our approach is inspired by [KSWY21].

We define the following quantities

Ck

h
(↵) =

n
(f1, f2) 2 Fh ⇥ Fh : ||f1 � f2||2Zk

h
 ↵/100

o

bCk

h
(↵) =

n
(f1, f2) 2 Fh ⇥ Fh : min{||f1 � f2||2bZk

h

, T (H + 1)2}  ↵
o

Ck

h
(↵) =

n
(f1, f2) 2 Fh ⇥ Fh : ||f1 � f2||2Zk

h
 100↵

o
.

We also let
bk
h
(s, a) = sup

f1,f22Ck
h(�)

|f1(s, a, V k

h+1(·))� f2(s, a, V
k

h+1(·))|

b
k

h
(s, a) = sup

f1,f22Ck
h(�)

|f1(s, a, V k

h+1(·))� f2(s, a, V
k

h+1(·))|.

Our goal is to show that Ck

h
(↵) ✓ bCk

h
(↵) ✓ Ck

h
(↵) with high probability. Let Ek

h
(↵) denote the event

that this holds. We also denote by Ek

h
= \1

n=0Ek

h
(100n�). This event will show us that bZk

h
is a good

approximation to Zk

h
.

Notice that whenever this happens, it holds that bk
h
(s, a)  bk

h
(s, a)  b

k

h
(s, a).

The following lemma which is inspired by [KSWY21] establishes that fact.
Lemma C.5. The probability that all the events Ek

h
happen satisfies

Pr

 
K\

k=1

H\

h=1

Ek

h

!
� 1� �.

To prove Lemma C.5 we need the following concentration inequality proved in [Fre75].
Lemma C.6. Let {Yi}i2N be a real-valued martingale with difference sequence {Xi}i2N. Let R be

a uniform bound on Xi. Fix some n 2 N and let �2
be a number such that

nX

i=1

E[X2
i
|Y0, . . . , Yi�1]  �2.

Then, for all t � 0 we have that

Pr(|Yn � Y0| � t)  2 exp

⇢
� t2/2

�2 +Rt/3

�
.
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Moreover, we need a bound on the number of elements that are in the sub-sampled dataset. This is
established in [KSWY21].

Lemma C.7. [KSWY21] We have that with probability at least 1��/(64T ), we have | bZk

h
|  64T 3/�

for all � > 0.

The subsequent lemma shows that, indeed, whenever Ek

h
happens the sub-sampled dataset is a good

approximation of the original one. It was proved in [KSWY21].

Lemma C.8. [KSWY21] Whenever the event Ek

h
happens, it holds that

1

10000
||f1 � f2||2Zk

h
 min{||f1 � f2||2bZk

h

, T (H + 1)2}  10000||f1 � f2||2Zk
h
, if ||f1 � f2||2Zk

h
> 100�

and

min{||f1 � f2||2bZk
h

, T (H + 1)2}  10000�, if ||f1 � f2||2Zk
h
 100�.

To establish our result, we need the following lemma. The proof follows the approach of [KSWY21].
We present it here for completeness.

Lemma C.9. For any ↵ 2 [�, T (H + 1)2], a fixed h 2 [H] and k 2 [K] we have the following

bound for the probability that all the events {E i

h
}ik�1 happen and the last one does not happen

Pr

  
k�1\

i=1

E i

h

!
Ek

h
(↵)c

!
 �/(32T 2).

Proof. Let C1 be the quantity the sensitivity in the sampling probability. We fix some h 2 [H]
throughout the proof.

We consider a fixed pair of functions f1
h
, f2

h
in the discretized set C(Fh,

p
�/(64T 3)) and for i � 2

we let

Zi = max
n
||f1

h
� f2

h
||2Zi

h
,min{||f1

h
� f2

h
||2bZi�1

h

, T (H + 1)2}
o
.

