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Abstract

We develop and analyze algorithms for distributionally robust optimization (DRO)
of convex losses. In particular, we consider group-structured and bounded f -
divergence uncertainty sets. Our approach relies on an accelerated method that
queries a ball optimization oracle, i.e., a subroutine that minimizes the objec-
tive within a small ball around the query point. Our main contribution is ef-
ficient implementations of this oracle for DRO objectives. For DRO with N
non-smooth loss functions, the resulting algorithms find an ✏-accurate solution with
eO
�
N✏�2/3 + ✏�2

�
first-order oracle queries to individual loss functions. Com-

pared to existing algorithms for this problem, we improve complexity by a factor
of up to ✏�4/3.

1 Introduction

The increasing use of machine learning models in high-stakes applications highlights the importance
of reliable performance across changing domains and populations [11, 46, 35]. An emerging body
of research addresses this challenge by replacing Empirical Risk Minimization (ERM) with Dis-
tributionally Robust Optimization (DRO) [6, 50, 49, 22, 40], with applications in natural language
processing [47, 61, 35], reinforcement learning [17, 54] and algorithmic fairness [27, 56]. While
ERM minimizes the average training loss, DRO minimizes the worst-case expected loss over all
probability distributions in an uncertainty set U , that is, it minimizes

LDRO(x) := sup
Q2U

ES⇠Q[`S(x)], (1)

where `S(x) is the loss a model x 2 X incurs on a sample S and X is a closed convex set with
bounded Euclidean diameter. This work develops new algorithms for DRO, focusing on formulations
where U contains distributions supported on N training points, where N is potentially large. We
consider two well-studied DRO variants: (1) Group DRO [57, 31, 49], and (2) f -divergence DRO
[19, 6, 22].

Group DRO Machine learning models may rely on spurious correlations (that hold for most training
examples but are wrongly linked to the target) and therefore suffer high loss on minority groups where
these correlations do not hold [30, 27, 11]. To obtain high performance across all groups, Group
DRO minimizes the worst-case loss over groups. Given a set U = {w1, . . . , wM} of M distributions
over [N ], the Group DRO objective is1

Lg-DRO(x) := max
i2[M ]

Ej⇠wi`j(x) = max
i2[M ]

NX

j=1

wij`j(x). (2)

1Typically, each wi is uniform over a subset (“group”) of the N training points. However, most approaches
(and ours included) extend to the setting of arbitrary wi’s, which was previously considered in [57].
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Smoothness Method Group DRO (2) f -divergence DRO (3)

None (L = 1) Subgradient method [45] N✏�2 N✏�2

Stoch. primal-dual [43] ⇤ M✏�2 N✏�2

MLMC stoch. gradient [39] - ⇢✏�3 or ↵�1✏�2 †

Ours N✏�2/3 + ✏�2 N✏�2/3 + ✏�2

Weak (L ⇡ 1/✏) AGD on softmax [44] N✏�1 N✏�1

Ours N✏�2/3 +N3/4✏�1 N✏�2/3 +
p
N✏�1

Table 1. Number of r`i and `i evaluations to obtain E[LDRO(x)]�minx?2X LDRO(x?)  ✏, where
N is the number of training points and (for Group DRO) M is the number of groups. The stated
rates omit constant and polylogarithmic factors. ⇤ Requires an additional uniform bound on losses
(see Appendix A.1). † These rates hold only for specific f -divergences: CVaR at level ↵ or �

2-
divergence with size ⇢, respectively.

If we define the loss of group i as Li(x) :=
PN

j=1 wij`j(x) then objective (2) is equivalent to
maxq2�M

P
i2[M ] qiLi(x) with �M := {q 2 RM

�0 | ~1T q = 1}. Note that, unlike ERM, Group
DRO requires additional supervision in the form of subgroup identities encoded by {wi}.

DRO with f -divergence Another approach to DRO, which requires only as much supervision as
ERM, takes U to be an f -divergence ball around the empirical (training) distribution. For every
convex function f : R+ ! R [ {+1} such that f(1) = 0, f(0/0) = 0 and the f -divergence
between distributions q and p over [N ] is Df (q, p) :=

P
i2[N ] pif(qi/pi). The f -divergence DRO

problem corresponds to the uncertainty set U = {q 2 �N : Df (q,
1
N 1))  1}, i.e.,

Lf -div(x) := max
q2�N : 1

N

P
i2[N] f(Nqi)1

X

i2[N ]

qi`i(x). (3)

Several well-studied instances of DRO are a special case of this formulation, with the two most
notable examples being conditional value at risk (CVaR) and �2 uncertainty sets. CVaR at level
↵ corresponds to f(x) =

{x< 1
↵}

such that U =
�
q 2 �N s.t kqk1  1/(↵N)

 
, and has many

applications in finance such as portfolio optimization and credit risk evaluation [48, 37] as well as
in machine learning [47, 39, 20, 60, 17, 54]. The �2 uncertainty set with size ⇢ > 0 corresponds to
f(x) := 1

2⇢ (x� 1)2 and the resulting DRO problem is closely linked to variance regularization [21]
and has been extensively studied in statistics and machine learning [42, 27, 21, 39, 61].

Complexity notion In this paper, we design improved-complexity methods for solving the convex
problems (2) and (3) under the assumption that the loss `i is convex and Lipschitz for all i. We
measure complexity by the (expected) required number of `i(x) and r`i(x) evaluations to obtain
✏-suboptimal solution, i.e., return x such that LDRO(x) � minx?2X LDRO(x?)  ✏ with constant
probability. Table 1 summarizes our complexity bounds and compares them to prior art. Throughout
the introduction we assume (for simplicity) a unit domain size (kx� yk  1 for all x, y 2 X ) and
that each loss is 1-Lipschitz.

