
This appendix provides the following sections:

• documentation of the dataset (Appendix A),

• training details (Appendix B), and

• extra results (Appendix C).

A Dataset Documentation

A.1 Clip Snippet Experts

We signify a clip snippet expert by the snippet it is tracking. We denote a snippet by the clip ID, its
start step, and its end step. For example, CMU_006_12-151-336 is the snippet corresponding to the
clip CMU_006_12 with start step 151 and end step 336. Taking CMU_006_12-151-336 as an example
expert, the file hierarchy for the snippet expert is:

CMU_006_12-151-336
clip_info.json..............................Contains clip ID, start step, and end step.
eval_rsi/model

best_model.zip ...................Contains policy parameters and hyperparameters.
vecnormalize.pkl................Used to get normalizer for observation and reward.

The expert policy can be loaded using Stable-Baselines3’s functionality.

A.2 Expert Rollouts

The expert rollouts consist of a collection of HDF5 files, one file per clip. An HDF5 file contains
expert rollouts for each constituent snippet as well as miscellaneous information and statistics. To
facilitate efficient loading of the observations, we concatenate all the proprioceptive observations
(joint angles, joint velocities, actuator activations, etc.) from an episode into a single numerical array
and provide indices for the constituent observations in the observable_indices group.

Taking CMU_009_12.hdf5 (which contains three snippets) as an example, we have the following
HDF5 hierarchy:

CMU_009_12.hdf5
n_rsi_rollouts................R, number of rollouts from random time steps in snippet.
n_start_rollouts..........................S, number of rollouts from start of snippet.
ref_steps.......... Indices of MoCap reference relative to current time step. Here, (1, 2, 3, 4, 5).
observable_indices

walker
actuator_activation........................................(0, 1, . . . , 54, 55)
appendages_pos........................................... (56, 57, . . . , 69, 70)
body_height.............................................................(71)
...
world_zaxis............................................... (2865, 2866, 2867)

stats.......................................Statistics computed over the entire dataset.
act_mean.....................................Mean of the experts’ sampled actions.
act_var...................................Variance of the experts’ sampled actions.
mean_act_mean..................................Mean of the experts’ mean actions.
mean_act_var................................Variance of the experts’ mean actions.
proprio_mean .............................Mean of the proprioceptive observations.
proprio_var............................Variance of the proprioceptive observations.
count ..........................................Number of observations in dataset.

CMU_009_12-0-198.........................Rollouts for the snippet CMU_009_12-0-198.
CMU_009_12-165-363....................Rollouts for the snippet CMU_009_12-165-363.
CMU_009_12-330-529....................Rollouts for the snippet CMU_009_12-330-529.
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Each snippet group contains R+ S rollouts. The first S episodes correspond to episodes intialized
from the start of the snippet and the last R episodes to episodes initialized at random points in the
snippet. We now uncollapse the CMU_009_12-0-198 group within the HDF5 file to reveal the rollout
structure:

CMU_009_12-0-198
early_termination.........(R+ S)-boolean array indicating which episodes terminated early.

rsi_metrics..............Metrics for episodes that initialize at random points in snippet.
episode_returns.......................................R-array of episode returns.
episode_lengths ......................................R-array of episode lengths.
norm_episode_returns .....................R-array of normalized episode rewards.
norm_episode_lengths......................R-array of normalized episode lengths.

start_metrics.....................Metrics for episodes that initialize at start in snippet.

0...........................................................First episode, of length T .
observations

proprioceptive....................(T + 1)-array of proprioceptive observations.
walker/body_camera ........ (T + 1)-array of images from body camera (not included).
walker/egocentric_camera........ (T + 1)-array of images from egocentric camera (not included).

actions........................T -array of sampled actions executed in environment.
mean_actions .............................. T -array of corresponding mean actions.
rewards......................................T -array of rewards from environment.
values..........................T -array computed using the policy’s value network.
advantages ............... T -array computed using generalized advantage estimation.