We also define

Yi =

8
><

>:

1
p
zi�1
h

(f1
h
(zi�1

h
)� f2

h
(zi�1

h
))2 zi�1

h
is added to bZi

h
and Zi  2000000↵

0, zi�1
h

is not added to bZi

h
and Zi  2000000↵

(f1
h
(zi�1

h
)� f2

h
(zi�1

h
))2 otherwise

Let Fi be the filtration that Yi is adapted to. Our goal is to use Freedman’s inequality (i.e. Lemma C.6)
for Yi. Notice that E[Yi|Fi] = (f1

h
(zi�1

h
)� f2

h
(zi�1

h
))2. Now we focus on the variance of Yi. Notice

that if p
z
i�1
h

= 1 or Zi > 2000000↵ then Yi is deterministic so Yi � E[Yi|Fi�1] = Var[Yi �
E[Yi|Fi�1]] = 0. For the other case, recall that

pzi
h
= min{1, C 0·sensitivity bZi�1

h ,Fh
(zi

h
)·log(TN (F ,

p
�/64T 3)/�)} = min{1, C1·sensitivity bZi�1

h ,Fh
(zi

h
)}

and

sensitivityZ,F (z) = min

(
sup

f1,f22F

(f1(z)� f2(z))2

min{||f1 � f2||Z , T (H + 1)2}+ �
, 1

)
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Since p
z
i�1
h

< 1 =) C1 · sensitivity bZi�1
h ,Fh

(zi
h
) < 1. We consider two cases. If Yi 6= 0 we can

see that Yi � E[Yi|Fi] so |Yi � E[Yi]|  Yi. Moreover,

Yi 
(f1

h
(zi�1

h
)� f2

h
(zi�1

h
))2

p
z
i�1
h


(f1

h
(zi�1

h
)� f2

h
(zi�1

h
))2

C1 supf1,f22Fh

(f1(z
i�1
h )�f2(z

i�1
h ))2

min{||f1�f2|| bZi�1
h

,T (H+1)2}+�


(f1

h
(zi�1

h
)� f2

h
(zi�1

h
))2 min{||f1 � f2|| bZi�1

h
, T (H + 1)2}+ �}

C1(f1
h
(zi�1

h
)� f2

h
(zi�1

h
))2

=
⇣
min{||f1 � f2|| bZi�1

h
, T (H + 1)2}+ �

⌘
· 1/C1

 2000001↵/C1 < 3000000↵/C1

Thus, we see that |Yi � E[Yi]|  3000000↵/C1. On the other hand, we can see that if Yi = 0 then
|Ei�1[Yi]� Yi| = (f1

h
(zi�1

h
)� f2

h
(zi�1

h
))2 and the inequality we derived above still holds.

For the variance, we can see that

Var[Yi � E[Yi|Fi]|Fi] = pi�1
zh

 
1

p
z
i�1
h

(f1
h
(zi�1

h
)� f2

h
(zi�1

h
))2
!2

+ (1� pi�1
zh

) · 0

 1

p
z
i�1
h

(f1
h
(zi�1

h
)� f2

h
(zi�1

h
))4

 3000000↵
�
f1
h
(zi�1

h
)� f2

h
(zi�1

h
)
�2

/C1

where the first equality follows from the definition, the first inequality is trivial and the third one from
the inequality we derived above. Let k0 be the maximum number  k such that Zk0  2000000↵.
Summing up the above inequalities for i = 2, . . . , k we get

kX

i=2

Var[Yi � E[Yi|Fi]|Fi] =
k
0X

i=2

Var[Yi � E[Yi|Fi]|Fi]

 3000000↵

C1

k
0X

i=2

(f1
h
(zi�1

h
)� f2

h
(zi�1

h
))2

 3000000↵ · 2000000↵
C1

 (3000000↵)2

C1

where the the first equality follows from the fact that for i > k0 the random variable is deterministic,
the first inequality follows by the summation of the previous one and the second one by the fact thatP

k
0

i=2(f
1
h
(zi�1

h
)� f2

h
(zi�1

h
))2  ||f1

h
� f2

h
||Zk0

h
 Zk0 .
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We are now ready to use Freedman’s inequality (Lemma C.6) with R = 3000000↵
C1

,�2 = (3000000↵)2

C1
.