Prior art Let us review existing methods that solve Group DRO and f -divergence DRO problems
(see Section 1.1 for extended discussion). For a dataset with N training points, the subgradient
method [45] finds an ✏ approximate solution in ✏�2 iterations. Computing a single subgradient costs
N functions evaluations (since we need to find the maximizing q). Therefore, the complexity of this
method is O

�
N✏�2

�
.

DRO can also be viewed as a game between a minimizing x-player and a maximizing q-player, which
makes it amenable to primal-dual methods [43, 42, 49]. If we further assume that the losses are
bounded then, for q 2 �m, stochastic mirror descent with local norms obtains a regret bound of
O
�p

m log(m)/T
�

(see Appendix A.1). As a consequence, for Group DRO (where m = M ) the
complexity is eO

�
M✏�2

�
, and for f -divergence DRO (m = N ) the complexity is eO

�
N✏�2

�
.

Levy et al. [39] studied �2-divergence and CVaR DRO problems, and proposed using standard
gradient methods with a gradient estimator based on multilevel Monte Carlo (MLMC) [9]. For
�2-divergence with ball of size ⇢ they proved a complexity bound of eO

�
⇢✏�3

�
, and for CVaR at
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level ↵ they established complexity eO
�
↵�1✏�2

�
. However, for large uncertainty sets (when ⇢ or ↵�1

approach N ) their method does not improve over the subgradient method.

Stronger complexity bounds are available under the weak smoothness assumption that each `i
has O

�
✏�1
�
-Lipschitz gradient. Note that this is a weak assumption since if a function ` is not

continuously differentiable, it is possible to approximate ` with additive error at most ✏/2, by
its Moreau envelope è(x) = miny2X

n
`(y) + G2

2✏ kx� yk2
o

(see [15, Appendix A.1] for more
details). In particular, we can apply Nesterov’s accelerated gradient descent method [44] on an
entropy-regularized version of our objective to solve the problem with complexity eO

�
N✏�1

�
; see

Appendix A.2 for more details.

Our contribution We propose algorithms that solve the problems (2) and (3) with complexity
eO
�
N✏�2/3 + ✏�2

�
. Compared to previous works, we obtain better convergence rates for DRO with

general f -divergence when N � 1 and for Group DRO when M � N✏4/3. When the losses have
O(✏�1)-Lipschitz gradient, we solve f -divergence DRO with complexity eO

�
N✏�2/3 +

p
N✏�1

�
,

and, under an even weaker mean-square smoothness assumption (Ej⇠wikr`j(x) � r`j(y)k2 

O(✏�2)kx� yk2 for all x, y and i), we solve Group DRO with complexity eO
�
N✏�2/3 +N3/4✏�1

�
.

Our complexity bounds are independent of the structure of f and {wi}, allowing us to consider
arbitrarily f -divergence balls and support a large number of (potentially overlapping) groups. Our
rates are optimal up to logarithmic factors for the special case of minimizing maxi2[N ] `i(x), which
corresponds to Group DRO with N distinct groups and f -divergence DRO with f = 0 [58, 62, 15].

Our approach Our algorithms are based on a technique for acceleration with a ball optimization
oracle, introduced by Carmon et al. [13] and further developed in [15, 3]. Given a function F and
a query point x, the ball optimization oracle returns an approximate minimizer of F inside a ball
around x with radius r; the works [13, 15, 3] show how to minimize F using eO(r�2/3) oracle calls.
Our development consists of efficiently implementing ball oracles with radius r = eO(✏) for the DRO
problems (2) and (3), leveraging the small ball constraint to apply stochastic gradient estimators that
would have exponential variance and/or cost without it.

Carmon et al. [15] previously executed this strategy for minimizing the maximum loss, i.e.,
maxq2�N

P
i qi`i(x), which is a special case of both Group DRO and f -divergence DRO. How-

ever, the ball-oracle implementations of [15] do not directly apply to the DRO problems that we
consider; our oracle implementations differ significantly and intimately rely on the Group DRO and
f -divergence problem structure. We now briefly review the main differences between our approach
and [15], highlighting our key technical innovations along the way.

Since the Group DRO objective is maxq2�M

P
i qiLi(x) for Li(x) =

P
j2[N ] wij`j(x), one may

naively apply the technique of [15] with Li replacing `i. However, every step of such a method would
involve computing quantities of the form eLi(x)/✏

0
(for some ✏0 = e⇥(✏)), which can be up to N times

more expensive than computing e`j(x)/✏
0

for a single j. To avoid such expensive computation we
use MLMC [9] to obtain an unbiased estimate of eLi(x)/✏ with complexity O(1) and appropriately
bounded variance. In the weakly-smooth case we also adapt our estimator to facilitate variance
reduction [33, 2].

