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Abstract

Stochastic gradient descent (SGD) is a pillar of modern machine learning, serv-
ing as the go-to optimization algorithm for a diverse array of problems. While
the empirical success of SGD is often attributed to its computational efficiency
and favorable generalization behavior, neither effect is well understood and dis-
entangling them remains an open problem. Even in the simple setting of convex
quadratic problems, worst-case analyses give an asymptotic convergence rate for
SGD that is no better than full-batch gradient descent (GD), and the purported
implicit regularization effects of SGD lack a precise explanation. In this work, we
study the dynamics of multi-pass SGD on high-dimensional convex quadratics and
establish an asymptotic equivalence to a stochastic differential equation, which
we call homogenized stochastic gradient descent (HSGD), whose solutions we
characterize explicitly in terms of a Volterra integral equation. These results yield
precise formulas for the learning and risk trajectories, which reveal a mechanism
of implicit conditioning that explains the efficiency of SGD relative to GD. We
also prove that the noise from SGD negatively impacts generalization performance,
ruling out the possibility of any type of implicit regularization in this context.
Finally, we show how to adapt the HSGD formalism to include streaming SGD,
which allows us to produce an exact prediction for the excess risk of multi-pass
SGD relative to that of streaming SGD (bootstrap risk).

1 Introduction

Stochastic gradient descent (SGD) is the algorithm of choice for optimization in modern machine
learning and has been hailed as a major reason for deep learning’s success [11, 21]. Explanations
for the effectiveness of SGD typically refer to its computational efficiency and to its favorable
generalization properties, but theoretical understanding of these purported benefits is far from
complete.

The efficiency of SGD has been the subject of extensive research, dating back to the original work
of Robbins and Monro [68] and extending to modern large-scale machine learning applications (see
e.g. [10, 12]). However, despite its widespread adoption and algorithmic simplicity, surprisingly little
is known about how SGD performs in the types of high-dimensional optimization problems that
occur in practice. Part of the challenge in deriving robust high-level conclusions about the efficiency
of SGD is simply that those conclusions can depend on precisely which quantities are measured and
what assumptions are leveraged. For example, in the extreme setting where the samples are one-hot
vectors, running SGD on a quadratic function is actually identical to running full-batch gradient
descent; as such, any statements about the two algorithms’ relative efficiency must be data-dependent.
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Furthermore, the majority of prior analyses focus on the streaming or single-pass setting, where
each sample is seen a single time. While this setting is appropriate when the number of samples
n is much larger than the dimensionality d, it does not adequately describe the practically-relevant
overparameratized or high-dimensional settings where d & n.

Moreover, the practical success of SGD has been so remarkable in recent years that a growing body of
literature has suggested that its benefit to generalization extends beyond what any improved efficiency
might reasonably afford [76, 31, 14, 72, 74]. Some of the myriad explanations for SGD’s favorable
generalization properties include the local geometry of minimizers [32, 26, 82, 24], connections to
approximate Bayesian inference [49], and the regularization properties of noise [75], among many
others. While some of the these perspectives are intuitive and compelling, they are often difficult to
rigorously establish from either an empirical or a theoretical perspective. Empirically, simulations
at large scale command significant computational resources, and it can be challenging to push to
sufficiently late times or sufficiently large batches to establish the appropriate baselines [72, 75].
Theoretically, the strongest existing results are again in the single-pass setting, for which a number
of works have established excess risk bounds for quadratic problems [6, 18, 20, 81]. Much less is
known in the multi-pass setting, though stability results were established by [25], and some recent
works have begun examining generalization [39].

In this work, we study the dynamics of multi-pass SGD on high-dimensional convex quadratic
functions and derive exact asymptotic predictions for the learning and risk trajectories. Our analysis
establishes an asymptotic equivalence to a stochastic differential equation, which we call homogenized
stochastic gradient descent (HSGD), whose solutions we characterize explicitly in terms of a Volterra
integral equation. These results allow us to define a precise data-dependent implicit-conditioning ratio
(ICR) that determines whether SGD is more efficient than its full-batch cousins. The ICR favors SGD
for many practical datasets, providing some explanation for the observed superior efficiency of SGD;
interestingly, we also highlight settings for which SGD is less efficient than full-batch momentum
gradient descent, underscoring the data-dependence of the conclusions. Moreover, our results also
show that SGD does not improve generalization performance, whether measured in-distribution or
out-of-distribution, and therefore that SGD does not offer any form of implicit regularization in this
setting. We emphasize that our results do not rule out possible benefits for non-convex problems, but
they do provide some of the first explicit negative results in the convex quadratic case.