1....................................................................Second episode.
...

R+ S − 1........................................................(R+ S)th episode.

To keep the dataset size manageable, we do not include image observations in the dataset. We do
provide code to log them when rolling out the experts for generating the dataset.

A.3 Hosting Plan

The link to the dataset can be found on the project website. We provide a “large” rollout dataset
where R = S = 100 with size 600 GB and a “small” rollout dataset where R = S = 10 with size
50 GB. The dataset website also includes the policies we trained in Section 5, i.e., the multi-clip
tracking policies, RL-trained task policies, and the GPT policy. We also provide a Python script to
download individual experts and rollouts from the dataset.
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B Training Details

B.1 Clip Snippet Experts

B.1.1 MoCap Snippets
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(a) Lengths of the MoCap clips.
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(b) Lengths of the snippets generated from the
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Figure 1: Lengths of clips and snippets.

The MoCap dataset has a wide spread in clip length (Fig. 1a), with the longest clip being 6371 time
steps (191 seconds). Training clip experts to track long clips is potentially slow and laborious, so
we follow Merel et al. [2019] by dividing clips longer than 210 time steps (6.3 seconds) into short
snippets. In particular, we divide the clip into uniformly-sized snippets with an overlap of 33 time
steps (1 second) such that the longest snippet has at most 210 time steps. This yields a snippet dataset
with a much tighter range of snippet lengths (Fig. 1b). We do not divide the clips from the “Get Up”
subset of the MoCap dataset since they contain involved motions of getting up from the ground.

B.1.2 Expert Training Details

Table 1: Hyperparameters for clip snippet expert training.
Total environment steps 150 million

Environment steps per policy update 8192
PPO epochs 10

PPO minibatch size 512
PPO clipping parameter ε 0.25

GAE parameter λ 0.95
Discount factor γ 0.95

ℓ2 gradient norm clipping value 1

Adam step size

1e−5 for first 50M env. steps
6e−6 for next 50M env. steps
3e−6 for last 50M env. steps

We use the Stable-Baselines3 [Raffin et al., 2021] implementation of PPO [Schulman et al., 2017]
to optimize each expert. Each expert is a neural network with three hidden layers, 1024 neurons
in each hidden layer, and the tanh activation. At the start of each episode, we randomly select a
time step from the corresponding clip snippet (excluding the last 10 time steps from the snippet)
and initialize the humanoid to match the clip features at the corresponding step. We evaluate the
policy every 1 million environment steps using 1000 episodes under the same initialization scheme
(but now excluding the last 30 time steps of the snippet) and the same action noise of 0.1 as for
training rollouts. We also end the training if the average normalized episode length is at least 0.98
and the average normalized episode reward does not improve by more than 1% from the current best
reward after 10 million environment steps. We normalize the observation and reward using running
statistics from the environment. We give the other relevant hyperparameters in Table 1. For details
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of the reward function and early termination of an episode, we refer the reader to the appendix of
Hasenclever et al. [2020].

We ran the training on a mix of Azure Standard_H8 (8 CPUs), Standard_H16 (16 CPUs), Stan-
dard_NC6s_v2 (6 CPUs and 1 P100 GPU), and Standard_ND6s (6 CPUs and 1 P40 GPU) VMs.

The observables for the clip expert are: joints_pos, joints_vel, sensors_velocimeter,
sensors_gyro, end_effectors_pos, world_zaxis, actuator_activation, sensors_touch,
sensors_torque, time_in_clip.