For f -divergence we consider the well-known dual form [6, 50]

max
q2�N

X

i2[N ]

{qi`i(x)�  (qi)} = min
y2R

(
⌥(x, y) :=

X

i2[N ]

 ⇤(`i(x)� y) + y

)

where  ⇤(v) = maxt�0{vt�  (t)} is the Fenchel dual of  . Stochastic gradient methods applied
directly on the dual formulation are notoriously unstable (see e.g., [42]). This is due to the fact
that the Fenchel dual  ⇤ can be very badly behaved even for standard f -divergences. We solve this
problem by (a) considering a small ball, (b) entropy-regularizing  . Our techniques rely on two
technical observations: (i) log( ⇤

✏
0(·)) is 1/✏0-Lipschitz for all convex  , and (ii) for 1-Lipschitz

losses, y?(x) = argminy2R ⌥(x, y) satisfies |y?(x)� y?(x0)|  kx� x0
k for all x, x0. To the best

of our knowledge, these observations are new and potentially of independent interest.

Paper organization. Section 2 provides notation and a concise summary of the ball acceleration
framework (largely taken from prior work) on which we build our algorithms. Sections 3 and 4
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present our main contributions in the Group and f -divergence DRO settings, respectively. Finally,
Section 5 concludes with discussion on the limitations and possible extensions of our work.

1.1 Additional related work

MLMC estimators The multilevel Monte Carlo (MLMC) technique was introduced by Giles [26]
and Heinrich [29] in order to reduce the computational cost of Monte Carlo estimation of integrals.
Blanchet and Glynn [9] extended this technique to estimating functions of expectation and proposed
several applications, including stochastic optimization [10]. In this work we use their estimator for
two distinct purposes: (1) obtaining unbiased Moreau envelope gradient estimates for ball oracle
acceleration as proposed by Asi et al. [3], and (2) estimating the exponential of an expectation for
Group DRO. Levy et al. [39] also rely on MLMC for DRO, but quite differently than we do: they
directly estimate the DRO objective gradient via MLMC, while we estimate different quantities.

Other DRO methods Several additional works proposed algorithms with theoretical guarantees
for f -divergence DRO. Jin et al. [32] considered non-convex and smooth losses. Song et al. [53]
proposed an algorithm for linear models with complexity comparable to the “AGD on softmax”
approach (Appendix A.2). Namkoong and Duchi [42] proposed a primal-dual algorithm that is
suitable for small uncertainty �2 sets (with size ⇢⌧

1
N ) and Curi et al. [20] proposed a primal-dual

algorithm specialized for CVaR. Other works consider DRO with uncertainty sets defined using the
Wasserstein distance [24, 23, 51, 34]. Another relevant line of works proposes refinements for DRO
that address some of the challenges in applying it to learning problems [60, 59, 55].

2 Preliminaries

Notation We write k·k for the Euclidean norm. We denote by Br(x0) the Euclidean ball of radius
r around x0. We let �n := {q 2 Rn

�0 | 1T q = 1} denote the probability simplex in Rn. For the
sequence zm, . . . , zn we use the shorthand znm. Using F as a generic placeholder (typically for a loss
function `i), we make frequent use of the following assumption.
Assumption 1. The function F : X ! R is convex and G-Lipschitz, i.e., for all x, y 2 X we
have |F (x)� F (y)|  Gkx� yk. In addition, the domain X is a closed and convex set, and it has
Euclidean diameter at most R.

Throughout, N denotes the number of losses and, in Section 3, M denotes the number of groups.
We use ✏ for our target accuracy and r✏ := ✏0/G for the ball radius, where ✏0 = ✏/(2 logM) for
Group-DRO (Section 3) and ✏0 = ✏/(2 logN) for f -divergence DRO (Section 4).

Complexity model We measure an algorithm’s complexity by its expected number of `i and r`i
evaluations; bounds on expected evaluation number can be readily converted to more standard
probability 1 bounds [see 3, Appendix A.3]. Moreover if X ⇢ Rd, d = ⌦(logN),2 and the time to
evaluate `i and r`i is O(d), the expected runtime of all the algorithms we consider is at most d times
the evaluation complexity.

2.1 Ball oracle acceleration

We now briefly summarize the complexity bounds given by the framework of [13, 15, 3] for acceler-
ated minimization using queries to (inexact) ball optimization oracles, defined as follows.
Definition 1. An algorithm is a Ball Regularized Optimization Oracle of radius r (r-BROO) for
function F : X ! R if for query point x̄ 2 X , regularization parameter � > 0 and desired accuracy
� > 0 it returns O�,�(x̄) 2 X satisfying

E

F (O�,�(x̄)) +

�

2
kO�,�(x̄)� x̄k2

�
 min

x2Br(x̄)\X

⇢
F (x) +

�

2
kx� x̄k2

�
+
�

2
�2. (4)

Proposition 1. Let F satisfy Assumption 1, let CF be the complexity of evaluating F exactly,
and let C�(�) bound the complexity of an r-BROO query with �,�. Assume that C�(�) is non-
increasing in � and at most polynomial in 1/�. For any ✏ > 0, Algorithm 1 returns x such that

2The assumption d = ⌦(logN) is only necessary for our results on f -divergence DRO (Section 4), where
the runtime of computing argminy2R ⌥(x, y) is O(Nd+N logN) due to the need to sort the losses.
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F (x) � minx?2X F (x?)  ✏ with probability at least 1
2 . For m✏ = O

�
log GR2

✏r

�
and �m =

O
� m2

✏✏
r4/3R2/3

�
, the complexity of the algorithm is

O

0

@
✓
R

r

◆2/3
2

4

0

@
m✏X

j=0

1

2j
C�m

✓
r

2j/2m2
✏

◆1

Am✏ + (C�m(r) + CF )m
3
✏ ,

3

5

1

A. (5)

Informally, the proposition shows that eO((R/r)2/3) BROO calls with � = e⌦(✏/(r3/4R2/3)) and
accuracy � = eO(r) suffice to find an ✏-accurate solution. As we show in the sequel, for C�(�) =
eO
�
N + ( G

�� )
2
�

the resulting complexity bound is eO
�
N(GR

✏ )2/3 + (GR
✏ )2

�
. The summation over

j in bound (5) stems from the use of MLMC to de-bias the BROO output (i.e., make it exact in
expectation): compared to the original proposal of Asi et al. [3], our version of the procedure in
Appendix B slightly alters this MLMC scheme by de-biasing one accurate BROO call instead of
averaging many inaccurate de-biased calls, improving our bounds by logarithmic factors.