1.1 Contributions

Our primary contributions are to:

1. Establish the equivalence of quadratic statistics computed on the iterates of SGD and on a
particular stochastic Langevin diffusion process called homogonized SGD (Theorem 1);

2. Exactly characterize the asymptotic training and risk trajectories as the solutions of a
deterministic Volterra integral equation (Theorem 2);

3. Prove that the noise from SGD negatively impacts generalization performance, both in- and
out-of-distribution (Section 3.1), but explain why the impact is often minimal in practice;

4. Introduce the implicit-conditioning ratio that describes when and by how much SGD
accelerates convergence relative to the best full-batch methods (Section 3.2);

5. Analyze the limit of streaming SGD to show its inability to capture many salient features of
the dynamics of multi-pass SGD (Appendix C).

2 Preliminaries and background

Problem setting. We consider high-dimensional `2-regularized least squares problems defined by,

min
x∈Rd

{
f(x)

def
=

1

2
‖Ax− b‖22 +

δ

2
‖x‖2 =

n∑
i=1

1

2

(
(aix− bi)2 +

δ

n
‖x‖2

)
︸ ︷︷ ︸

def
=fi(x)

}
, (1)

where δ ≥ 0 is the ridge-regularization parameter. We denote the ridgeless empirical risk as

L(x)
def
=

1

2
‖Ax− b‖22. (2)
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On the problem (1), the steps taken by gradient decent (GD) can be written recursively as

xm-gd
k+1 = xm-gd

k −γk∇f(xm-gd
k ) = xm-gd

k −γkAT (Axm-gd
k −b)−γkδxm-gd

k +∆(xm-gd
k −xm-gd

k−1), (3)

where ∆ > 0 is the momentum parameter, γk is the learning rate schedule, and x0 ∈ Rd is an initial
vector assumed to be independent of all other randomness and having norm at most 1. When A is
large, computing these updates can be expensive, so an unbiased estimator for the true gradient is
often used, where a subset of the data points are selected uniformly at random. We focus on the
setting with batch size equal to one and without momentum, which we refer to as stochastic gradient
descent (SGD), and for which the iterates can be written recursively as

xsgd
k+1 = xsgd

k − γk∇fik(xsgd
k ) = xsgd

k − γkA
Teike

T
ik

(Axsgd
k − b)−

γkδ
n x

sgd
k , (4)

where the ik ∼ Unif([n]) iid. While it would also be possible to consider mini-batch SGD, previous
work has shown that batch sizes that are vanishingly small as a fraction of the number of samples
are equivalent to the single-batch analysis, after appropriately adjusting the time by a factor of the
batch size [60, Theorem 1]; similarly, we do not consider high-dimensional SGD with momentum as
it degenerates to SGD [58]. See also [30].

Diffusion approximations and homogenized SGD. A common paradigm for understanding SGD
is through stochastic Langevin diffusions (SLD), i.e. solutions of equations of the form

dXt = −γ(∇f(Xt) dt+
√
Σt dBt) , (5)

where γ is the step size of SGD, f is the loss function, Bt is a d-dimensional standard Brownian
motion, and the matrix 0 � Σt ∈ Rd×d models the noise covariance. In many analyses, no concrete
connection between SGD and SLD is developed, and the diffusion is merely used to build intuition.
A common example is the isotropic case (Σt ∝ Id), for which the Fokker-Planck equation implies
that the dynamics are reversible with respect to a density proportional to e−Cγf(x) with Cγ > 0 some
constant. Consequently, the process can escape local minima, exhibiting a trade-off between the
entropy and depth of minima and thereby highlighting a possible mechanism of implicit regularization.
In the general anisotropic case, describing the stationary distribution is more difficult; nonetheless,
the local geometry near minima of f can be analyzed, see [14, 35].