B.2 Multi-Clip Tracking Policy

Table 2: Hyperparameters for multi-clip tracking policy training.
Adam step size 5e−4

Minibatch sequence length T 30
Minibatch size 256

ℓ2 gradient norm clipping value 1
KL divergence weight β 0.1

Autoregressive parameter α 0

Weighting temperature λ

CWR: 0.2
AWR: 8
RWR: 4

We train the multi-clip policy π(at, zt|st, sreft , zt−1) = πenc(zt|st, sreft , zt−1)πdec(at|st, zt) by opti-
mizing the following imitation objective:

E(s1:T ,sref1:T ,ā1:T ,c)∼D,
z0:T∼πenc

[
T∑

t=1

[
wc(st, āt) log πdec(āt|st, zt)− βKL(πenc(zt|st, sreft , zt−1) ∥ p(zt|zt−1))

]]
,

where p(zt|zt−1) = N (zt;αzt−1, (1 − α2)I) for some α ∈ [0, 1]. We do this (for each data point
in a minibatch) by sampling z0 ∼ N (0, I), sampling a T -step data sequence (of humanoid states
s1:T , MoCap references sref1:T , and expert’s mean actions ā1:T ) from the dataset D, unrolling the
recurrent policy through the sampled sequence, performing backpropagation through time on the
objective function, and finally updating the network using the Adam optimizer [Kingma and Ba,
2015]. To speed up training, we normalize the humanoid state st and MoCap reference sreft using
the corresponding mean and standard deviation computed over the entire dataset. For the weighted
schemes, we multiply the weight wc by a constant that ensures the average data weight is 1 so that
the KL regularization term maintains the same relative weight. For all schemes, we also sample data
from shorter clips at a higher rate to ensure the rollout data from the clips is uniformly even. This
gives about 1% improvement in policy evaluation compared to vanilla sampling.

We use PyTorch Lightning [Falcon, 2019] to train the multi-clip policy. The encoder and decoder
are both neural networks with 1024 neurons per hidden layer and use layer norm and the ELU
activation. The encoder has two hidden layers, while the decoder has three hidden layers. We ran
the training on Azure Standard_ND24s VMs, each equipped with 24 CPUs and 4 P40 GPUs. We
periodically evaluate the multi-clip policy by running 1000 episodes on the set of MoCap snippets
following the same reference state initialization scheme as in the rest of the paper. We found we only
need to train the policy for about 50 000 steps (about 10% of an epoch) before plateauing on policy
evaluation (Appendix C.2.1). We give the other relevant hyperparameters in Table 2.

The observables for the policy are:

• Encoder: joints_pos, joints_vel, sensors_velocimeter, sensors_gyro,
end_effectors_pos, world_zaxis, actuator_activation, sensors_touch,
sensors_torque, body_height, reference_rel_bodies_pos_local,
reference_rel_bodies_quats

• Decoder: joints_pos, joints_vel, sensors_velocimeter, sensors_gyro,
end_effectors_pos, world_zaxis, actuator_activation, sensors_touch,
sensors_torque
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B.3 Transfer for Reinforcement Learning

B.3.1 Go-to-Target Task

This task matches that of Hasenclever et al. [2020], which we refer the reader to for details.

B.3.2 Velocity Control

In this task, a target speed s∗ ∈ [0, 4.5] and direction ψ∗ ∈ [0, 2π) are randomly sampled every
10 seconds. Defining the target velocity as v∗t = (s∗ cosψ∗, s∗ sinψ∗) and the humanoid’s current
velocity as vt, the reward is defined as the product of a speed factor and direction factor:

rt = exp

(
−
(∥vt∥ − ∥v∗t ∥

η

)2
)(

1 + score(vt, v
∗
t )

2

)k

,

where score(vt, v
∗
t ) = vt · v∗t /∥vt∥∥v∗t ∥ gives the cosine of the angle between the two velocity

vectors. In our experiments, we set η = 0.75 and k = 7. We also experimented with the velocity error
reward used by Bohez et al. [2022] but found that our reward was easier to optimize. We terminate
the episode either after 2000 time steps (60 seconds) or if any body part other than the feet touches
the ground.

