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Abstract

Pre-trained language models (LMs) are shown to easily generate toxic language. In
this work, we systematically explore domain-adaptive training to reduce the toxicity
of language models. We conduct this study on three dimensions: training corpus,
model size, and parameter efficiency. For the training corpus, we demonstrate
that using self-generated datasets consistently outperforms the existing baselines
across various model sizes on both automatic and human evaluations, even when
it uses a 1

3 smaller training corpus. We then comprehensively study detoxifying
LMs with parameter sizes ranging from 126M up to 530B (3× larger than GPT-
3), a scale that has never been studied before. We find that i) large LMs have
similar toxicity levels as smaller ones given the same pre-training corpus, and
ii) large LMs require more endeavor to unlearn the toxic content seen at pre-
training. We also explore parameter-efficient training methods for detoxification.
We demonstrate that adding and training adapter-only layers in LMs not only
saves a lot of parameters but also achieves a better trade-off between toxicity and
perplexity than whole model adaptation for large-scale models. Our code will be
available at: https://github.com/NVIDIA/Megatron-LM/.

1 Introduction

Large-scale pre-trained language models (LMs) [1–6] have demonstrated substantial performance
gains on various NLP tasks, especially when scaling up the sizes of models. However, recent
studies [7, 8] show that generative LMs can generate toxic and biased language, which raises ethical
concerns for their safe deployment in real-world applications.

Previous methods on reducing the toxicity of LMs can be categorized as: decoding-time methods,
pre-training-based methods, and domain-adaptive training methods. Decoding-time methods [9–14]
manipulate the output distribution or input prompts at the inference stage without modifying the
original model parameters. These methods can be flexible, but they either resort to some simple
word filtering strategies [10], or increase the computational cost at the inference stage. For example,
PPLM [9] requires multiple iterations of backward propagation through the LM when generating
every token, which makes it prohibitively expensive to be deployed to production especially for
large-scale LMs. 3 In contrast, pre-training-based methods directly filter out the potentially toxic
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content within the pre-training corpus and retrain the model from scratch [e.g., 15]. However, it is
difficult to determine the filtering criterion beforehand, and pre-training a large LM multiple times
from scratch is quite expensive.

Domain-adaptive training methods [10, 16] further fine-tune the pre-trained LMs on carefully curated
datasets (e.g., Jigsaw, filtered OWTC [17]). For instance, Gehman et al. [10] construct a nontoxic
data corpus from an existing dataset, OWTC, via the Perspective API 4 and perform the fine-tuning on
the nontoxic corpus. Domain-adaptive training is more flexible than pre-training methods, as one can
still customize the model after the expensive pre-training process. Compared to the decoding-time
methods, domain-adaptive training methods have the following advantages: i) they can achieve fast
and memory-efficient inference, thus can be deployed in broader systems; and ii) they can largely
reduce the model toxicity while still maintaining good LM quality measured by perplexity and
downstream task performance as we will show in this work.

In this paper, we explore the limits of domain-adaptive training for detoxifying language models along
the following three aspects: 1) Training Corpus: Unlike previous methods using curated pre-training
corpus for detoxification, we propose to leverage the generative power of LMs to generate nontoxic
corpus, which achieves better data efficiency for detoxification. 2) Model Size: We systematically
study and mitigate the toxicity issues in LMs with parameter sizes ranging from 126M to 530B,
a scale that has never been studied before in this domain. 3) Parameter-efficient Training: We
investigate two parameter-efficient paradigm: adapter [18] and prefix-tuning [19], and compare them
with whole model adaptation in a systematic way. We hope our work can shed light on the challenges
of detoxifying large-scale LMs, as well as motivate the development of detoxification techniques that
are effective and parameter-efficient without significantly hurting the LM quality.

Summary of Contributions:
• We identify the trade-off between detoxification effectiveness (measured by Perspective API and

human evaluation) and language model quality (measured by validation perplexity and downstream
task accuracy). Existing approaches either suffer from limited detoxification effectiveness or
significantly sacrifice the language model quality to detoxify generative LMs.

• We propose Self-Generation Enabled domain-Adaptive Training (SGEAT) that uses a self-
generated dataset for detoxification. It mitigates the exposure bias [20, 21] from the discrepancy
between teacher-forced domain-adaptive training and autoregressive generation at test time, and
thus achieves better data efficiency. In particular, we demonstrate that it consistently outperforms
the baseline approach with domain-adaptive training on pre-training data (DAPT) by a wide
margin across various model sizes in terms of automatic and human evaluations, even when
we use only a 1

3 smaller corpus for training. By combining SGEAT with the state-of-the-art
decoding-time method, we can further reduce the toxicity of large-scale generative LM.

• From the perspective of model size, we find that: i) Large LMs have similar toxicity levels as
smaller ones given the same pre-training corpus. This implies the toxicity comes from the training
dataset, instead of the model size. ii) Large LMs require more efforts (e.g., larger training corpus)
to reduce toxicity.

• We explore two parameter-efficient training methods for detoxification, and observe that: i)
domain-adaptive training with adapter achieves a better trade-off between toxicity and perplexity
than whole model adaptation for large-scale LMs, and the improvement is more significant when
the size of LMs increases; ii) prefix-tuning is less suitable for detoxification and demonstrates
limited detoxification effectiveness and perplexity control.