While this type of implicit entropic regularization might ultimately underlie the generalization benefits
of SGD for nonconvex problems, currently we lack a precise connection between a concrete SLD
and a practical nonconvex learning problem. As such, the implicit regularization effects of SGD on
nonconvex losses remains a largely unsolved problem.

For convex quadratics, however, the implications of Eq. (5) are quite clear: there is no notion of
implicit regularization as the noise in SLD negatively impacts generalization performance. Note that
because the noise is mean zero, any SLD is centered around gradient flow (GF) Xgf

t , which solves

dXgf
t = −∇f(Xgf

t ) , (6)

leading to the following conclusion for generalization (see also [88]):
Lemma 1. Suppose the objective function is f(x) = 1

2

(
‖Ax− b‖2 + δ‖x‖2

)
. Suppose (Xt : t ∈

[0,∞)) is an SLD (i.e.Xt solves (5)) with ‖Σt‖op almost surely bounded by some C <∞. Suppose

the population riskR : Rd → R is a convex function and denote x∗
def
= limt→∞X

gf
t , then

E[R(Xt)]︸ ︷︷ ︸
pop. risk of SLD

≥ R(Xgf
γt)︸ ︷︷ ︸

pop. risk of
gradient flow

for all t ≥ 0 and hence, lim inf
t→∞

E[R(Xt)]︸ ︷︷ ︸
limiting pop. risk of SLD

≥ R(x∗)︸ ︷︷ ︸
limiting pop. risk

gradient flow

.

If in additionR is strictly convex, and Σt → Σ∞ with Σ∞ � 0, then the inequality is strict.

Proof. The mean E[Xt], by the linearity of the gradient∇f , is GF. Under the conditions given, the
law ofXt converges to a Gaussian variable centered at x∗. Hence by Fatou’s lemma and Jensen’s
inequality, the inequality follows.

We emphasize that this conclusion applies even under general distribution shifts, so long as the risk
remains a convex function. Still, the utility of Lemma 1 may not be immediately clear, as it pertains
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to SLD and we have not yet established any concrete connection between SLD and the process of
interest, SGD. Nor is it evident what form such a connection should take—the agreement between
SGD and an SLD cannot occur at the level of individual states since the randomness from each
process is not assumed to be coupled. Instead, the most we can hope for is that statistics of the
processes agree. Specifically, we might hope that matching the noise structure of SGD with a careful
choice of SLD will cause relevant statistics, like the population risk, to be equal.

It turns out that such a choice of SLD exists for convex quadratic problems in high dimensions, and is
given by homogenized SGD (HSGD), introduced simultaneously in [52, 58]. Both the empirical and
population risks (L,R resp.) of HSGD agree with the same of SGD in the high-dimensional limit
(see Thm. 1). Mathematically, HSGD is the strong solution of the stochastic differential equation:

dXt
def
= −γ(t)∇L(Xt) dt+ γ(t)

√
2
nL(Xt)∇2L(Xt) dBt, for quadratic L, (7)

where againBt is a d-dimensional standard Brownian motion, γ(t) is the learning rate schedule, and
the initial condition is X0 = x0. Roughly, HSGD is a diffusion approximation to SGD that gains
explanatory power when the dimensionality is large. In particular, it does not require the step size
γ to be small, in contrast to the usual paradigm of SLD approximations. Note that as with other
universality results, the details of the noise distribution are not relevant and only the second-order
correlations contribute, which are carefully matched by HSGD to SGD.

The precise sense of the comparison requires us to evaluate low-dimensional statistics of the high-
dimensional dynamics; “low-dimensional” must be effective, in that the univariate statistics of
the SGD iterates concentrate around the same statistic evaluated on HSGD. For understanding
generalization or implicit regularization properties, a important statistic is the population risk,R.

Assumptions. For all parts of our analysis to hold, the pair (A, b) of the data matrixA ∈ Rn×d and
target vector b ∈ Rn must satisfy some quasi-random assumptions—a set of deterministic conditions
on the pair (A, b) that are satisfied with high probability by natural classes of random matrix-vector
pairs (see Appendix B for specifics). We use the convention that the target and initialization vectors
are bounded independent of n, ‖b‖22 ≤ C and ‖x0‖22 ≤ C, respectively.

We illustrate some examples below that we have shown to satisfy the quasi-random assumptions.