We get

Pr

 �����

kX

i=1

(Yi � E[Yi|Fi])

����� � ↵/100

!
= Pr

0

@

������

k
0X

i=1

(Yi � E[Yi|Fi])

������
� ↵/100

1

A

 2 exp

⇢
� (↵/100)2/2

(3000000↵)2/C1 + ↵23000000/300C1

�

= 2 exp

⇢
� C1

20000(3000000 + 10000)

�

= 2 exp

(
�
C log(TN (Fh,

p
�/64T 3)/�)

20000(3000000 + 10000)

)

= 2 exp

(
�
C(log((TN (Fh,

p
�/64T 3)/�)2))

40000(3000000 + 10000)

)

 (�/64T 2)/(N (Fh,
p
�/64T 3))2

for some choice of C. Now we can take a union bound over all the functions in the discretized set
and conclude that with probability at least 1� �/(64T 2) we have that

�����

kX

i=1

(Yi � E[Yi|Fi])

�����  ↵/100

for all pairs of functions in this set. We condition on this event and on the event in Lemma C.7. We first
show that when this event happens, we have that Ck

h
(↵) ✓ bCk

h
(↵). Consider f1, f2 2 Ck

h
(↵). We know

that there exist f 0
1, f

0
2 2 C(F ,

p
�/(64T 3))⇥ C(F ,

p
�/(64T 3)) with ||f1 � f 0

1||1, ||f2 � f 0
2||1 p

�/64T 3. Hence, we get that

||f 0
1 � f 0

2||2Zk
h

⇣
||f1 � f 0

1||Zk
h
+ ||f2 � f 0

2||Zk
h
+ ||f1 � f2||Zk

h

⌘2


✓
||f1 � f2||Zk

h
+ 2
q
�|Zk

h
|/(64T 3)

◆2

 ↵/50

We now consider the Yi’s that are generated by f 0
1, f

0
2. It holds that ||f 0

1�f 0
2||2Zk

h
 ↵/50 =) ||f 0

1�
f 0
2||2Zk�1

h

 ↵/50. Since the event Ek�1
h

happens it follows that min{||f 0
1� f 0

2||2bZk�1
h

, T (H+1)2} 
100(↵/50) = 2↵ < 2000000↵ =) Zk  2000000↵. Thus, every Yi is exactly (f 0

1(z
i

h
)�f 0

2(z
i

h
))2

multiplied by the number of times zi
h

is in the sub-sampled dataset. Hence, we get

||f 0
1 � f 0

2||2bZk
h

=
kX

i=2

Yi 
kX

i=2

E[Yi|Fi] + ↵/100

 ||f 0
1 � f 0

2||2Zk
h
+ ↵/100  3↵/100

where the first inequality follows from the concentration bound we have derived and the other two
simply from the definitions of these quantities.

We now bound ||f1 � f2||2bZk
h

. We have that

||f1 � f2||2bZk
h


⇣
||f 0

1 � f 0
2|| bZk

h
+ ||f1 � f 0

1|| bZk
h
+ ||f2 � f 0

2|| bZk
h

⌘2

 (||f 0
1 � f 0

2|| bZk
h
+ 2
q
| bZk

h
| ·
p
�/(64T 3))2

 (||f 0
1 � f 0

2|| bZk
h
+ 2)2  (

p
3↵/100 + 2)2  ↵
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Hence, we have shown that Ck

h
(↵) ✓ bCk

h
(↵). So in this case, the one inequality that define Ek

h
holds.

We shift our attention to the second inequality now. We will show the contrapositive of our claim,
i.e. if f1, f2 /2 C

k

h
(↵) =) f1, f2 /2 bCk

h
(↵). Let f1, f2 2 Fh ⇥Fh such that ||f1 � f2||Zk

h
> 100↵.

We know that there exist f 0
1, f

0
2 2 C(F ,

p
�/(64T 3))⇥ C(F ,

p
�/(64T 3)) with ||f1 � f 0

1||1, ||f2 �
f 0
2||1 

p
�/64T 3. Hence, using the triangle inequality we get that

||f 0
1 � f 0

2||2Zk
h
� (||f1 � f2||Zk

h
� ||f1 � f 0

1||Zk
h
� ||f2 � f 0

2||Zk
h
)2

� (||f1 � f2||Zk
h
� 2
q

|Zk

h
|
p
�/(64T 3))2

= (
p
100↵� 2

p
�/(64T 2))2 > 50↵

Again, consider the Yi’s that are generated by f 0
1, f

0
2. We want to show that ||f 0

1 � f 0
2||2bZk

h

> 40↵.