3 Group DRO
In this section we develop our BROO implementations for the Group DRO objective (2). In Section 3.1
we describe an “exponentiated group-softmax” function that approximates Lg-DRO with additive
error at most ✏/2. We then apply stochastic gradient methods on this function to obtain BROO
implementations that yield improved rates for Group DRO via Proposition 1: we first consider the
non-smooth case in Section 3.2 and then the weakly-smooth case in Section 3.3.

3.1 Exponentiated group-softmax

Given a cheap and unbiased stochastic gradient estimator of rLg-DRO, we could use a variant of
SGD and minimize Lg-DRO to ✏-suboptimal solution using O(✏�2) steps. However, obtaining an
unbiased estimator is challenging due to the maximum operator in Lg-DRO. As a first step we use
entropy smoothing [7, 8, 5, 4] to replace the maximum in Lg-DRO with the softmax operation. More
specifically, we use the trick from [15] and minimize the “exponentiated softmax” (that has the form
of a weighted finite sum) within a small ball. For target accuracy ✏, regularization parameter � � 0,
center point x̄ 2 X and ✏0 = ✏/(2 logM) > 0, the (regularized) group-softmax function is

Lsmax,✏,�(x) := ✏0 log

0

@
X

i2[M ]

e
Li(x)

✏0

1

A+
�

2
kx� x̄k2 where Li(x) =

X

j2[N ]

wij`j(x). (6)

We will implement a BROO for Lsmax,✏ := Lsmax,✏,0, which is a uniform approximation of Lg-DRO:
|Lg-DRO(x)� Lsmax,✏(x)|  ✏/2 for all x 2 X ; see Appendix C.1 for details.

The (regularized) exponentiated group-softmax is

�✏,�(x) :=
X

i2[M ]

p̄i�i(x) where �i(x) = ✏0e
Li(x)�Li(x̄)+�

2
kx�x̄k2

✏0 and p̄i =
e

Li(x̄)

✏0

P
i2[M ] e

Li(x̄)

✏0
. (7)

In the following lemma we (easily) extend Carmon et al. [15, Lemma 1] to exponentiated group-
softmax, showing that �✏,� is well-behaved inside a ball of (appropriately small) radius r around x̄
and facilitates minimizing Lsmax,✏,� in that ball; see Appendix C.1 for the proof.
Lemma 1. Let each `i satisfy Assumption 1, and consider the restriction of Lsmax,✏,� (6) and
�✏,� (7) to Br(x̄). Then the functions have the same minimizer x? 2 Br(x̄) and, if �  O(G/r) and
r  O(✏0/G), then (a) �✏,� is ⌦(�)-strongly convex, (b) each �i is O(G)-Lipschitz and (c) for every
x 2 Br(x̄) we have Lsmax,✏,�(x)� Lsmax,✏,�(x?)  O(�✏,�(x)� �✏,�(x?)).

3.2 BROO implementation for Group DRO non-smooth losses

To motivate our BROO implementation, let us review how [15] use the exponentiated softmax in
the special case of size-1 groups, i.e., Li = `i, and explain the difficulty that their approach faces
when the group structure is introduced. The BROO implementation in [15] is based on SGD variant
with the stochastic gradient estimator ĝ(x) = e(Li(x)�Li(x̄))/✏

0
rLi(x) where i ⇠ p̄i. However, for
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Group DRO where Li =
P

j2[N ] wij`j , the estimator ĝ(x) can be up to N times more expensive to
compute. Approximating ĝ(x) by drawing j, j0 ⇠ wi and taking e(`j(x)�`j(x̄))/✏

0
r`j0(x) will result

in a biased estimator since Ej⇠wie
(`j(x)�`j(x̄))/✏0 6= e(Li(x)�Li(x̄))/✏

0
. To address this challenge we

propose a new gradient estimator based on the multilevel Monte Carlo (MLMC) method [9].

The MLMC unbiased estimator for �i(x) = ✏0e(Li(x)�Li(x̄))/✏
0
, which we denote by cM[�i(x)], is

defined as follows:

Draw J ⇠ Geom
⇣
1� 1p

8

⌘
, S1, . . . , Sn

iid
⇠ wi and let cM[�i(x)] := b�(x;S1) +

bD2J

pJ
,

where pj := P(J = j) =
�
1/

p
8
�j⇣

1� 1p
8

⌘
and, for n 2 2N, we define

bDn := b�(x;Sn
1 )�

b�
⇣
x;Sn/2

1

⌘
+ b�
⇣
x;Sn

n/2+1

⌘

2
and b�(x;Sn

1 ) := ✏0e
1
n

Pn
j=1

`Sj
(x)�`Sj

(x̄)+�
2

kx�x̄k2

✏0 .