B.3.3 Hyperparameters

Table 3: Hyperparameters for RL transfer tasks.
Total environment steps 150 million

Environment steps per policy update 16 384
PPO epochs 10

PPO minibatch size 1024
PPO clipping parameter ε 0.2

KL divergence threshold for early stopping 0.3

Entropy bonus coefficient

General low-level policy: 1e−4
Locomotion low-level policy: 1e−3

No low-level policy: 1e−4
GAE parameter λ 0.95
Discount factor γ 0.99

ℓ2 gradient norm clipping value 1
Adam step size 5e−5

Number of actors 32

Initial standard deviation for task policy
With low-level policy: 2.5

Without low-level policy: 0.5

Maximum per-element action magnitude for task policy
With low-level policy: 3

Without low-level policy: 1

Like the snippet experts, we train the task policies using the Stable-Baselines3 implementation of
PPO. Each task policy is a neural network with three hidden layers, 1024 neurons per hidden layer,
and the tanh activation. We ran the training on Azure Standard_ND6s (6 CPUs and 1 NVIDIA P40
GPU) VMs. We give other hyperparameters in Table 3.

B.4 Motion Completion with GPT

We train a variant of minGPT [Karpathy, 2020] that we adapted to accept continuous inputs and
output continuous actions. This particular model has 57 million parameters and was trained with
a context length of 32 time steps, corresponding to roughly one second of motion. Similar to the
multi-clip policy (Appendix B.2), we sample state s(t−31):t and mean-action ā(t−31):t sequences of
length 32 from the MoCapAct dataset D. To speed up training, we normalize the humanoid state st
using the corresponding mean and standard deviation computed over the entire dataset. We use the
mean squared error loss on the sequence of predicted actions from the GPT. We trained GPT using
PyTorch Lightning [Falcon, 2019] on Azure Standard_NC24s_v3, each equipped with 24 CPUs and
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Table 4: Hyperparameters for GPT training.
Adam step size 3e−6
Minibatch size 256

ℓ2 gradient norm clipping value 1
Attention dropout probability 0.1

Embedding dropout probability 0.1
Residual dropout probability 0.1

Block size 32
Embedding size 768
Attention heads 8

Number of layers 8
Weight decay 0.1

4 V100 GPUs, for 2 million steps, corresponding to one week of wall-clock time. We give the other
relevant hyperparameters in Table 4.

The observables for the GPT policy are: joints_pos, joints_vel, sensors_velocimeter,
sensors_gyro, end_effectors_pos, world_zaxis, actuator_activation, sensors_touch,
sensors_torque, body_height. Importantly, GPT is not given any reference data from the MoCap
clip, so any motion generation was done only on the basis of the historical context provided.
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C More Results

C.1 Clip Snippet Experts

C.1.1 Training Curves
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Figure 2: Snippet expert training curves on MoCap dataset.

We give the learning curves for the experts in Fig. 2. In particular, we plot the quantiles
0, 0.1, . . . , 0.9, 1 to visualize how the distribution of experts improves over the course of train-
ing. Overall, we see reliable improvement of the experts with convergence at about 100 million
environment transitions.

C.1.2 Expert Performance vs. Snippet Length
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Figure 3: Scatter plot of experts’ performance versus the snippet length. Here, the Gaussian noise of
the experts is disabled. The performance appears to be independent of snippet length.

Here, we study whether longer snippets are “harder” to track by the expert. Fig. 3 shows scatter plots
of the experts’ normalized episode reward and length as a function of the snippet length. Overall, the
snippet length does not appear to affect the experts’ performance as indicated by the fitted curves
being relatively flat.
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C.1.3 Noisy Expert Evaluations

Table 5: Clip expert results on the MoCap snippets within dm_control using the stochastic πc.
Mean Standard deviation Median Minimum Maximum

Average normalized episode reward 0.689 0.092 0.690 0.179 0.876
Average normalized episode length 0.984 0.029 0.990 0.403 1.000
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(a) Episode rewards and lengths of the noisy experts.
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(b) Performance ratio of noisy expert
to deterministic expert.