Assume towards contradiction that ||f 0
1 � f 0

2||2bZk
h

 40↵. We consider three different cases.

First Case: ||f 0
1 � f 0

2||2Zk
h
 2000000↵. Similarly as before, we have that

||f 0
1 � f 0

2||2bZk
h

=
kX

i=2

Yi � E[Yi|Fi]� ↵/100

> 50↵� ↵/100 > 40↵

So we get a contradiction.

Second Case: ||f 0
1 � f 0

2||2Zk�1
h

> 10000↵. The contradiction comes directly from the fact that Ek�1
h

holds, so
||f 0

1 � f 0
2||2bZk

h

� ||f 0
1 � f 0

2||2bZk�1
h

> 100↵

.

Third Case: ||f 0
1�f 0

2||2Zk�1
h

 10000↵ and ||f 0
1�f 0

2||2Zk
h
> 2000000↵. We can directly see that for

this case (f 0
1(z

k

h
)�f 0

2(z
k

h
))2 � 1900000↵. Since ||f 0

1�f 0
2||2Zk�1

h

 10000↵ =) ||f 0
1�f 0

2||2bZk�1
h


1000000↵. Thus, since ↵ � � we can see that the sensitivity is 1 so the element will be added to the
sub-sampled dataset. Hence, ||f 0

1 � f 0
2||2Zk

h
� (f 0

1(z
k

h
)� f 0

2(z
k

h
))2 > 40↵.

Thus, in any case we have that ||f 0
1 � f 0

2||2bZk
h

> 40↵ > ↵, so we get the result.

We are now ready to prove Lemma C.5.

Proof of Lemma C.5:

We know that for all k 2 [K], k 6= 1, h 2 [H] it holds that

Pr(E1
h
E2
h
. . . Ek�1

h
)� Pr(E1

h
E2
h
. . . Ek

h
) = Pr

�
E1
h
E2
h
. . . Ek�1

h
(Ek

h
)c
�

= Pr
⇣
E1
h
E2
h
. . . Ek�1

h

�
\1
n=0Ek

h
(100n�)

�c⌘

= Pr
�
E1
h
E2
h
. . . Ek�1

h
[1
n=0 Ek

h
(100n�)c

�


1X

n=0

Pr
�
E1
h
E2
h
. . . Ek�1

h
(Ek

h
(100n�))c

�

=
X

n�0,100n�T (H+1)2

Pr
�
E1
h
E2
h
. . . Ek�1

h
(Ek

h
(100n�))c

�
.

Thus, using Lemma C.9 we see that Pr(E1
h
E2
h
. . . Ek�1

h
)�Pr(E1

h
E2
h
. . . Ek

h
)  �/(32T 2)(log(T (H +

1)2/�) + 2)  �/32T .
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Hence, for any fixed h 2 [H] we get

Pr

 
K\

k=1

Ek

h

!
= 1�

KX

k=1

�
Pr(E1

h
E2
h
. . . Ek�1

h
)� Pr(E1

h
E2
h
. . . Ek

h
)
�

� 1�K(�/32T ) = 1� �/(32H)

and by taking a union bound over h 2 [H] we get the result. ⇤

Now that we have shown that the sub-sampled dataset approximates well the original one, we shift
our attention back to showing that our approach achieves optimism.

We first need a definition and a concetration lemma that is related to least-squares-estimators from
prior work.
Definition C.10. A random variable X is conditionally �-subgaussian with respect to some filtration
F if for all � 2 R it holds that E[exp(�X)]  exp(�2�2/2).
Lemma C.11 ([RVR13], [AJS+20]). Let F = {Fp}p=0,1,... be a filtration, {(Xp, Yp)}p measurable

random variables where Xp 2 X , Yp 2 R. Let eF be a set of measurable functions from X to R
and assume that E[Yp|Fp�1] = f⇤(Xp) for some f⇤ 2 eF . Assume that {Yp � f⇤(Xp)}p=1,... is

conditionally �-subgaussian given Fp�1. Let bft = argmin
f2 eF

P
t

p=1 (f(Xp)� Yp)
2

and eFt(�) =⇢
f 2 eF :

P
t

p=1

⇣
f(Xp)� bf(Xp))

⌘2
 �

�
. Then, for any ↵ > 0, with probability 1 � �, for all

t � 1 it holds that f⇤ 2 eFt(�t(�,↵)), where

�t(�,↵) = 8�2 log(2N ( eF ,↵)/�) + 4t↵
⇣
C +

p
�2 log(4t(t+ 1)/�)

⌘
.