With the MLMC estimator for �i in hand, we estimate the gradient of �✏,� as follows:

Draw i ⇠ p(x̄) , j ⇠ wi and set ĝ(x) =
1

✏0
cM[�i(x)](r`j(x) + �(x� x̄)). (8)

In the following lemma we summarize the important properties of the MLMC and gradient estimators;
see Appendix C.2 for the proof.

Lemma 2. Let each `i satisfy Assumption 1, and let r 
✏0

G , � 
G
r and x 2 Br(x̄). Then cM[�i(x)]

and ĝ(x) are unbiased for �i(x) and r�✏,�(x), respectively, and have bounded second moments:
E
⇥ cM[�i(x)]

⇤2
 O

⇣
G4kx�x̄k4

✏02 + ✏02
⌘

and Ekĝ(x)k2  O
�
G2
�
. In addition, the complexity of

computing cM[�i(x)] and ĝ(x) is O(1).

Due to Lemma 2 and since �✏,� is ⌦(�)-strongly convex, we can use the Epoch-SGD algorithm
of Hazan and Kale [28] with our gradient estimator (8). This algorithm has rate of convergence
O
�
G2/(�T )

�
and our gradient estimator requires additional N function evaluations for precomputing

the sampling probabilities {p̄i}. We thus arrive at the following complexity bound.

Theorem 1. Let each `j satisfy Assumption 1, let ✏, �,� > 0 and let r✏ = ✏/(2G logM). For
any query point x̄ 2 Rd, regularization strength �  O(G/r✏) and accuracy �, EpochSGD [28,
Algorithm 1]) with the gradient estimator (8) outputs a valid r✏-BROO response and has complexity
C�(�) = O

�
N + G2

�2�2

�
. Consequently, the complexity of finding an ✏-suboptimal minimizer of Lg-DRO

(2) with probability at least 1
2 is

O

 
N

✓
GR

✏

◆2/3

log11/3 H +

✓
GR

✏

◆2

log2 H

!
where H := M

GR

✏
.

We provide the proof for Theorem 1 in Appendix C.3; the final complexity bound follows from
straightforward calculations which we now briefly outline. According to Proposition 1, finding an
✏
2 -suboptimal solution for Lsmax,✏ (and consequently an ✏-suboptimal solution for Lg-DRO) involves
eO
�
(R/r✏)

2/3� BROO calls with accuracy � = e⌦
�
r✏2�J/2

�
and regularization strength � � �m,

where J = min{Geom( 12 ),m}. We may therefore bound the complexity of each such call by

mX

j=0

2�j
C�m

⇣
r✏2

�j/2
⌘
=

mX

j=0

2�j eO
✓
N +

2jG2

�2mr
2
✏

◆
(?)
= eO

 
N +

✓
GR

✏

◆2⇣r✏
R

⌘2/3
!
,

where (?) follows from substituting �m = e⌦
�
✏r�4/3
✏ R�2/3

�
and m = eO(1). Multiplying this bound

by eO
�
(R/r✏)

2/3� yields (up to polylogarithmic factors) the conclusion of Theorem 1.
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3.3 Accelerated variance reduction for mean-square smooth losses
In this section we provide an algorithm with an improved rate of convergence under the following
mean-square smoothness assumption.
Assumption 2. For all x, x0

2 Br(x̄) and i 2 [M ], Ej⇠wikr`j(x)�r`j(x0)k2  L2
kx� x0

k
2.

Note that assuming L-Lipschitz gradient for each `i implies Assumption 2, but not the other way
around. To take advantage of Assumption 2, we first rewrite the function �✏,�(x) in a way that is
more amenable to variance reduction:

�✏,�(x) :=
X

i2[M ]

cx0,x̄pi(x
0)�i(x, x

0), where �i(x, x
0) := ✏0e

Li(x)�Li(x
0)+�

2
kx�x̄k2

✏0 ,

cx0,x̄ =

 P
j2[M ] e

Lj(x
0)

✏0

P
j2[M ] e

Lj(x̄)

✏0

!
and pi(x

0) :=
e

Li(x
0)

✏0

P
j2[M ] e

Lj(x
0)

✏0

.

(Note that �i(x, x̄) = �i(x)). Given a reference point x0, to compute a reduced-variance estimator of
r�✏,�(x), we draw i ⇠ pi(x0) and j ⇠ wi, and set:

ĝx0(x) := r�✏,�(x
0) +

cx0,x̄

✏0

h
cM[�i(x, x

0)]r`�j (x)� �i(x
0, x0)r`�j (x

0)
i

(9)

where r`�j (x) := r`j(x) + �(x� x̄) and cM[�i(x, x0)] is an MLMC estimator for �i(x, x0) defined
analogously to cM[�i(x)] (see details in Appendix C.4). The estimator (9) is not precisely standard
SVRG [33] since we use cM[�i(x, x0)] as an estimator for �i(x, x0). Simple calculations show that
Eĝx0(x) = r�✏,�(x) and the following lemma shows that ĝ satisfies a type of variance bound
conducive to variance-reduction schemes; see Appendix C.4 for the proof.
Lemma 3. Let each `j satisfy Assumptions 1 and 2. For any � 

G
r , r = ✏0

G and x, x0
2 Br(x̄), the

variance of ĝx0(x) is bounded by Var(ĝx0(x))  O
⇣�

L+ �+ G2

✏0

�2
kx� x0

k
2
⌘

.