We organize the rest of the paper as follows. We discuss related work in § 2 and present our evaluation
protocols in § 3. We then systematically explore the domain-adaptive training with respect to training
corpus in § 4, model sizes in § 5, and parameter efficiency in § 6. We present the human evaluation
result in § 7, discuss the relationship between toxicity and bias in § 8.1, and conclude the paper in § 9.
Some text samples can be found in Appendix D.

2 Related Work
Large-scale language models (LM) have achieved state-of-the-art performance on various downstream
tasks. However, they also exhibit undesirable behaviors in terms of ethical, robustness, privacy, and
nonfactual generation issues [10, 22–26]. For example, since they are pre-trained over a sizable

4https://www.perspectiveapi.com/.
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Table 1: Evaluation of LM toxicity and quality across 5 different parameter sizes. Model toxicity is evaluated
on REALTOXICITYPROMPTS benchmark through Perspective API. Full refers to the full set of prompts, Toxic
and Nontoxic refer to the toxic and nontoxic subsets of prompts. ↓ / ↑ means the lower / higher the better.
PPL is evaluated on a held-out validation set of the pre-training corpus. Utility is estimated by averaging the
LM’s accuracy on 9 different tasks in the zero-shot learning setting, including Lambada, BoolQ, RACE, PiQA,
HellaSwag, WinoGrande, ANLI-R2, HANS and WiC. The accuracy for each task can be found in Table 9.

Models Exp. Max. Toxicity (↓) Toxicity Prob. (↓) Valid. Utility
Full Toxic Nontoxic Full Toxic Nontoxic PPL (↓) Avg. Acc. (↑)

126M 0.56 0.76 0.50 57% 88% 48% 17.76 46.7
357M 0.57 0.78 0.51 58% 90% 49% 13.18 50.0
1.3B 0.57 0.78 0.52 59% 90% 51% 10.18 54.3
8.3B 0.57 0.77 0.51 59% 89% 50% 7.86 60.0
530B 0.57 0.77 0.52 59% 88% 51% 6.27 64.6

collection of online data, they are unavoidably exposed to certain toxic content from the Internet.
Recent studies [e.g., 27–29] show that pre-trained masked LMs display different levels toxicity and
social biases. Another line of work focuses on the toxicity of autoregressive LMs. For instance,
Wallace et al. [8] first demonstrate that synthetic text prompts can cause racist continuations with
GPT-2. Gehman et al. [10] extend the analysis of LM toxicity to non-synthetic prompts, and
create a benchmark dataset REALTOXICITYPROMPTS to provide a standard evaluation protocol via
Perspective API to measure LM’s toxicity, which is adopted by many previous work. In this paper,
we follow the standard setting to compare different detoxification approaches on different-sized LMs.

Decoding-time methods They manipulate the decoding-time behavior of the LMs without changing
the model parameters [9–14]. Simple approaches such as word filtering and vocabulary shifting [10]
directly lower the probability of toxic words (e.g., swearwords, slurs, vulgar slang) being generated.
Though efficient, such approaches fail to consider the semantic meaning of the generated text at the
sequence level. Thus, it cannot completely prevent from generating toxic sentences which contain no
undesirable words from the blocklist [15] (e.g., “poor people don’t deserve to live in nice houses”).
Xu et al. [13] perform sentence-level filtering by generating K continuations given the same prompt
and returning the most nontoxic sentence. Similarly, Self-Debiasing [11] uses K manually crafted
templates to manipulate the decoding probability distribution and dynamically set the probability of
toxic words to be low. However, these methods lead to K times longer than the normal decoding.
PPLM [9] iteratively adds perturbation on the context vector at each step of decoding. Though with
better detoxification effectiveness, it suffers much more computational overhead due to multiple
iterations of forwarding and backward propagation to generate the perturbations. GeDi [12] guides
generation at each step with a second LM trained on nontoxic data by computing classification
probabilities for all possible next tokens. However, it requires an external LM trained on non-toxic
data, which is not easy to access in practice. DEXPERT [14] controls the generation of large-scale
pre-trained LM with an “expert” LM trained on non-toxic data and “anti-expert” LM trained on
toxic data in a product of experts [30]. It achieves the state-of-the-art detoxification results on
REALTOXICITYPROMPTS, but sacrifices the validation perplexity and downstream task accuracy.

Domain-adaptive training methods They fine-tune the pre-trained LMs to the non-toxic domain
by training on curated nontoxic data [10, 16, 31]. Gehman et al. [10] use the DAPT framework
[31] to further train LMs on the nontoxic subset (filtered via the Perspective API) of pre-training
corpus, OWTC, with GPT-2. Besides DAPT, Gehman et al. [10] propose to fine-tune on a corpus
with toxicity attribute token and prepend the nontoxic attribute token as prompt to yield nontoxic
generation. Solaiman and Dennison [16] propose a human-crafted Values-Targeted Datasets to
change model behavior and reflect a set of targeted values. Baheti et al. [32] focus on mitigating
the offensive behavior in dialogue systems. They leverage crowd-sourcing to label a conversation
dataset generated by an existing dialogue model, and use it for offensive detection and mitigating the
offensive behavior via the controlled text generation. In this work, we focus on exploring the limits
of domain-adaptive training methods to reduce the toxicity of language models, while maintaining
good validation perplexity and downstream task accuracy.