We are now ready to prove that our algorithm ensures optimism.
Lemma C.12. With probability at least 1� 2�, we have that for all h 2 [H], k 2 [K], s 2 S, a 2 A
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h
(s, a)�Q⇡k

h
(s, a)  hPh(·|s, a), V k
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h
(s, a).

Moreover, it holds that Qk

h
(s, a) � Q⇤

h
(s, a).

Proof. Fix some h 2 [H], k 2 [K], s 2 S, a 2 A. Throughout the proof, we condition on the events
in Lemma C.5 and Lemma C.11. We assume that k is a round that we perform an update.

We define X = S ⇥ A ⇥ V, Xk

h
= (sk

h
, ak

h
, V k

h+1(·)), Y k

h
= V k

h+1(s
k

h+1). We also pick eF = Fh,
where Fh is defined in Definition C.4. Then, we see that E[Y k

h
|Fk�1] = f⇤

h
(Xk

h
), where f⇤

h
is

the function that corresponds to the true model Ph, and we know that f⇤
h
2 Fh. Recall that the

optimization problem we solve in Algorithm 1 for every round k we update our policy is

bP k

h
= arg min

P2Ph

kX

p=1

�
hP (·|sp

h
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h
), V p

h+1i � V p

h+1(s
p
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�2

.

Based on the definition of Fh, we can see that this is equivalent to
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h
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f2Fh

kX
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�
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h
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h
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.

Moreoever, Y k

h
2 [0, H], so Zk

h
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h
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h
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h
) is H/2-conditionally subgaussian. Thus, if we pick
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⇣
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h
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h
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h
. In particular, can pick
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h
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⇣
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and get a parameter that is independent of k. Moreover, Lemma C.5

||f⇤
h
� bfk

h
|| bZk

h
 100e� = �.

This implies that for our bonus function we have that | bfk

h
(s, a, V k

h+1(·)) � f⇤
h
(s, a, V k

h+1(·))| 
bk
h
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Hence, we have that

h bP k
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h+1(·)i � hPh(·|s, a), V k
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Now we use the definition of Qk

h
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h
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Combining these two, we get that
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which proves the first part of the result.

For the second part, notice that if Qk

h
(s, a) = H then the statement holds trivially since Q⇤

h
(s, a)  H .

So we can assume without loss of generality that Qk

h
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h
(s, a) + h bP k

h
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h+1(·)i +
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(s, a). The Bellman optimality condition gives us that Q⇤
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Hence, we have that
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Now from our previous discussion it follows that bk
h
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h
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Hence, it suffices to show that hPh(·|s, a), V k

h+1(·) � V ⇤
h+1(·)i � 0. To do that, we can just prove

that V k
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0) � 0, 8s0 2 S. Since V k
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(s, a) � Q⇤

H
(s, a). Thus, if we combine this with the update rule for V k

h
, V ⇤

h
we get the claim by

induction.

Now that we have established the previous lemma, we need to bound the bonus that we are using in
every round. The issue is that we do not update our policy in every round.

To do that, we follow a similar approach as in Appendix B.
Lemma C.13. For every set K 0 ✓ [K] With probability at least 1� �, we have that

|K0|X
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HX
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bki
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h
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h
)  H +H(H + 1) dimE(F , 1/T ) + CH

p
dimE(F , 1/T )|K 0|�

where dimE(F , 1/T ) = maxh2[H] dimE(Fh, 1/T ).

Proof. We condition on the event described in Lemma C.5. From the definition of the bonus function,
we have that for any k 2 [K]
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(sk

h
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h
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We bound
P

K
0

i=1 b̄
ki
h
(ski

h
, aki

h
) for each h 2 [H] separately.