Figure 4: Noisy expert results on the MoCap snippets within dm_control. The noisy experts incur a
small performance drop from their deterministic counterparts.

Because the MoCapAct dataset is formed from noisy rollouts of the experts, it is sensible to assess the
performance of the experts when rolled out with noise. Table 5 and Fig. 4a show that the experts still
have strong performance. We point out the noisy experts on average attain 85% of the performance
of the deterministic experts (Fig. 4b).
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Figure 5: Scatter plot of noisy experts’ performance versus the snippet length. There is a minor
decrease in performance as the snippet length increases.

From the scatter plot of the noisy experts (Fig. 5), we see a minor decrease in reward and episode
length as the snippet gets longer. This is probably due to longer snippets giving more time steps for
the noise to destabilize the humanoid.
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C.2 Multi-Clip Tracking Policy

C.2.1 Training Curves
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Figure 6: Multi-clip policy training curves on MoCap snippets.

Fig. 6 shows the reward curves for the four weighting schemes. Overall, the reward plateaus after
about 50 000 iterations for each scheme, and reward-weighted regression performs markedly better
than the other three schemes.

C.2.2 Autoregressive Parameter α
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Figure 7: Comparison of multi-clip policy’s performance when varying the autoregressive parameter
α for the prior distribution p(zt|zt−1). Here, we use the RWR-weighting scheme. Performance is
broadly similar for both values of α.

Merel et al. [2019] found that using an autoregressive parameter of α = 0.95 gave 50% improvement
in policy performance over α = 0. Interestingly, in our experiments we found that the performance
gap is much smaller (Fig. 7), with α = 0.95 only giving 3% improvement. Accordingly, we set α = 0
for our experiments (corresponding to a temporally independent prior of p(zt|zt−1) = N (zt; 0, I))
so that we could better control the size of the intentions zt generated by our reference encoder.
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Figure 8: Scatter plot of the multi-clip policy’s performance versus the snippet length. Here, the
Gaussian noise of the policy is disabled. Longer snippets tend to result in lower episode lengths.

C.2.3 Scatter Plots on Snippets and Clips

Fig. 8 shows the scatter plot of the multi-clip policy on all of the MoCap snippets. Compared to the
noisy experts (Appendix C.1.3), we see a more noticeable decline in episode length on long snippets.
Intuitively, this is because longer snippets allow for more opportunities for the multi-clip policy
to make an episode-ending mistake. The normalized reward, on the other hand, does not give any
meaningful trends.
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Figure 9: Scatter plot of the multi-clip policy’s performance versus the clip length. Here, the Gaussian
noise of the low-level policy is disabled. Longer clips tend to result in lower episode rewards and
lengths.

One appealing feature of the multi-clip policy is the ability to roll out the policy on entire clips.
This also allows us to discover whether the multi-clip policy has learned to “stitch” together the
overlapping snippets from the dataset. Fig. 9 shows that while there are long clips that the policy
can reliably track, the overall trend is that longer clips result in lower reward and episode length.
Intuitively, many clips in the MoCap dataset correspond to locomotion behaviors, which gives many
opportunities for the multi-clip policy to make episode-terminating mistakes. Usually, these mistakes
correspond to the humanoid legs colliding or one of the feet making bad contact with the ground,
both of which cause the humanoid to fall over. The fragility on longer clips points to a shortcoming
of MoCapAct: the rollouts only cover (at most) a 6-second window. Because of this, the multi-clip
policy is not trained on states that would be encountered deep into a rollout (e.g., 30 seconds into a
rollout), which limits the multi-clip policy’s performance on many longer clips. Long clips that have
high rewards and episode lengths usually have the humanoid standing for long periods of time while
doing various arm motions. Here, the motions are much simpler since the humanoid merely needs to
maintain balance while standing still.
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