Reinforcement learning (RL) methods There are two concurrent work [33, 34] that study the
toxcity behavior of LM with RL. InstructGPT [33] requires collecting human demonstrations and
rankings of model outputs for two-stage fine-tunings. It generates 25% fewer toxic outputs with
respectful instruction on REALTOXICITYPROMPTS than 175B GPT-3. In contrast, our SGEAT
reduces 27% toxic outputs from 530B model on REALTOXICITYPROMPTS, and the improvements
are higher for smaller models (e.g., reduces 37% toxic outputs from 8B model). To identify the toxic
LM behavior, Perez et al. [34] uses RL to improve the generation of adversarial test cases.

3



Poor people don’t 
deserve to live in 
nice houses

Poor people don’t 
deserve to live in nice 
houses

Poor people don’t 
deserve to live in 
squalor and disease

70%

LM API
Poor people don’t 
deserve to live in 
squalor and disease

40%

…

Poor people ________

…

LM

Poor people also hope 
to live in nice houses

Poor people don’t 
deserve to live in 
squalor and disease… …

Fine-tuning

…

Update

Prompt Construction Self-generation Data Filtering

Figure 1: Overview of the SGEAT method. SGEAT constructs prompts to leverage the LMs to generate a
corpus for domain-adaptive training. Then, the generated corpus is further filtered via Perspective API to ensure
that the curated dataset has low toxicity. Finally, we use the filtered texts to further perform domain-adaptive
training for detoxification.

3 Evaluation Protocols

In this section, we present our principle for evaluating different detoxification methods. Specifically,
we emphasize that detoxification method should focus on both reducing the model toxicity and
maintaining the model quality after detoxification. We first discuss the protocol for LM toxicity
evaluation, and then present the protocol to evaluate the LM quality before and after detoxification.

Pre-trained LMs. We investigate the toxicity of a variety of standard GPT-3 like LMs with different
parameter sizes, ranging from 126M (similar to GPT-3 Small), 357M (similar to GPT-3 Medium),
1.3B (similar to GPT-3 XL), 8.3B to the largest 530B [6]. All of the models are based on Trans-
former [35] with different hidden dimension, number of layers, and attention heads. We present more
details in Appendix §A.1. All standard models are pre-trained on the same pre-training corpus, which
is an English text corpus constructed from 15 high-quality datasets.

3.1 Toxicity Evaluation

In this work, we follow prior work [15, 10] and perform both automatic evaluation and human
evaluation to measure an LM’s tendency to generate toxic language.

Automatic Evaluation relies on Perspective API, an online automated model for toxic language and
hate speech detection. As discussed in the recent work [13, 15, 10], such a model is imperfect and
demonstrates biases against different demographic groups. Despite the problems, it still provides
a low-cost and scalable approach to evaluate the generation toxicity of LMs. Moreover, both our
study in Section 7 and Welbl et al. [15] find that the toxicity scores from Perspective API are strongly
correlated with human evaluation, thus it is meaningful to approximately measure LM toxicity. We
note that Perspective API update the models regularly. The scores returned by Perspective API may
change over time. The toxicity scores reported in the following sections were evaluated before May
2022.

We use the full set of the prompts (around 100k) from REALTOXICITYPROMPT benchmark [10]
to evaluate LM generations via Perspective API in terms of Expected Maximum Toxicity and
Toxicity Probability. Specifically, Expected Maximum Toxicity evaluates the worst-case generation by
calculating the maximum toxicity scores over 25 generations under the same prompt with different
random seeds, and averaging the maximum toxicity scores over all prompts. Toxicity Probability
estimates the empirical frequency of generating toxic language, which evaluates the probability of
generating a toxic continuation (TOXICITY >= 0.5) at least once over 25 generations for all prompts.
We follow Gehman et al. [10] and restrict the generations up to 20 tokens or below. We present the
automatic evaluation of five LMs with different parameter sizes in Table 1.

Human Evaluation is indispensable for toxicity evaluation, as toxicity judgments are subjective and
should ultimately be human-centric [15]. Specifically, we adapt the instructions from Welbl et al.
[15] and ask human annotators to evaluate the continuations. More details of human evaluation and
how we ensure the emotional well-being of annotators can be found in Section 7 and Appendix §A.3.

3.2 LM Quality Evaluation

To understand the impact of detoxification, we evaluate the quality of LM along two fronts: perplexity
and utility. Perplexity (PPL) is evaluated on a held-out validation set of pre-training corpus 5,

5We also evaluate PPL on the filtered nontoxic portions of the validation set in Appendix §C.2. We observe
the same trends of PPL increase as the full held-out validation set.
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Table 2: Evaluation of LM toxicity and quality across different detoxification methods on the 1.3B LM. In the
first row, ↓ / ↑ means the lower / higher the better. PPL of word banning goes to infinity as the probabilities of
some banned words are set to zero. ↑ and ↓ are compared against the standard 1.3B LM. For example, ↓ is
preferred for Toxicity and PPL, while ↑ is preferred for Utility Average Accuracy.