Accelerated variance reduction methods for convex functions typically require a stronger variance
bound of the form Var(ĝx0(x))  2L(F (x0)� F (x)� hrF (x), x0

� xi) for every x [cf. 1, Lemma
2.4]. The guarantee of Lemma 3 is weaker, but still allows for certain accelerated rates via, e.g., the
Katyusha X algorithm [2]. With it, we obtain the following guarantee.
Theorem 2. Let each `j satisfy Assumptions 1 and 2. Let ✏ > 0, ✏0 = ✏/(2 logM) and r✏ = ✏0/G.
For any query point x̄ 2 Rd, regularization strength �  O(G/r✏) and accuracy �, KatyushaXs

[2, Algorithm 2] with the gradient estimator (9) outputs a valid r✏-BROO response and has com-

plexity C�(�) = O
⇣⇣

N +
N3/4(G+

p
✏0L)p

�✏0

⌘
log
�
Gr✏
��2

�⌘
. Consequently, the complexity of finding an

✏-suboptimal minimizer of Lg-DRO (2) with probability at least 1
2 is

O

 
N

✓
GR

✏

◆2/3

log14/3 H +N3/4

 
GR

✏
+

r
LR2

✏

!
log7/2 H

!
where H := M

GR

✏
.

We provide the proof of Theorem 2 in Appendix C.5. For the special case of Group DRO with a single
group satisfying Assumption 2 with L = ⇥

�
G2/✏

�
, i.e. minimizing the average loss, we have the

lower bound e⌦
�
N+N3/4GR

✏

�
[62] and for the case of N distinct groups, i.e. minimizing the maximal

loss, we have the lower bound e⌦
�
N✏�2/3

�
[15]. This implies that in the weakly mean-square smooth

setting the term scaling as N3/4✏�1 and the term scaling as N✏�2/3 are unimprovable.

4 DRO with f -divergence
In this section we develop our BROO implementation for the f -divergence objective (3). In Section 4.1
we reduce the original DRO problem to a regularized form using Lagrange multipliers. Next, in
Section 4.2 we show that adding negative entropy regularization to the objective produces the
stability properties necessary for efficient ball optimization. In Section 4.3 we describe a BROO
implementation for the non-smooth case using a variant of Epoch-SGD [28], and in Section 4.4 we
implement the BROO under a weak-smoothness assumption by carefully restarting an accelerated
variance reduction method [1].
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4.1 The dual problem

We first note that (due to Slater’s condition), by Lagrange duality, the objective (3) is equivalent to

Lf -div(x) := max
q2�N :

P
i2[N]

f(Nqi)
N 1

X

i2[N ]

qi`i(x) = min
⌫�0

(
⌫ + max

q2�N

X

i2[N ]

⇣
qi`i(x)�

⌫

N
f(Nqi)

⌘)
.

Writing  (s) := ⌫
N f(Ns) for  : R+ ! R, we therefore consider objectives of the form

L (x) := max
q2�N

X

i2[N ]

(qi`i(x)�  (qi)) = min
y2R

(
⌥(x, y) :=

X

i2[N ]

 ⇤(`i(x)�Gy) +Gy

)
(10)

where G is the Lipschitz constant of each loss `i and for the last equality we use Lagrange duality,
with  ⇤(v) := maxt2dom( ){vt�  (t)} the Fenchel dual of  (for more details see Appendix D.1).
We show that under weak assumptions (introducing logarithmic dependence on bounds on f and
the losses) we can solve the constrained problem (3) to accuracy ✏ by computing a polylogarithmic
number of O(✏)-accurate minimizers of (10); see Appendix D.2 for details. Since the complexity of
solving (10) holds for any ⌫ > 0, and we have a lower bound for the required ⌫, for the remainder of
this section we focus on minimizing L for arbitrary convex  .

4.2 Stabilizing the gradient estimator

While minimizing (10) can be viewed as ERM (over x and y), straightforward application of SGD
does not solve it efficiently. To see this, consider the standard gradient estimator formed by sampling
i ⇠ Unif([N ]) and taking ĝx = N ⇤0(`i(x)�Gy)r`i(x) and ĝy = G

�
1 � N ⇤0(`i(x)�Gy)

�
.

For general  , this estimator will have unbounded second moments, and therefore SGD using them
would lack a convergence guarantee. As an extreme example, consider  = 0 (corresponding to
minimizing the maximum loss) whose conjugate function  ⇤(v) is 0 for v  0 and 1 for v > 0,
leading to meaningless stochastic gradients.

We obtain bounded gradient estimates in two steps. First, we find a better distribution for i using
a reference point x̄ 2 X with corresponding ȳ = argminy2R ⌥(x̄, y). Namely, we note that the
optimality condition for ȳ implies that  ⇤0(`i(x̄) � Gȳ) is a pmf over [N ]. Therefore, we may
sample i ⇠  ⇤0(`i(x̄) � Gȳ) and estimate the gradient of ⌥ at (x, y) using ĝx = ⇢i(x, y)r`i(x)

and ĝy = G
�
1� ⇢i(x, y)

�
, where ⇢i(x, y) =

 ⇤0(`i(x)�Gy)
 ⇤0(`i(x̄)�Gȳ) . However, for general  (and  = 0 in

particular), the ratio ⇢i(x, y) can be unbounded even when x, y are arbitrarily close to x̄, ȳ.