• Gaussian linear regression. Here the rows of A are iid and drawn from a Gaussian with
norm-bounded covariance Σ and the target b is drawn from a generative model, b = Ax̃+η
for some unknown signal x̃ ∈ Rd and independent noise η ∈ Rn.

• Subgaussian linear designs. In the example above, we can relax the Gaussian assumption to
be of the form xΣ1/2 for x a vector of iid centered subgaussian random variables [88, 30].

• Gaussian random features with a linear ground truth [51, 3, 66, 4]. Suppose A is given
by σ(XW ) for an iid standard Gaussian weight matrix W and Gaussian data matrix X .
Suitable assumptions on the activation function σ and the covariance Σ ofX added.

Assumption 1. The population riskR : Rd → R is a quadratic, that is, it is a degree-2 polynomial
or, equivalently, can be represented by

R(x) =
1

2
xTTx+ uTx+ c

for some d × d symmetric matrix T , vector u ∈ Rd, and scalar c ∈ R. We further assume that
‖∇2R‖op ≤ C, ‖∇R(0)‖22 ≤ C, and |R(0)| ≤ C.

A natural population risk is given byR(x) = 1
2E [(a · x− b)2] where (a, b) ∼ D. This distribution

D may or may not be the same as the distribution that generated the data [A | b] used in training.

As we work in the high-dimensional limit, we suppose that γk = γ(k/n) for a smooth, bounded
function γ(·) such that γ(t)→ γ ∈ [0,∞) and γ̂ def

= supt≥0 γ(t) <∞.

3 Main results

Our main results are analyzable (non-asymptotic) expressions for the empirical risk L and the
population riskR of SGD at any time t for the high-dimensional least squares problem (1). To begin,
we first establish the following equivalence between SGD and HGSD.
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Figure 1: Single runs of SGD vs. HSGD (Volterra) in streaming on standarized CIFAR-5M [54]
with car/plane class vector (1, 000, 000 samples); a standarized ReLu (74) random features model
(see Appendix B.1) was applied with increasing number of samples n and fixed d = 6000. The
predicted behavior from HSGD (denoted by Volterra) matches the performance of single runs of
SGD for finite n and streaming (n =∞). Shaded region (right) is the moving average of a single
run of SGD. Empirical risk (left) increases monotonically with n to its limit while population risk
generally decreases with n. Streaming corresponds to n = ∞ (see Appendix C). For consistency
across sample sizes, time is measured in iterations. Additional details in App G.

Theorem 1 (Equivalence of SGD and HSGD). Suppose the pair (A, b) ∈ Rn×d × Rd satisfy the
quasi-random assumptions with dε ≤ n ≤ d1/ε for some ε ∈ (0, 1]. Let the iterates xt = xsgd

btc be
generated from multi-pass SGD Eq. (4) andXt be the solution of Eq. (7). Then for any deterministic
T > 0 and any D > 0, there is a C > 0 such that

Pr

[
sup

0≤t≤T

∥∥∥∥(L(xbtnc)
R(xbtnc)

)
−
(
L(Xt)
R(Xt)

)∥∥∥∥
2

> d−ε/2
]
≤ Cd−D.

The rigorous proof is given in [61]. For the rest of this paper, we will use homogenized SGD to
analyze the behavior of multi-pass SGD. See also Appendix C where we heuristically extend this to
the case of streaming SGD.

While the comparison of SGD to HSGD requires relatively strong assumptions on A and b, the
analysis of HSGD can be performed under weaker assumptions (no quasirandomness assumptions
are needed). It suffices to suppose the problem is high dimensional in the following sense:
Assumption 2. The empirical risk L satisfies tr∇2L = n and 0 � ∇2L � nd−ε for some ε > 0.