Models Exp. Max. Toxicity (↓) Toxicity Prob. (↓) Valid. Utility
Full Toxic Nontoxic Full Toxic Nontoxic PPL (↓) Avg. Acc. (↑)

Domain-
Adaptive
Training

Jigsaw (nontoxic) 0.58 ↑0.01 0.77 0.53 61% ↑2% 90% 53% 11.51 ↑1.33 54.6 ↑0.3
DAPT (nontoxic) 0.47 ↓0.10 0.69 0.41 43% ↓16% 79% 33% 10.40 ↑0.22 54.7 ↑0.4

SGEAT (heuristic) 0.47 ↓0.10 0.73 0.40 43% ↓16% 85% 31% 11.14 ↑0.96 54.7 ↑0.4
SGEAT (standard) 0.44 ↓0.13 0.67 0.38 38% ↓21% 75% 28% 11.22 ↑1.04 54.6 ↑0.3
SGEAT (augmented) 0.43 ↓0.14 0.68 0.37 37% ↓22% 77% 26% 11.19 ↑1.01 54.4 ↑0.1

Decoding-
Time

Word Banning 0.54 ↓0.03 0.72 0.49 56% ↓3% 86% 47% ∞ 54.3 ↓0.0
Rejection Sampling (4× slow) 0.45 ↓0.12 0.68 0.38 39% ↓20% 78% 28% 10.18 ↑0.00 54.3 ↓0.00
DEXPERTS (3× slow) 0.31 ↓0.26 0.50 0.26 18% ↓41% 47% 11% 19.87 ↑9.46 46.2 ↓8.1

Combined SGEAT + Rejection Sampling 0.33 ↓0.24 0.56 0.26 21% ↓38% 58% 11% 11.19 ↑1.01 54.4 ↑0.1
SGEAT + DEXPERTS 0.27 ↓0.30 0.45 0.22 14% ↓45% 40% 7% 20.21 ↑10.03 44.9 ↓9.4

which measures both the fluency and coverage of output language. The utility is estimated by the
performance on downstream tasks. In particular, we evaluate the accuracy of LMs given 9 different
tasks, covering question answering, natural language understanding, and commonsense reasoning,
in the zero-shot learning scheme. We base the downstream tasks evaluation on Gao et al. [36].
We present the LM quality evaluation of 5 pre-trained LMs in Table 1. More details about each
downstream task and the accuracy for each task can be found in Appendix §A.3.

We note some recent work [13, 15] demonstrates that existing detoxification techniques can amplify
the social biases against minority groups. In this work, we mainly focus on the intrinsic quality of
LM and analyze how it degrades after detoxification. We leave the bias discussion in §8.1.

In the following sections, we use above evaluation protocols to explore the limits of domain-adaptive
training for detoxification on three dimensions: training corpus, model sizes, and parameter efficiency.

4 Impact of Training Corpus

Training corpus is a core factor that impacts the effectiveness and efficiency of domain-adaptive
training. The state-of-the-art approach, DAPT [10], adopts a pre-training corpus [17] curated by
Perspective API to construct the training dataset for detoxification. In this section, we propose
Self-Generation Enabled domain-Adaptive Training (SGEAT), which leverages the generative power
of LM itself to construct a training corpus for domain adaptive training. To control the variable
and have a fair comparison with the existing approach, we also use Perspective API to curate our
self-generated corpus. We show that SGEAT can further push the limits of domain-adaptive training
for detoxification with better data efficiency.

4.1 SGEAT

As shown in Figure 1, SGEAT consists of four steps: 1) prompt construction; 2) self-generation; 3)
data filtering; and 4) domain-adaptive training.

Prompt construction is the core part of SGEAT to guide LM to generate a training corpus. We study
three variants of SGEAT with different prompt designs: 1) SGEAT (standard) uses no prompt and
performs unconditional generation. 2) SGEAT (heuristic) uses a set of manually crafted prompts
inspired by the definition of toxicity from Perspective API. We discuss the set of considered tem-
plates in Appendix §B and report the one that achieves the lowest toxicity in our experiments. 3)
SGEAT (augmented) constructs prompts that tend to yield nontoxic continuations. Specifically, we
find the most nontoxic documents from the unconditional generation, and split each document into
half as the prompts and the continuations. In this way, we obtain the prompts that are highly likely to
generate nontoxic language. SGEAT (augmented) can also be regarded as a data augmentation of
SGEAT (standard) from the nontoxic distribution. We present more details in Appendix §B.

Self-Generation uses the prompts from the last step to generate up to 1,000 tokens and truncate
all the sentences at the end-of-document (EOD) token once generated. We use nucleus sampling
[37] with p = 0.9 and the temperature of 1 during generation. To demonstrate the data efficiency of
SGEAT, we generate only 100k documents in total, in comparison with DAPT in Gehman et al. [10]
that uses 7500k documents from the pre-training corpus.

5



Data Filtering further filters out toxic samples to ensure the training corpus is mostly nontoxic.
Specifically, we follow the standard DAPT setup in Gehman et al. [10] and use Perspective API
to annotate the toxicity of the raw generated text. Different from DAPT that performs aggressive
filtering on pre-training data and only keeps the most nontoxic 2% of the documents, we keep the
most nontoxic 50% of the generated text to demonstrate the quality and data efficiency of SGEAT.
We present the curated data toxicity and statistics in Appendix Table 13.

Domain-Adaptive Training leverages the curated nontoxic corpus to further fine-tune the pre-trained
LM with standard log-likelihood loss and adapt it to the nontoxic data domain. We present more
training details in Appendix §A.2.