Given some ✏ > 0, we define eK = {k 2 K 0 : b̄k
h
(sk

h
, ak

h
) > ✏}, i.e. the set of episodes in

K 0 where the bonus function at h has value greater than ✏. Consider some k 2 K 0. We denote
Lh = {(sk

h
, ak

h
, V k

h+1(·)) : k 2 eK}, Lh = |Lh|, and N = Lh/dimE(Fh, ✏) � 1. Our goal is to
show that there is some zk

h
= (sk

h
, ak

h
, V k

h+1(·)) 2 Lh that is ✏-dependent on at least N disjoint
subsequences in Zk

h
\ Lh.

To do that, we decompose Lh into N + 1 disjoint subsets and we denote the j-th subset by Lh,j .
We use the following procedure. Initially we set Lh,j = ; for all j 2 [N + 1] and consider every
zk
h
2 Lh in a sequential manner. For each such zk

h
we find the smallest index j, 1  j  N , such

that zk
h

is ✏-independent of the elements in Lh,j with respect to Fh. If there is no such j, we set
j = N + 1. Then, we update Lh,j  Lh,j [ zk

h
. Notice that after we go through all the elements of

Lh, we must have that Lh,N+1 6= ;. This is because every set Lh,j , 1  j  N , contains at most
dimE(Fh, ✏) elements. Moreover, by definition, every element zk

h
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least N disjoint subsequences in Lh.

Furthermore, since b̄k
h
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|f1(skh, akh, V k

h+1(·)) � f2(skh, a
k

h
, V k

h+1(·))| > ✏ and ||f1 � f2||2Zk
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zk
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by the definition of ✏-dependence, it holds that ||f1 � f2||2L > ✏2 we have that
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h
)}k2K0 . For all

b̄k � 1/|K 0| it holds that
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Moreover, notice that we get by definition that b̄k  H + 1. Hence, we have that
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 1 + (H + 1) dimE(Fh, 1/T ) + C

p
dimE(Fh, 1/T )|K 0|�

for some constant C > 0, where the second to last inequality can be obtained by bounding the
summation by the integral and the last one by the definition of the eluder dimension. We get the final
result by summing up all the inequalities over H .
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The next step in our proof, is to bound the number of episodes that our policy can be worse than the
optimal one by 2ngapmin, for all n 2 N. This is inspired by [HZG21].
Lemma C.14. If we pick

� = 4H2 log(2N (F , 1/T )/�) + 4/H
⇣
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p
H2/4 log(4(K(K + 1)/�))

⌘
,

then for every h 2 [H] and n 2 N, with probability at least 1� (K + 3)�, we have that
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Proof. We keep h fixed.

We denote by K 0 the set of episodes where the gap at step h is at least 2n, i.e.
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from below and above
with functions f1(|K 0|), f2(|K 0|) and then use the fact that f1(|K 0|)  f2(|K 0|) to derive an upper
bound on |K 0|.
For the lower bound, we have that
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where the first inequality holds by the definition of the policy ⇡ki , the second one follows because
Qki

h
(·, ·) is an optimistic estimate of Q⇤

h
(·, ·) which happens with probability at least 1 � 2� (see

Lemma C.12) and the third one by the definition of ki.

We get the upper bound on this quantity in the following way. For any h0 2 [H] we have
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inequality follows from Lemma C.12.

We now take the summation over all k 2 |K 0|, h  h0  H and we get
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We will bound each of the two terms on the RHS separately.

For the first term, we notice that xj =
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|xj |  2H . Hence, we can use Lemma B.7 and that for each k 2 K 0, with probability at least 1� �
we have that
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If we take the union bound over all k 2 [K] we have that with probability at least 1� |K 0|�
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We now focus on the second term. Using Lemma C.13 we get that
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We are now ready to prove Lemma C.1.

Proof of Lemma C.1: Throughout this proof we condition on the event described in Lemma C.14
which happens with probability at least 1� (K+3)�. Since gapmin > 0 whenever we do not take the
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where the first inequality holds by the definition of the intervals, the second due to the properties of
the indicator function, the third because of Lemma C.14 and in the last two steps we just manipulate
the constants. ⇤
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