This corresponds to the normalization where∇2L = ATA and each row ofA is length 1 and hence
tr∇2L = n.
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Under Assumptions 1 and 2, the dynamics of the empirical and population risk under HSGD
concentrate around a deterministic dynamical system driven by a Volterra integral equation:

Volterra Dynamics, Multi-pass. The following deterministic dynamical system is the
high-dimensional limit for L(Xt) andR(Xt), respectively

Ψt = L
(
X

gf
Γ(t)

)
+

∫ t

0

K(t, s;∇2L)Ψs ds (Empirical risk) (8)

Ωt = R
(
X

gf
Γ(t)

)
+

∫ t

0

K(t, s;∇2R)Ψs ds (Population risk) (9)

where the integrated learning rate Γ and kernel K, for any d× d matrix P , respectively are

Γ(t)=

∫ t

0

γ(s) ds, K(t, s;P )= γ2(s)
n

tr
(
(∇2

L)P exp
(
−2(∇2

L + δId)(Γ(t)− Γ(s))
))
. (10)

Theorem 2 (Concentration of HSGD around Volterra dynamics). Under Assumptions 1 and 2, for
any T > 0 and for any D > 0 there exists sufficiently large C > 0 such that for all d > 0

Pr

[
sup

0≤t≤T

∥∥∥∥(L(Xt)
R(Xt)

)
−
(

Ψt

Ωt

)∥∥∥∥ > d−ε/2
]
≤ Cd−D,

where Ψt and Ωt solve (8) and (9).

We give a formal proof of the concentration result in Appendix D.1 in Theorem 11.

3.1 No implicit regularization from SGD

From (9), for convexR we observe immediately that the population risk Ωt is only larger than the
population risk of GF. Moreover, we have an explicit formula for the excess risk due to SGD noise,

Ωt −R
(
X

gf
Γ(t)

)︸ ︷︷ ︸
excess risk due to SGD

def
=

∫ t

0

K(t, s;∇2R)×Ψs︸︷︷︸
limiting loss L

ds.

Note that the population risk of SGD tracks that of GF. If GF overfits, SGD overfits as well; there is
no statistical regularization due to the noise of SGD applied to empirical risk minimization (ERM).

We can further analyze the long-time behavior of SGD with exact limiting values for this excess risk.

Theorem 3 (Time infinity risk values). If γ(t) → 0 as t → ∞ but Γ(t) → ∞ (i.e. the usual
Robbins-Monro setting), then the excess population risk of SGD over GF tends to 0. If on the other
hand γ(t)→ γ ∈ (0, 2( 1

n tr
{ (ATA)2

ATA+δId

}
)−1 , then with Ψ∞ given by the limiting empirical risk,

Ψ∞ = L
(
Xgf
∞
)
×
(

1− γ

2n
tr

{
(∇2L)2

∇2L + δId

})−1

the excess risk due to SGD converges to

Ωt −R
(
X

gf
Γ(t)

)
→ γΨ∞

2n
× tr

{
(∇2R)(∇2L)

∇2L + δId

}
.

There are a few conclusions to draw directly from this. In the interpolation regime, that is where
Ψ∞ = 0, there is no excess risk due to SGD and there is no need to send γ to 0. Moreover, if the
empirical risk Ψ∞ is small, the excess risk due to SGD is proportional to γΨ∞, and hence it is
frequently orders of magnitude smaller than other potential sources of error. Furthermore, the excess
risk is affected by how similar the population and empirical risks are, in the large directions. Ridge
regularization can substantially reduce excess risk due to SGD in cases where population risk has
many small eigenvalues. In summary, either by sending γ → 0, working in the interpolation regime,
or otherwise in a regime Ψ∞ is small, the excess risk incurred by running SGD is minimal.
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3.2 Implicit conditioning of SGD

In contrast, the algorithmic advantages of SGD are substantial. To simplify the discussion, we
consider only the case of constant learning rate γ. In this case, the kernel in (8) and (9) simplifies to a
convolution kernel, which has a much simpler theory. To characterize the rates, we define λmin as the
smallest non-zero eigenvalue of∇2L. Then for generic initial conditions, (in particular almost surely
ifX0 is nonzero isotropic), GF has the following convergence rate

lim
t→∞

(
L(Xgf

γt)− L(Xgf
∞)

)1/t

=

{
e−γ(λmin(∇2L)+δ), if δ > 0,

e−2γλmin(∇2L), otherwise.