4.2 Evaluation Results of Domain-Adaptive Training

In this subsection, we evaluate existing domain-adaptive training methods on 1.3B LM (similar to
GPT3-XL), and discuss the impacts of model sizes in Section 5.

Baselines: We consider the following domain-adaptive training baselines: DAPT (nontoxic) [31]
uses a nontoxic subset of pre-training corpus annotated by Perspective API to perform domain-
adaptive training; and Jigsaw (nontoxic) uses a human-annotated nontoxic subset of Jigsaw Toxic
Comment Classification dataset6.

We present the evaluation results in Table 2. Among all domain-adaptive training methods, we find
that SGEAT (augmented) achieves the lowest toxicity scores with moderate perplexity increases and
without degrading the LM utility accuracy (or even improving). Specifically, SGEAT (augmented)
reduces the toxicity of the standard 1.3B by 0.14 at the cost of a slight PPL increase and does not hurt
the utility of LMs on downstream tasks. Moreover, we note that although DAPT (nontoxic) uses 3
times larger corpus than SGEAT (augmented) (shown in Appendix Table 13), SGEAT (augmented)
still achieves lower toxicity than DAPT (nontoxic), which implies that self-generated data has better
data efficiency for domain-adaptive training. We think such high data efficiency comes from the
fact that i) the self-generated corpus well captures the high-density regions of the output space
of a pre-trained LM, and ii) training on autoregressively generated corpus mitigates the exposure
bias [20, 21], which refers to the train-test discrepancy of an autoregressive model. Thus, when
we train the LM on the self-generated non-toxic corpus, it tends to increase the likelihood on the
non-toxic density region, which enables data-efficient training to detoxify the model.

The human-annotated nontoxic Jigsaw dataset fails to detoxify the LM and even increases the model
toxicity. We speculate the major reason is that the nontoxic subset of the Jigsaw dataset has a much
higher average data toxicity than SGEAT, as shown in Appendix Table 13.

Among SGEAT methods, we observe that SGEAT (augmented) achieves the best detoxification result
at a similar level of PPL increase, while SGEAT (heuristic) is less effective to detoxify the LM. We
think the reason lies in the data diversity: The unconditional generation covers the diverse regions of
the generation distribution and yields the most diverse data distribution, and thus SGEAT (standard)
also achieves good detoxification performance. In contrast, SGEAT (heuristic) uses only a single
prompt for generation, which limits the diversity of the generation. More analysis about prompt
design is in Appendix §B.6.

4.3 Evaluation Results of Decoding-time Methods

Besides the domain-adaptive training baselines, we also compare with decoding-time algorithms:
Word Banning [10] sets the probability of generating any word from a list7 of profanity, slurs, and
swearwords to zero during decoding. Rejection sampling [15, 13] generates up to K samples given
each prompt until we obtain a nontoxic sample, otherwise we return the sample with the lowest
toxicity score from Perspective API. We set K = 4 due to the computational limit. DEXPERTS [14]
is the state-of-the-art decoding-time algorithm for detoxification that uses two auxiliary expert and
anti-expert LMs to steer a model’s generation. The expert model is the same as DAPT (nontoxic);
while the anti-expert model is fine-tuned on the top toxic portion of OWTC with 150k documents.

When comparing domain-adaptive training methods with decoding-time methods. We note that
rejection sampling adds 4× computational overhead during decoding, but is less effective than
domain-adaptive training SGEAT, as LM rarely generates nontoxic continuations given toxic prompts

6https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/
7https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
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Table 3: Evaluation of LM toxicity and quality of domain-adaptive training methods along 5 different parameter
sizes. 530B† is trained with more self-generated data (100k samples). 530B‡ is trained with more epochs (5
epochs), while the others are trained with 3 epochs. ↑ and ↓ are compared against the standard LM of the
corresponding size.

Models Exp. Max. Toxicity (↓) Toxicity Prob. (↓) Valid. Utility
Full Toxic Nontoxic Full Toxic Nontoxic PPL (↓) Avg. Acc. (↑)

DAPT
(nontoxic)

126M 0.44 ↓0.12 0.65 0.38 37% ↓20% 72% 28% 17.97 ↑0.21 46.0 ↓0.7
357M 0.47 ↓0.10 0.69 0.41 43% ↓15% 78% 33% 13.33 ↑0.15 49.9 ↓0.1
1.3B 0.47 ↓0.10 0.69 0.41 43% ↓16% 79% 33% 10.40 ↑0.22 54.7 ↑0.4
8.3B 0.48 ↓0.09 0.69 0.42 45% ↓14% 79% 35% 8.12 ↑0.26 59.1 ↓0.9
530B 0.50 ↓0.07 0.71 0.45 49% ↓10% 82% 39% 7.32 ↑1.05 63.4 ↓1.2

SGEAT
(augmented)

126M 0.39 ↓0.17 0.63 0.33 30% ↓27% 69% 19% 19.55 ↑1.79 46.3 ↓0.4
357M 0.42 ↓0.15 0.68 0.35 36% ↓22% 77% 24% 14.39 ↑1.21 49.3 ↓0.7
1.3B 0.43 ↓0.14 0.68 0.37 37% ↓22% 77% 26% 11.19 ↑1.01 54.4 ↑0.1
8.3B 0.44 ↓0.13 0.68 0.37 38% ↓21% 76% 28% 8.91 ↑1.05 59.1 ↓0.9
530B 0.46 ↓0.11 0.70 0.40 43% ↓16% 80% 32% 7.86 ↑1.59 62.6 ↓2.0

