
Listen to Interpret: Post-hoc Interpretability for Audio
Networks with NMF

Jayneel Parekh1 Sanjeel Parekh1,2∗ Pavlo Mozharovskyi1
Florence d’Alché-Buc1 Gaël Richard1

1LTCI, Télécom Paris, Institut Polytechnique de Paris 2Audio Analytic
{jayneel.parekh,pavlo.mozharovskyi,florence.dalche,gael.richard}@telecom-paris.fr

sanjeel.parekh@audioanalytic.com

A Appendix

A.1 Sparse-NMF implementation details

The pre-specified dictionary (Step 2 in Algorithm 1) is learnt using Sparse-NMF [4]. To recall, the
following optimization problem is solved through multiplicative updates to pre-learn W:

minD(Xtrain|WH) + µ∥H∥1 s.t.W ≥ 0,H ≥ 0, ∥wk∥ = 1, ∀k. (1)

Training audio files are converted into log-magnitude spectrogram space for factorization. We
construct Xtrain differently for each dataset due to their specific properties. For ESC-50, Xtrain is
constructed by concatenating the log–magnitude spectrograms corresponding to each sample in
the training data of the cross-validation fold (1600 samples for each fold) and performing joint
factorization using Eq. 1.

SONYC-UST however, is an imbalanced multilabel dataset with very strong presence of background
noise. A typical procedure to learn components, as for ESC-50, yields many components capturing
significant background noise. This affects understandability of interpretations. As a result, we
process this dataset differently. We first learn Wnoise, that is, a set of 10 components to model
noise using training samples with no positive label. Then, for each class, we randomly select 700
positively-labeled samples from all training data and learn 10 new components (per class) with Wnoise
held fixed for noise modeling. All 10× 8 = 80 components are stacked column-wise to build our
dictionary W. While this strategy helps us reduce the number of noise-like components in the final
dictionary, it does not completely avoid it.

As done in [1], for computational efficiency, we too average the spectrogram frames over chunks of
five. This reduces the size of Xtrain and saves memory to allow training over more number of samples.

A.2 Classifier f details

The architecture we use for f [3] has been pretrained on AudioSet. For each dataset, we first fine-tune
this network and perform post-hoc interpretations for the resulting trained network. Here we discuss
its broad architecture and specific training details used to fine-tune it on our datasets.

It takes as input a log-mel spectrogram. The architecture broadly consists of six convolutional blocks
(B1–B6) and one convolutional layer with pooling for final prediction. Most convolutional blocks
consist of two sets of conv2D + batch norm + ReLU layers followed by a max pooling layer.

Details of the full architecture can be found in the original reference. For fine-tuning, we modify
the architecture of prediction layers. Specifically, we remove the F2 conv layer and add a linear

∗Work conducted while the author was at Télécom Paris

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



layer after final pooling, the output dimensions of which correspond to the number of classes in our
datasets.

For both the datasets, we do not use any data augmentation. The ADAM optimizer [2] is used to
fine-tune f . For ESC-50, we only fine-tune the prediction layers of the network. We train the classifier
for 10 epochs on each fold of the dataset with a learning rate of 1× 10−3.

On SONYC-UST, we fine-tune all the layers in f , which leads to higher classifier AUPRC metrics.
The classifier is trained for 10 epochs. Here we start with a learning rate of 2× 10−4 and halve it
after every 4 epochs.

A.3 Choosing number of components K

Choice of number of components, K, also known as order estimation, is typically data and application
dependent. It controls the granularity of the discovered audio spectral patterns. Choosing K has also
been a long standing problem within the NMF community [9]. Our choice for this parameter was
guided by three main factors:

• Choices made previously in literature for similar pre-learning of W [1], who demonstrated
reasonable acoustic scene classification results with a dictionary size of K = 128. We used
this as a reference to guide our choice for number of components.