Here we use the notation that λmin(H) and λmax(H) are the smallest and largest eigenvalues of the
matrixH . The rate of convergence of Ψt to Ψ∞ can be no faster than the underlying GF, given by
the rate above. On the other hand, for larger γ the Volterra term in (8) can frustrate the convergence.
The Malthusian exponent of the convolution Volterra equation is given by

λ∗=inf

{
x : 1 =

∫ ∞
0

extK(t;∇2
L) dt

def
= γ2

∫ ∞
0

ext tr
((
∇2

L
)2

exp
(
−2γ(∇2

L + δId)t
))

dt

}
. (11)

As∇2L is finite dimensional, we have that λ∗ ≤ 2γ(λmin(∇2L) + δ), owing to the divergence of
the integral as x approaches this value from below. Note that in principal the Malthusian exponent
can be negative, in which case SGD is divergent. The Malthusian exponent gives the effective rate of
convergence of constant learning rate SGD. Define

Ξ(γ)
def
=

{
min{γ(λmin(∇2L) + δ), λ∗(γ)} if δ > 0,

λ∗(γ) if δ = 0.
(12)

Theorem 4 (SGD convergence rates, average-case). Then the rates of convergence of both the
empirical and population risk are controlled by this parameter

lim
t→∞

(
Ψt −Ψ∞

)1/t
= e−Ξ(γ) = lim

t→∞

(
Ωt − Ω∞

)1/t
.

Furthermore, when γ = n(tr(ATA))−1, we have the rate guarantee Ξ(γ) ≥ λmin(∇2L)+δ
2 .

The major difference between SGD and full batch methods such as momentum gradient descent
(MGD; see Appendix F.2 for definitions) is that they have different sensitivities to the Hessian
spectrum of the empirical risk L(x) = 1

2‖Ax− b‖
2. Define the condition numbers

κ
def
=
λmax(∇2L) + δ

λmin(∇2L) + δ
and κ

def
=

1
n tr(∇2L)

λmin(∇2L) + δ
.

The first of these is the classical condition number of the ridge problem, while the second is the
averaged condition number that regulates the behavior of SGD in the high-dimensional limit. MGD
has been long established to have a rate of convergence, with proper tuning, controlled by the square
root of the condition number [65], which is known to be optimal amongst first order algorithms.
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Figure 3: ICR effect on full batch MGD versus SGD in a synthetic least-squares setting. We
consider minimizing, for an n × d matrix A (with n = 2400, d = 3600) minx∈Rd

1
2‖Ax − b‖

2,
whereA is a Gaussian matrix, with correlated rows and b is given byAβ+η for a ground truth, which
is isotropic normal of expected norm-square 1, and η is isotropic normal of expected norm-square
0.02.

Theorem 5 (Convergence rates for MGD). For isotropic random initialization x0 or noisy b, δ > 0,
and strictly convex population riskR(
L(xm-gd

k )− L(x∗)
)1/k a.s.−−−−→

k→∞

(√
κ− 1√
κ+ 1

)
and

(
R(xm-gd

k )−R(x∗)
)1/k a.s.−−−−→

k→∞

(√
κ− 1√
κ+ 1

)
.

See Appendix F.2 for elaboration.

In light of Theorems 4 and 5, we can define the implicit-conditioning ratio as

ICR
def
=

κ√
κ
≈ log

(√
κ− 1√
κ+ 1

)
κ,

which measures the efficiency of SGD over MGD in that SGD with constant learning rate n/ tr(∇2L)
trains in an ICR-multiple of the number of epochs that MGD requires (lower is better for SGD).

Problems favor SGD when there are large outlier eigenvalues, a common feature of Hessian spectra
in practice [69, 70, 1]. Indeed, if the largest eigenvalues are on the same order as the unnormalized
trace, individual SGD iterates are as effective as full-batch gradient. In contrast, when the Hessian
spectrum is tightly packed, which is less common in practice but can occur after some preprocessing
techniques or e.g. for uncorrelated Gaussian samples, then MGD is favored. See Fig. 2.

3.3 Numerical results on ICR

In Fig. 3, we illustrate how ICR affects the relative performance of full batch MGD versus single
batch SGD in a synthetic least squares setting where we have tight control over the all the particulars
of the problem and in a neural network setting.We control the ICR by controlling the covariance
singular value spectrum of the rows ofA, which we take as Pareto distributed with exponent s for
varying s > 2. This choice allows us to affect the ICR of the problem without changing the minimum
curvature of the Hessian. The results, comparing SGD, MGD, and GD, are given in Figure 3.