Our second step ensures that ⇢i(x, y) is bounded around x̄, ȳ by adding a small negative entropy term
to  , defining

 ✏(q) :=  (q) + ✏0q log q where ✏0 :=
✏

2 logN
, (11)

and
L ,✏(x) = min

y2R
⌥✏(x, y) with ⌥✏(x, y) :=

X

i2[N ]

 ⇤
✏ (`i(x)�Gy) +Gy. (12)

Due to our choice of ✏0, we have |L (x) � L ,✏(x)|  ✏/2 for all x 2 Rd, and conse-
quently an ✏/2-accurate minimizer of L ,✏ is also an ✏-accurate for L (see Lemma 18 in
Appendix D.3). When  = 0 we have  ⇤

✏ (v) = e(v�1)/✏0 and therefore the corresponding
⇢i(x, y) = e(`i(x)�`i(x̄)�G(y�ȳ))/✏0 .The following lemma, which might be of independent inter-
est, shows that the same conclusion holds for any convex  .
Lemma 4. For any convex  : R+ ! R and  ✏ defined in (10), log

�
 ⇤
✏
0(·)
�

is 1
✏0 -Lipschitz.

See proof in Appendix D.4. Thus,  ⇤
✏
0(v)/ ⇤

✏
0(v̄) = elog 

⇤
✏
0(v)�log ⇤

✏
0(v̄)

 e(v�v̄)/✏0 and ⇢i(x, y) 
e(`i(x)�`i(x̄)�G(y�ȳ))/✏0 continues to hold. Therefore, if |y � ȳ|  ✏0/G = r✏ and x 2 Br✏(x̄) (so
that |`i(x)� `i(x̄)|  ✏0 if `i satisfies Assumption 1), we have the bound ⇢i(x, y)  e2.

It remains to show that we may indeed restrict y to be within distance r✏ from ȳ. To this end, we make
the following observation which plays a key part in our analysis and might also be of independent
interest (see proof in Appendix D.4).
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Lemma 5. For G > 0, `(x) = (`1(x), . . . , `N (x)) and y?(x) = argminy2R ⌥✏(x, y), we have
|y?(x) � y?(x0)|  1

Gk`(x)� `(x0)k1 for all x, x0
2 X . Moreover, if each `i is G-Lipschitz, we

have |y?(x)� y?(x0)|  kx� x0
k.

Lemma 5 implies that x?, y? = argminx2Br✏ (x̄),y2R ⌥✏(x, y) satisfy |y? � ȳ|  kx? � x̄k  r✏.
Therefore, when minimizing ⌥✏ (or any regularized version of it) inside the ball Br✏(x̄), we may
restrict y to [ȳ� r✏, ȳ+ r✏] without loss of generality. We also note that Lemma 5 holds for all values
of ✏ and is therefore valid even without entropy regularization (as long as  ⇤ is strongly convex y? is
unique, and if y? is not unique then we can still choose y? such that the bound of this lemma holds).

4.3 BROO implementation for f -divergence DRO with non-smooth losses
By the discussion above, to implement a BROO for L ,✏(x) (with radius r✏ = ✏0/G, regularization
�, and query x̄ 2 X ) it suffices to minimize ⌥✏,�(x, y) := ⌥✏(x, y) +

�
2 kx� x̄k2 over x 2 Br✏(x̄)

and y 2 [ȳ � r✏, ȳ + r✏], where ȳ = argminy2R ⌥✏(x̄, y). To that end we estimate the gradient
of ⌥✏,�(x, y) as follows. Letting p̄i =  ⇤

✏
0(`i(x̄)�Gȳ) (making p̄ a pmf by optimality of ȳ), we

sample i ⇠ p̄ and set

ĝx(x, y) =
 ⇤
✏
0(`i(x)�Gy)

p̄i
r`i(x, y) and ĝy(x, y) = G

✓
1�

 ⇤
✏
0(`i(x)�Gy)

p̄i

◆
. (13)

Lemma 4 implies the following bounds on our gradient estimator; see proof in Appendix D.5.
Lemma 6. Let each `i be G-Lipschitz, let x̄ 2 X and ȳ = argminy2R ⌥✏,�(x̄, y). Let r✏ = ✏0

G , then
for all x 2 Br✏(x̄) and y 2 [ȳ � r✏, ȳ + r✏], the gradient estimators ĝx and ĝy satisfy the following:

1. Ei⇠p̄i [ĝ
x(x, y)] = rx⌥✏(x, y) and Ei⇠p̄i [ĝ

y(x, y)] = ry⌥✏(x, y).

2. Ei⇠p̄ikĝ
x(x, y)k2  e4G2 and Ei⇠p̄i |ĝ

y(x, y)|2  e4G2.

To implement the BROO using our gradient estimator we develop a variant of the Epoch-SGD
algorithm of Hazan and Kale [28] (Algorithm 3 in Appendix D.5). Similarly to Epoch-SGD, we
apply standard SGD on ⌥✏,� (with gradient estimator (13)) in “epochs” whose length doubles in
every repetition. Our algorithm differs slightly in how each epoch is initialized. Standard Epoch-SGD
initializes with the average of the previous epoch’s iterates, and strong convexity shows that the
suboptimality and distance to the optimum shrink by a constant factor after every epoch. However,
since ⌥✏,� is strongly convex only in x and not in y, we cannot directly use this scheme. Instead, we
set the initial y variable to be argminy ⌥✏,�(x

0, y), where x0 is the initial x variable still defined as the
previous epoch’s average; this initialization has complexity N , but we only preform it a logarithmic
number of times. Using our initialization scheme and Lemma 5, we recover the original Epoch-SGD
contraction argument, yielding the following complexity bound (see proof in Appendix D.5).
Theorem 3. Let each `i satisfy Assumption 1. Let ✏,�, � > 0, and r✏ = ✏/(2G logN). For any query
point x̄ 2 Rd, regularization strength �  O(G/r✏) and accuracy � < r✏/2, Algorithm 3 outputs a
valid r✏-BROO response for L ,✏ and has complexity C�(�) = O

�
G2

�2�2 +N log
�
r✏
�

��
. Consequently,

the complexity of finding an ✏-suboptimal minimizer of L (10) with probability at least 1
2 is

O

 
N

✓
GR

✏

◆2/3

log11/3 H +

✓
GR

✏

◆2

log2 H

!
where H := N

GR

✏
.