• Dataset specific details which include number of classes, samples for each class, variability
of recordings etc. For eg. acoustic variability of ESC-50 (larger number of classes),
prompted us to use a dictionary of larger size compared to SONYC-UST.

• When tracking loss values for different K, we observed a plateauing effect for larger
dictionary sizes as illustrated in Fig. 1 for ESC-50.

Figure 1: Loss values on ESC50-test data for fold 1 for various dictionary sizes.

A.4 Other hyperparameters and ablation studies

Audio processing parameters. For both the tasks, we perform same audio pre-processing steps.
All audio files are sampled at 44.1kHz. STFT is computed with a 1024-pt FFT and 512 sample hop
size, which corresponds to about 23ms window size and 11.5ms hop. The log-mel spectrogram is
extracted using 128 mel-bands.

Other hyperparameters We used the same set of hidden layers for both datasets. Specifically, we
use the outputs of last three convolutional blocks in f , B4, B5 and B6. We also used the same loss
hyperparameters α = 10, β = 0.8 for both datasets. Models were optimized using ADAM [2] for
35 epochs on each fold of ESC-50 with learning rate: 2× 10−4 and for 21 epochs on SONYC-UST
(learing rate: 5× 10−4).

Tab. 1 and Tab. 2 present ablation studies for loss hyperparameters and choice of hidden layers. The
choices in bold indicate our current choices. The metrics and loss values given here are for a single

2



ConvBlocks LNMF Lof top-1

B4+B5+B6 0.079 1.546 65.5
B5+B6 0.103 1.572 61.5
B6 0.118 1.698 57.8

Input 0.102 2.384 34.5

Table 1: Hidden layer ablation study (ESC-50).
Current choice indicated in bold.

α β LNMF Lof macro-AUPRC

10.0 0.8 0.028 0.386 0.900
10.0 8.0 0.048 0.386 0.879
10.0 0.08 0.028 0.388 0.876
1.0 0.8 0.045 0.375 0.921

100.0 0.8 0.027 0.445 0.612

Table 2: Loss hyperparameter ablation study
on SONYC-UST. Current choice in bold.

run. For the ablation study on hidden layers in Tab. 1, we additionally report another baseline where
instead of accessing the hidden layers, Ψ is directly applied on the input. Given that the interpreter
no longer has access to representations learnt by the classifier (which were close to the output as
well) and architecture of Ψ itself is much simpler compared to the classifier, it is significantly worse
at approximating classifiers output.

Total training time is around 50 minutes for 1 fold on ESC-50 and 150 minutes for SONYC-UST.
Around 30-40% of the total time is spent on pre-learning W using Sparse-NMF (for both datasets).
Networks were trained on a single NVIDIA-K80 GPU.

A.5 Further discussion on Interpretations

A.5.1 Corruption samples ESC-50

The goal of this experiment is to qualitatively illustrate that our method can generate interpretations
on ESC-50 in various noisy situations. For this, we corrupt a given sample from a target class in
two ways: (i) With sample from a different class (Overlap experiment), and (ii) Adding high amount
of white noise, at 0dB SNR (Noise experiment). The key question that we want the interpretations
to offer insight on is: did the classifier truly make its decision because it "heard" the target class
or is it making the decision based on the corruption part of the audio? The cases where classifier
misclassifies are analyzed in Sec. A.5.2. As already highlighted in Sec. 1, listenable interpretations
are not expected to perform source separation for the class of interest, but to confirm if decision
corresponds entirely/mostly to target class or not. All examples can be listened to on our companion
website 2. Since the target and corrupting signals and their classes are already known, we can
reinforce the observations drawn by listening to the interpretations through spectrograms (Figs. 2, 3).

A.5.2 Misclassification samples ESC-50

When the classifier prediction is incorrect, the interpretations may still provide insight into the
classifier’s decision by indicating what the classifier “heard" in the input signal. We give examples
for this on the webpage2. For instance, one of the example is of a sample with ground-truth class
’Crying-Baby’ misclassified as a ’Car-horn’. Interestingly, the interpretation is acoustically similar to
car horns. Please note the importance of listenable interpretations that aid such understanding into
the audio network’s decisions.