We note a few key qualitative observations. First, even in MGD favored configurations, SGD will
outperform MGD on short time scales. When optimizing the hyperparameters in MGD for long-
time performance, minimal curvature (which in this case is just the minimal eigenvalue of AAT )
plays a major role in the choices; being tuned for long-time performance, MGD typically performs
suboptimally at initialization. In contrast, the learning rate in SGD only depends on average curvature,
and so it generally performs better at initialization on problems with a larger interval of Hessian
spectra.
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Figure 4: ICR and full-batch MGD versus SGD with a fully connected 2-layer neural network
with activation function f(x) = 1√

β
erf(
√
βx) on a 500-sample subset of CIFAR-10 with targets

car/plane. Momentum hyper-parameters were tuned empirically to give best performance. We note
that the loss curve of MGD also displays the characteristic cycloidal oscillations of tuned momentum
on inhomogeneous problems. Left: β = 0.01. ICR varies over the course of training but stays above
1, favoring momentum as illustrated in the figure. Right: β = 10. ICR varies slightly but always
stays below 1 throughout the training and SGD is favored over full-batch momentum.

Second, we note that the problem setup was chosen to hold the minimum curvature roughly constant
while varying s. When s tends to 2 from above, the largest eigenvalues ofAAT grows with feature
dimension d, but the average and minimum eigenvalue stays bounded with feature dimension. Hence
we can send the ICR to 0 by choosing an s above 2 and increasing d (or n).1 On the other hand,
by sending s → ∞, we send the covariance matrix to the identity, which tends to be momentum
favored.2

In Fig. 4, we run SGD on a fully-connected 2-layer neural network on a subset of CIFAR-10 in order
to examine the dynamics of the ICR for a non-trivial problem and to see how our insights might
play out in practice. Owing to the non-convexity of this problem, we define the ICR in terms of
the Gauss-Newton approximation to the Hessian, or equivalently in terms of the Neural Tangent
Kernel [29]. By changing the activation function of the network, we can vary the initial ICR from an
SGD-favored to a momentum-favored value. While the ICR does change over the course of training,
we find that, at least in this setting, the initial ICR can nevertheless predict the relative performance
of SGD versus MGD. Indeed, for activation functions for which the ICR remains above 1.0, the
training remains MGD-favored over sufficiently long times, and we observe that MGD with optimal
parameters does converge faster than SGD. In contrast, when the ICR remains below 1.0, we find
that SGD outperforms MGD.

4 Conclusion.

Using a specific type of SLD (called HSGD) that matches the second-order correlations in the noise
of SGD, we demonstrated that their empirical and population risks match in the high-dimensional
limit. Moreover, the risks of HSGD behavior deterministically, as described by a Volterra equation.
With this connection, we investigated the benefits of SGD on a convex objective. While there is no
statistical benefit to generalization from the noise of SGD, in overparameterized, interpolating settings
little is lost compared to GD. Moreover, when computational restrictions are imposed, SGD can be
radically faster than GD because of its dependence on a different condition number of the Hessian.
We characterized this speed up using the ICR, which when calculated for datasets common in deep
learning clearly favors SGD. This should highlight the difficulty in studying implicit regularization
for SGD empirically: any experiment necessarily has a finite computational budget and may find

1The relevance of s > 2 is that the Pareto has moments up to and including the second moment. For values
less than 2, the covariance spectra is sufficiently heavy that the maximum eigenvalue of AAT dominates the
trace. In that regime, the problem becomes effectively sparse, with an intrinsic dimension depending only on s,
and it should be expected that GD/SGD are approximately equivalent and outperform MGD.

2Furthermore, the ’average curvature’ speedup of SGD on short time scales becomes muted, owing to all
curvatures being the same.
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lower population risks with SGD simply via its improved conditioning. Finally, we demonstrated
limitations in using streaming SGD alone as a tool for studying generalization.

As future work, a major outstanding problem (both theoretically and empirically) is extending the
analysis above to non-quadratic losses, both train and test, and especially to other high-dimensional
problems not in the kernel regime. Finally, data augmentation can naturally be considered by
randomly augmenting each sample from D̂n in Eq. (30).
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