4.4 Accelerated variance reduction for smooth losses
In this section, we take advantage of the following smoothness assumption.
Assumption 3. For every i 2 [N ] the loss `i is L-smooth, i.e., has L-Lipschitz gradient.

Let us rewrite ⌥✏,� in a form that is more amenable to variance reduction techniques:

⌥✏,�(x, y) =
X

i2[N ]

p̄i�i(x, y) where �i(x, y) :=
 ⇤
✏ (`i(x)�Gy)

p̄i
+Gy +

�

2
kx� x̄k2

and, as before p̄i =  ⇤
✏ (`i(x̄)�Gȳ) for some ball center x̄ 2 X and ȳ = argminy2R ⌥✏(x̄, y). In the

following lemma, we bound the smoothness of the functions �i, deferring the proof to Appendix D.6.
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Lemma 7. For any i 2 [N ], let `i be G-Lipschitz and L -smooth, let r✏ = ✏0

G and � = O
�
G
r✏

�
. The

restriction of �i to x 2 Br✏(x̄) and y 2 [ȳ � r✏, ȳ + r✏] is O(G)-Lipschitz and O
�
L+ G2

✏0

�
-smooth.

Since ⌥✏,� is a finite sum of smooth functions, we can obtain reduced-variance gradient estimates by
the standard SVRG technique [33]. For any reference point x0, y0, the estimator is

ĝx0,y0(x, y) = r⌥✏(x
0, y0) +r�i(x, y)�r�i(x

0, y0), (14)
where r is with respect to the vector [x, y]. Similar to non-smooth case, obtaining an efficient
BROO implementation is complicated by the fact that ⌥✏,� is strongly-convex in x but not in y.
Our solution is also similar: we propose a restart scheme and minimize over y exactly between
restarts (Algorithm 4 in Appendix D.6), that gives the following complexity bound (see proof in
Appendix D.6).
Theorem 4. Let each `i satisfy Assumptions 1 and 3, let ✏,�, � > 0, and r✏ =

✏
2G logN . For any

query point x̄ 2 Rd, regularization strength �  O(Gr✏ ) and accuracy �, Algorithm 4 outputs a

valid r✏-BROO response for L ,✏ and has complexity C�(�) = O
⇣⇣

N +
p
N(G+

p
✏0L)p

�✏0

⌘
log Gr✏

��2

⌘
.

Consequently, the complexity of finding an ✏-suboptimal minimizer of L (10) with probability at
least 1

2 is

O

 
N

✓
GR

✏

◆2/3

log14/3 H +
p

N

 
GR

✏
+

r
LR2

✏

!
log5/2 H

!
where H := N

GR

✏
.

5 Discussion
Limitations While our work indicates that the ball optimization approach offers significant com-
plexity gains for DRO, we note that turning the algorithms we propose into practical DRO methods
faces several challenges. A main challenge is the costly bisection procedure common to all Monteiro-
Svaiter-type acceleration schemes [41, 25, 13, 52]. Fortunately, very recently, two works [16, 36]
(the former partially motivated by our paper) have shown how to remove the bisection from Monteiro-
Svaiter schemes, significantly improving the practical potential of the methods we propose. However,
another practical limitation of our approach is the need to tune many parameters that are not known
in advance, such as those relating to the ball radius r✏ and smoothing level ✏0, as well as step sizes
and number of iterations of oracle implementations; a more adaptive setting for these parameters is
likely important.

Extensions First, it would be interesting to extend our approach to DRO objectives
maxq2U

P
i2[N ] qi`i(x) with uncertainty set U that is an arbitrary subset of the simplex. While

the subgradient method, the primal-dual method (Appendix A.1), and “AGD on softmax” (Ap-
pendix A.2) all apply to any U ✓ �N , our methods strongly rely on the structure of U induced by
Group- f -divergence DRO, and extending them to unstructured U ’s seems challenging.

Second, it would be interesting to generalize our results in the “opposite” direction of getting
better complexity bounds for problems with additional structure. For Group-DRO our bounds are
essentially optimal when the number of groups M = ⌦(N), but are suboptimal when M = O(1).
We leave it as a question for further research if it is possible to obtain a stronger bound such as
eO
�
N +M✏�2/3 + ✏�2

�
, which recovers our result for M = N but improves on it for smaller values

of M . Taking CVaR at level ↵ as a special case of f -divergence DRO, our bounds are optimal when
↵ is close to 1/N but suboptimal for larger value of ↵; it would be interesting to obtain bounds such
as eO

�
N + ↵�1✏�2/3 + ✏�2

�
.

A third possible extension of our research is DRO in the non-convex setting. For this purpose, it might
be possible to use the technique of Carmon et al. [12] for turning accelerated convex optimization
algorithms to improved-complexity methods for smooth non-convex optimization.
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