A.5.3 Coherence in interpretations

We qualitatively analyze the interpretations on SONYC-UST by visualizing relevances generated
on the test set. Specifically, we compute the vector rc,x ∈ RK which contains relevances of all
components in prediction for class c for sample x. The relevance vectors are collected for each test
sample x and its predicted class c. We then apply a t-SNE [10] transformation to 2D for visualization.
This is shown in Fig. 4. Each point is colored according to the class for which we generate the
interpretation. Interpretations for any single class are coherent and similar to each other. This is
to some extent a positive consequence of global weight matrix in Θ. Moreover, globally it can be
observed that classes like ’Machinery-impact’ and ’Powered-Saw’ have similar relevances which are
to some extent close to ’Engine’. This is to be expected as these classes are acoustically similar. ’Dog’
and ’Music’ are also close in this space, likely due to the often periodic nature of barks or beats.

2https://jayneelparekh.github.io/listen2interpret/

3

https://jayneelparekh.github.io/listen2interpret/


(a) (b)

(c) (d)

Figure 2: Log-magnitude spectrograms of an example from Overlap experiment: (a) Target class
(’Dog’) original uncorrupted signal (b) Corrupting/Mixing class (’Crying-Baby’) signal (c) Cor-
rupted/mixed signal, also the input audio to the classifier (d) Interpretation audio for the predicted
class (’Dog’). The interesting observation is that spectrogram of interpretation audio almost entirely
consists of parts from target class (’Dog’) signal with only a very weak presence of corrupting class
(’Crying-Baby’) close to the end.

(a) (b) (c)

Figure 3: Log-magnitude spectrograms of an example from ESC-50 Noise experiment: (a) Target
class (’Rooster’) original uncorrupted signal, (b) White noise corrupted signal, also the input audio
to the classifier (c) Interpretation audio for the predicted class (’Rooster’). Again, the interpretation
audio is almost entirely free of corrupting signal (white noise in this case) and mostly consists of
parts of the original target signal. This strongly indicates that the classifier relied on parts of audio
corresponding to the target class to make its decision, and not the white noise.

4



Figure 4: Visualized relevances (following a t-SNE transformation) of generated interpretations on
SONYC-UST, colour-coded according to interpreted class.

A.6 Discussion on interpretations from related methods

A.6.1 Attribution maps for listenable output

Input attribution/saliency maps in their current form are more suitable for images. These maps are
generally spatially smooth, which aids visual understandability, but are not effective masks to clearly
emphasize time-frequency bins. Thus, for audio spectrogram like inputs, while they can be useful in
visually indicating the important regions, they are poor masks to filter such information for listenable
output. We applied a recent approach based on information bottleneck [8] to generate attribution
maps for few samples on ESC50-Noise Experiment.

Experimental details: We used the python PyTorch version of their package and follow the standard
example version given in their repository 3. The example inserts a bottleneck in conv layer from 4th
block of VGG16. Our network architecture is also similar to VGG architectures. So we applied a
bottleneck at the output of 4th conv block (B4), which we also access via our interpreter. We also
follow the same optimization procedure as in the example, i.e. Adam for 10 iterations. The saliency
map is applied as a filter on the mel-spectrogram. We then approximate STFT from mel-spectrogram
and invert it using input phase for a time-domain audio output.

Outputs can be heard on our companion website 2. We provide visualizations for a sample in Fig.
5. While the saliency map indeed visually indicates relevant regions, the time-domain signal still
contains considerable noise and is not very useful. The smoothness of saliency maps can be partly
attributed to upsampling of information extracted from lower resolution feature maps. Another
limitation of applying these methods to 2D CNN’s is the frequent use of log-mel spectrogram as
input (current model uses 128 mel bands) for the networks. The saliency map is then over the
mel-spectrogram space. This adds to the loss of information and exacerbates issues in their use
as filtering masks for spectrograms. Despite their usefulness, we believe these methods require
non-trivial updates to be suitable for generating listenable interpretations.