530B† 0.45 ↓0.12 0.69 0.39 41% ↓18% 78% 31% 7.92 ↑1.65 62.0 ↓2.6

530B‡ 0.44 ↓0.13 0.67 0.38 39% ↓20% 76% 29% 9.63 ↑3.36 58.8 ↓5.8

[13]. Although the state-of-the-art DEXPERTS achieves significantly lower toxicity scores than
SGEAT, we also observe that there is a concerning perplexity and utility degradation, with an increase
of 9.47 in PPL and a drop of 9.4% in downstream task accuracy. Such degradation makes the
detoxified 1.3B LM quality even worse than a standard 126M LM, as shown in Table 1. We hope that
our findings can motivate researchers to focus more on the trade-off between detoxification and LM
quality when designing detoxification algorithms. Since decoding-time algorithms are orthogonal
to domain-adaptive training methods, it is easy to combine both methods together. Specifically, we
replace the standard 1.3B model used in rejection sampling and DEXPERTS with SGEAT (augmented)
detoxified one, and observe that the combined method can yield the lowest toxicity scores among
existing methods.

5 Impact of Model Size

We next investigate how the number of model parameters impacts the domain-adaptive training for
detoxification. Specifically, we show that 1) models with different number of parameters trained on
the same pre-training corpus display similar levels of toxicity; 2) self-generated data consistently
demonstrates better detoxification effectiveness than pre-training corpus across different parameter
sizes; 3) larger LMs require more efforts to reduce the toxicity.

Standard Model Toxicity. We first evaluate the toxicity of 5 standard LMs across different parameter
sizes in Table 1 and Table 9. We observe that the standard LMs, pre-trained on the same pre-training
data with different parameter sizes, display similar levels of toxicity. It suggests that the toxicity
comes from the dataset, instead of the model size.

Detoxification Effectiveness of SGEAT. We then evaluate our best SGEAT (augmented) and compare
with the best domain-adaptive training baseline DAPT (nontoxic) in Table 3. We note that SGEAT
consistently outperforms DAPT over different sizes even when using 1/3 smaller training corpus. For
example, SGEAT (augmented) can reduce the toxicity probability from 57% to 30% for the 126M
LM, 7% lower than DAPT. These results confirm that: the self-generated corpus is more efficient to
detoxify the LM than using the curated corpus of pre-training data.

Larger-scale LMs requires more endeavors to detoxify. From Table 3, we observe the detoxification
effectiveness decays for both DAPT and SGEAT with the increase of LM parameter sizes. For instance,
the toxicity probability of the 530B SGEAT LM is only the 16% lower than the standard 530B LM,
compared to the drop of 27% toxicity probability for the 126M one. We figure the potential reason
of such small improvement on larger LM is that large LM tends to require more training data and
fine-tuning epochs to detoxify. Therefore, we conduct additional experiments on the 530B LM, by
either increasing the training epochs from 3 to 5 or generate more data from 50k to 100k samples
for adaptive training. We find that while both methods further reduce the toxicity of the 530B LM,
training for more epochs might lead to model overfitting and hurts the PPL and downstream accuracy
by a large margin. In contrast, training with more data demonstrates a better trade-off between
detoxification and LM quality. It implies that it needs more endeavors to detoxify large-scale LMs.
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Table 4: Evaluation of LM toxicity and perplexity of parameter-efficient training methods. ↑ and ↓ are
compared against whole model adaptation. We conduct this ablation study using DAPT (nontoxic).

(a) Adapter [18]

Projection Toxicity (↓) Valid
Size Exp. Max. Toxicity Toxicity Prob. PPL (↓)

256 0.49 ↑0.02 46% ↑3% 10.34 ↓0.06
512 0.49 ↑0.02 45% ↑2% 10.36 ↓0.04
1024 0.48 ↑0.01 45% ↑2% 10.39 ↓0.01

(b) Prefix Tuning [19]

Prefix Toxicity (↓) Valid.
Length Exp. Max. Toxicity Toxicity Prob. PPL (↓)

128 0.51 ↑0.04 49% ↑6% 10.35 ↓0.05
256 0.51 ↑0.04 48% ↑5% 10.45 ↑0.05
512 0.52 ↑0.05 50% ↑7% 10.56 ↑0.16

Table 5: Evaluation of LM toxicity and quality of adapter for large-scale LMs. ↑ and ↓ are compared against
whole model adaptation.

Models Exp. Max. Toxicity (↓) Toxicity Prob. (↓) Valid. Utility
(Projection Size=1024) Full Toxic Nontoxic Full Toxic Nontoxic PPL (↓) Avg. Acc. (↑)

DAPT (nontoxic)
+adapter

8.3B 0.48 ↓0.00 0.70 0.42 45% ↓0% 79% 36% 7.99 ↓0.13 59.4 ↑0.3
530B 0.50 ↓0.00 0.71 0.45 49% ↓0% 82% 40% 6.69 ↓0.63 63.7 ↑0.3

SGEAT (augmented)
+adapter

8.3B 0.44 ↓0.00 0.68 0.37 38% ↓0% 77% 28% 8.88 ↓0.03 59.0 ↓0.1
530B 0.46 ↓0.00 0.69 0.39 41% ↓2% 79% 31% 7.22 ↓0.64 63.3 ↑0.7

LM Quality Evaluation. We also evaluate whether domain-adaptive training impacts the perplexity
and utility of LMs in Table 3. When trained within 3 epochs, we find that the PPL of LMs slightly
increases and the LM utility drops a little in most cases, which suggest that models gradually adapt to
the nontoxic domain without a significant sign of overfitting or degradation in terms of LM quality.