A.6.2 Interpretations of FLINT

For completeness, we also provide examples of interpretations by FLINT on ESC-50 Noise samples.
As discussed in Sec. 2, FLINT uses a visualization pipeline to understand high-level attributes,
which primarily consists of using activation maximization [5] based procedure to emphasize patterns
relevant for the activation of an attribute.

In our current setting, this optimization procedure takes place in the log-mel spectrogram space.
For initialization with a “weak version" version of the input we subtract 10 from the input log-mel
spectrogram. We use Adam optimizer for 1500 iterations We add below examples of this visualization
strategy after estimating log-magnitude spectrogram from the output of optimization procedure.
Additionally we also estimate the time-domain signal as before to verify any potential as listenable
output on the webpage 2.

3https://github.com/BioroboticsLab/IBA

5

https://github.com/BioroboticsLab/IBA


(a) (b)

(c)

Figure 5: Log-magnitude spectrograms and saliency map to visualize an attribution map on ESC50-
Noise sample: (a) White noise corrupted signal (from class ’Rooster’), also the input audio to the
classifier, (b) Interpretation audio for the predicted class (’Rooster’), (c) Saliency map on the log-mel
spectra space. The regions corresponding to the signal frequencies are brightest in the saliency map.
However, owing to it’s smoothness and loss of information in mel-spectrogram space, high amount
of noise is still a part of interpretation signal.

The optimization in general results in specific patterns added in a log mel-spectrogram and thus the
magnitude spectrogram. However, visually understanding the significance of the patterns is a very
hard task. Listening to the resulting spectrograms is not informative either as they typically do not
remove the noise, nor do they correspond to recognizable phenomenon. Compared to dictionary
of pre-learnt spectral patterns, the dictionary of attributes is less constrained in the information
an individual attribute encodes. Moreover, FLINT’s visualization pipeline provides finer-grained
interpretation at an attribute level. Both these considerations require the pipeine to be lot more
effective to convey the interpretation understandably for audio modality.

A.7 Baseline implementations details

FLINT: We implemented it with the help of their official implementation available on GitHub.4 For
each experiment, we fix their number of attributes J equal to the number of our NMF components K.
We also choose the same hidden layers for their system as we choose for ours. This baseline is trained
for the same number of epochs as us. We use same values for our LNMF loss weight, α, and their Lif

loss weight γ. For the other loss hyperparameters, we use their default values and training strategy.

VIBI: We implemented this using their official repository.5 The key hyperparameters that we set are
the input chunk size and their parameter K, the number of chunks to use for interpretation. We use
a larger chunk size than in their experiments to limit the number of chunks. On ESC-50, we use a
chunk size of 32× 43, and on SONYC-UST, a chunk size of 32× 86. This yields 40 chunks for each

4https://github.com/jayneelparekh/FLINT
5https://github.com/SeojinBang/VIBI

6

https://github.com/jayneelparekh/FLINT
https://github.com/SeojinBang/VIBI


(a) (b) (c)

Figure 6: Log-magnitude spectrogram visualizations for two relevant attributes of FLINT on a
sample from ESC50-Noise experiment: (a) White noise corrupted input audio (class: ’Rooster’), (b)
Activation maximization output for attribute 62, (c) Activation maximization output for attribute 77.

(a) (b) (c)

Figure 7: Log-magnitude spectrogram visualizations for two relevant attributes of FLINT on a sample
from ESC50-Noise experiment: (a) White noise corrupted input audio (class: ’Sheep’), (b) Activation
maximization output for attribute 7, (c) Activation maximization output for attribute 77.

input on both the datasets. We varied the K from 5 to 20, and report the results with best fidelity. The
system was trained for 100 epochs on ESC-50 and 30 epochs on SONYC-UST

SLIME: We primarily relied on implementation from their robustness analysis repository 6. The
key hyperparameters to balance are the number of chunks vs chunk size. SONYC-UST contains 10
second audio files. This is much longer than 1.6 second audio files for which SLIME was originally
demonstrated [6]. Therefore, we divide only on the time-axis to limit the number of chunks. SLIME
recommends a chunk size of at least 100ms. They operate on upto 290ms chunk size. We balance
these two hyperparameters by dividing our audio files in 20 chunks of 500ms chunk size. We select a
maximum of 5 chunks for interpretations and a neighbourhood size of 1000.

A.8 Subjective evaluation implementation

The subjective evaluation interface was implemented using webMUSHRA [7]. Prior to voting on the
test samples, participants were provided with an instruction page and then a training page with an
example to get used to interface, instructions, tune their volume etc. Screenshots of the instruction
and training page are given in Fig. 8, Fig. 9 respectively.

A.9 Potential Societal Impacts

We expect our method to have positive societal impact by improving understandability of inter-
pretations for audio processing networks. However, this inherently benign technology could be
misused when in wrong hands. For example, it can be used to provide misleading interpretations if

6https://github.com/saum25/local_exp_robustness

7

https://github.com/saum25/local_exp_robustness


Figure 8: Instructions for the participants at the start of the subjective evaluation

Figure 9: Training page for subjective evaluation that illustrates the interface for scoring for the
participants.

trained incorrectly (wrong NN architectures, insufficient training examples/training epochs, malicious
datasets etc.). Evidently, we expect proper use of the developed methodology, although direct misuse
protection mechanisms were not developed in this piece of research, not being the initial goal.

References
[1] Victor Bisot, Romain Serizel, Slim Essid, and Gaël Richard. Feature learning with matrix

factorization applied to acoustic scene classification. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 25(6):1216–1229, 2017.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[3] Anurag Kumar, Maksim Khadkevich, and Christian Fügen. Knowledge transfer from weakly
labeled audio using convolutional neural network for sound events and scenes. In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 326–
330. IEEE, 2018.

8



[4] Jonathan Le Roux, Felix J Weninger, and John R Hershey. Sparse NMF–half-baked or well
done? Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA, Tech. Rep., no.
TR2015-023, 11:13–15, 2015.

[5] Aravindh Mahendran and Andrea Vedaldi. Visualizing deep convolutional neural networks
using natural pre-images. International Journal of Computer Vision, 120(3):233–255, 2016.

[6] Saumitra Mishra, Bob L Sturm, and Simon Dixon. Local interpretable model-agnostic explana-
tions for music content analysis. In ISMIR, pages 537–543, 2017.

[7] Michael Schoeffler, Sarah Bartoschek, Fabian-Robert Stöter, Marlene Roess, Susanne Westphal,
Bernd Edler, and Jürgen Herre. webMUSHRA—a comprehensive framework for web-based
listening tests. Journal of Open Research Software, 6(1), 2018.

[8] Karl Schulz, Leon Sixt, Federico Tombari, and Tim Landgraf. Restricting the flow: Information
bottlenecks for attribution. In International Conference on Learning Representations, 2019.

[9] Vincent YF Tan and Cédric Févotte. Automatic relevance determination in nonnegative matrix
factorization with the/spl beta/-divergence. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(7):1592–1605, 2012.

[10] Laurens Van der Maaten and Geoffrey Hinton. Visualizing high-dimensional data using t-SNE.
Journal of Machine Learning Research, 9(11), 2008.

9


	Appendix
	Sparse-NMF implementation details
	Classifier f details
	Choosing number of components K
	Other hyperparameters and ablation studies
	Further discussion on Interpretations
	Corruption samples ESC-50
	Misclassification samples ESC-50
	Coherence in interpretations

	Discussion on interpretations from related methods
	Attribution maps for listenable output
	Interpretations of FLINT

	Baseline implementations details
	Subjective evaluation implementation
	Potential Societal Impacts