6.5 7.0 7.5 8.0 8.5 9.0 9.5
PPL

0.44

0.46

0.48

0.50

0.52

0.54

0.56

E
xp

ec
te

d 
M

ax
. T

ox
ic

ity
Trade-off between Toxicity and PPL

SGEAT (augmented, 50k)
DAPT (nontoxic, 150k)
DAPT (nontoxic, 50k)

Figure 2: The expected maximum toxicity v.s. model
perplexity for the 530B LM at different training steps.

Domain Adaptation v.s. Overfitting. We vi-
sualize the trade-off at different training phases
in Figure 2 for 530B LM. Specifically, we record
the validation perplexity and model toxicity after
1, 3, and 5 training epochs for DAPT (nontoxic,
150k) and SGEAT (augmented, 50k). We also add
a curve DAPT (nontoxic, 50k), which samples
50k documents from DAPT (nontoxic, 150k) to
have a fair comparison with SGEAT (augmented,
50k). We observe that at the beginning of training,
the model toxicity drops substantially and barely
sacrifices the model PPL (steep slope). Then it is
gradually adapted towards the nontoxic domain.
SGEAT demonstrates a better trade-off between
toxicity and quality, as SGEAT achieves substan-
tially lower toxicity with the same PPL after 1
epoch of training. Finally, we observe the curve
is becoming more flat, especially for DAPT, which indicates the transition from the domain adaptation
to overfitting.

For LMs with different sizes fine-tuned with different methods, we find 3 epochs is a good cut-off
point for whole model adaption, which achieves good trade-off between model toxicity and perplexity.
This rule of thumb is also aligned with previous study [10].

6 Parameter-efficient Training
To cope with the challenges of large-scale LMs, we explore two parameter-efficient training paradigms:
adapter [18] and prefix tuning [19], and evaluate whether they can improve the LM quality and
achieve a better trade-off between detoxification and LM quality than whole model adaption. We
show that: in the scenario of detoxification, 1) adapter demonstrates a better trade-off than prefix
tuning, and 2) adapter can further mitigate the drop of LM quality and improve the trade-off upon
whole-model adaptation for large-scale LMs.

6.1 Comparison between Adapter and Prefix Tuning

Both adapter and prefix tuning add additional parameters to the standard LM, and only optimize the
added parameters during training without perturbing the original LM parameters. Such paradigm
provides the flexibility, especially for large-scale LMs, to adapt to different domains with a few
additional parameters, rather than heavily fine-tune the whole model with multiple copies of the
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whole model parameters for different domains. In this study, we further investigate whether such
training schemes can provide more advantages to detoxify LMs.

Adapter [18] adds additional bottleneck projection layers to each transformer layer with residual
connections. At the beginning of the training, the projection layer is initialized to almost zero to
improve the training stability. Prefix tuning [19] appends additional continuous “prefix” vectors to
the input to better steer LMs’ generations. To have a comprehensive understanding and comparison
between adapter and prefix tuning, we first perform ablation studies on small-scale 1.3B LM over
the key hyper-parameters: the projection size for adapter and the prefix length for prefix tuning. We
follow the same training schedules as whole model adaptation but train more epochs so that the PPL
reaches a similar level as whole model adaptation. We present the evaluation results in Table 4.

When comparing Table 4a with Table 4b, we observe that adapter demonstrates a better trade-off
between detoxification and LM quality than prefix tuning. We figure the possible reasons are two
folds: 1) given the same projection size and prefix length, the number of additional parameters of
adapter is around twice more than prefix tuning, which gives more capacity for adapter to perform
domain adaptation; 2) however, while longer prefix length could give more capacity to steer the
model generation, it also adds too many irrelevant contexts, which not only hurts the perplexity of the
LM but also slows down the decoding speed. Compared to the whole model adaption, adapter does
not show significant advantages in terms of detoxification and LM quality for small-scale models like
1.3B one. For adapter results with different projection sizes, we observe that a larger projection size
yields better detoxification effectiveness possibly due to larger model capacity. We thus apply adapter
with the projection size=1024 to larger-scale LMs (8.3B and 530B) and investigate whether it can
solve the challenges of large-scale LMs.

6.2 Apply Adapter to larger-scale Models

We follow the same training schedules as the whole model adaptation to train the adapters for larger-
scale LMs. We stop training when they reach similar levels of toxicity as the whole model adaptation,
and evaluate the perplexity and utility of LMs in Table 5. We can see that for larger-scale LMs,
adapter can not only improve the parameter efficiency, but also mitigate the PPL and the LM quality
drop. In particular, for the 530B model, adapter can mitigate the drop of PPL for at most 0.64 and
improve the average downstream task accuracy by 0.7%.

7 Human Evaluation

We further verify our findings via human evaluation on the standard models, DAPT, SGEAT, and
decoding-time algorithm DEXPERTS across five LM sizes.
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Figure 3: (best viewed in color) Average human toxicity
scores v.s. Perspective API scores for the different methods
we evaluate. The Pearson correlation coefficient is 0.9661.

Setup. We sample the 300 prompts from RE-
ALTOXICITYPROMPT benchmark while keep-
ing the ratio of toxic and nontoxic prompts to
1:3 as the same as the full set, and evaluate
the continuations of each model. We follow
Welbl et al. [15] to ask LMs to generate up
to 100 tokens and avoid incomplete sentences
and collect the most toxic continuations via
Perspective API over 25 generations. Finally,
we gather 5,700 continuations from 19 models
and randomly shuffle them for human evalu-
ation. Then we group samples into a batch of
10, and assign them to 5 annotators. In total
187 workers from Amazon MTurk participated
in the evaluation. To consider the annotators’
well-being, we make sure the average number
of toxic samples (TOXICITY >= 0.5 evaluated by Perspective API) is less than or equal to 3 in each
batch of 10 samples. To calculate the average scores of annotations, we follow Welbl et al. [15] to
map “Very Toxicity” and “Toxic” to 1, “Not Toxic” to 0, and discard “Not Sure“ annotations.

We average the scores from 5 annotators for each sample and then report the averaged number over
the 300 prompts in Figure 3. The detailed scores can be found in Table 8 in Appendix. We present
more details in Appendix §A.3. By comparing the objective evaluation with human evaluation,
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Table 6: LM PPL in the gender and ethinicity domains on the BOLD dataset. ↑ : based on standard 1.3B LM.

Models Gender (↓) Ethnicity (↓)
Male Female European Asian African Hispanic

Standard 11.6 11.4 13.9 13.5 14.1 15.6

SGEAT 12.7 ↑1.1 12.4 ↑1.0 15.1 ↑1.2 14.8 ↑1.3 15.4 ↑1.3 17.2 ↑1.6

we observe that the toxicity scores from the human evaluation are mostly aligned with objective
evaluation via Perspective API. Such findings are also confirmed by Welbl et al. [15]. The human
evaluation also verifies that i) LMs of different sizes have similar levels of toxicity, and ii) LMs of
larger sizes present more challenges to detoxify.

8 Discussion
8.1 Bias against Marginalized Groups

We follow the setting of Welbl et al. [15] and evaluate the PPL of the 1.3B standard LM and
SGEAT (augmented) fine-tuned LM on the gender and ethnicity domains using the BOLD dataset
[38] as shown in Table 6. The former contains Wikipedia sentences about female and male actors,
and the latter domain contains sentences about people with different ethnic backgrounds [15]. We
find that: (i) LM PPL increases moderately on the BOLD dataset after effective detoxification, which
is aligned with our findings in §4.2. (ii) There is no noticeable discrepancy of PPL increase among
male and female in the gender domain, which suggests that SGEAT does not exacerbate the gender
biases. (iii) There is a higher PPL increase for the Hispanic group than other demographic groups
in the ethnicity domain. We hypothesize that such bias mainly comes from the pre-training model
and corpus, because the pre-trained Standard model already has much higher perplexity for Hispanic
group. Our findings partly align with recent findings on the trade-off between detoxification and
bias [13, 15]. We leave it as an important future direction to mitigate the social biases of pre-trained
foundation models, as well as design new approache that jointly reduce toxicity and racial bias.

8.2 Limitation of SGEAT

While we observe that SGEAT has demonstrated very good trade-off between detoxification effec-
tiveness and perplexity, SGEAT still has potentials to further improve.

Bias within Hate Speech Detector. Similar to DAPT, SGEAT also relies on a hate speech classifier
(i.e., Perspective API) to filter out toxic samples. However, existing classifier on toxicity classification
is imperfect and is known to amplify the social bias against different demographic groups due to the
annotation bias and sampling bias [13] (e.g., the classifier tend to assign higher toxicity scores for
text mentioning historically underrepresented groups). As a result, SGEAT may also be impacted
due to the use of Perspective API, which may filter both toxic text and minority identity mentions.
Nevertheless, we believe that SGEAT can get more benefits with a more robust, unbiased, and fair hate
speech detector, so models fine-tuned on the filtered corpus can unlearn toxicity without forgetting
corpus from minority groups.

Bias within Pre-trained Model. As discussed in § 8.1, we observe pre-trained models already
exhibit bias against certain demographic groups. As a result, the self-generated corpus may inherit
the bias and harm the coverage of detoxification. Thus we leave it as an important future direction to
build a bias-free pre-trained LM, which can benefit SGEAT and other detoxification methods.

9 Conclusion
We explore the limits of domain-adaptive training for detoxifying LMs along three aspects: 1) training
corpus; 2) model size and 3) parameter-efficient training. We first identify the trade-off between
detoxification effectiveness and LM quality in detoxification methods. We propose Self-Generation
Enabled domain-Adaptive Training (SGEAT), which leverages the generative power of LMs for
data-efficient and effective detoxification. We comprehensively detoxify LMs with parameters sizes
ranging from 126M up to 530B and find interesting properties of large-scale LMs. We demonstrate
that adapter provides parameter-efficient training and achieves a better trade-off of toxicity and LM
quality. We hope our work can shed light on the development of detoxification techniques that can
largely reduce toxicity while maintaining good perplexity and downstream task accuracies.
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