
Supplementary Materials

A Further Details of LWE

A.1 Ring Learning with Errors (§2)

We now define RLWE samples and explain how to get LWE instances from them. Let n be a power
of 2, and let Rq = Zq[x]/(x

n + 1) be the set of polynomials whose degrees are at most n− 1 and
coefficients are from Zq. The set Rq forms a ring with additions and multiplications defined as the
usual polynomial additions and multiplications in Zp[x] modulo xn +1. One RLWE sample refers to
the pair

(a(x), b(x) := a(x) · s(x) + e(x)),

where s(x) ∈ Rq is the secret and e(x) ∈ Rq is the error with coefficients subject to the error
distribution.

Let a, s and e ∈ Zn
q be the coefficient vectors of a(x), s(x) and e(x). Then the coefficient vector b of

b(x) can be obtained via the formula

b = Acirc
a(x) · s + e,

here Acirc
a(x) represents the n × n generalized circulant matrix of a(x). Precisely, let a(x) = a0 +

a1x+ . . .+ an−2x
n−2 + an−1x

n−1, then a = (a0, a1, . . . , an−2, an−1) and

Acirc
a(x) =

a0 −an−1 −an−2 . . . −a1
a1 a0 −an−1 . . . −a2
a2 a1 a0 . . . −a3
...

...
...

. . .
...

an−1 an−2 an−3 . . . a0

 .

Therefore, one RLWE sample gives rise to n LWE instances by taking the rows of Acirc
a(x) and the

corresponding entries in b.

A.2 Search to Decision Reduction for Binary Secrets (§2)

We give a proof of the search binary-LWE to decisional binary-LWE reduction. This is a simple
adaption of the reduction in [56] to the binary secrets case. We call an algorithm a (T, γ)-distinguisher
for two probability distributions D0,D1 if it runs in time T and has a distinguishing advantage γ.
We use LWEn,m,q,χ to denote the LWE problem which has secret dimension n, m LWE instances,
modulus q and the secret distribution χ.

Theorem A.1. If there is a (T, γ)-distinguisher for decisional binary-LWEn,m,q,χ, then there is a
T ′ = Õ(Tn/γ2)-time algorithm that solves search binary-LWEn,m′,q,χ with probability 1− o(1),
where m′ = Õ(m/γ2).

Proof. Let s = (s1, . . . , sn) with si ∈ {0, 1}. We demonstrate the strategy of recovering s1, and the
rest of the secret coordinates can be recovered in the same way. Let m′ = Õ(1/γ2)m, given an LWE
sample (A, b) where A ∈ Zm′×n

q ,b ∈ Zm′

q , we compute a pair (A′, b′) as follows:

A′ = A +′ c, b′ = b.

Here c ∈ Zm′

q is sampled uniformly and the symbol “ +′ ” means that we are adding c to the first
column of A. One verifies by the definition of LWE that if s1 = 0, then the pair (A′, b′) would
be LWE samples with the same error distribution. Otherwise, the pair (A′, b′) would be uniformly
random in Zm′×n

q × Zm′

q . We then feed the pair (A′, b′) to the (T, γ)-distinguisher for LWEn,m,q,χ,
and we need to running the distinguisher m′/m = Õ(1/γ2) times given the number of instances.
Since the advantage of this distinguisher is γ with m LWE instances, and we are feeding it m′ LWE
instances, it follows from the Chernoff bound that if the majority of the outputs are “LWE”, then

15

the pair (A′,b′) is an LWE sample and therefore s1 = 0. If not, s1 = 1. Guessing one coordinate
requires running the distinguisher Õ(1/γ2) times, therefore, this search to reduction algorithm takes
time T ′ = Õ(Tn/γ2). Note that we can use the same m′ LWE instances for each coordinate,
therefore it requires m′ = Õ(m/γ2) samples to recover all the secret coordinates.

A.3 Overview of Attacks on LWE

Typically, attacks on the LWE problem use an algebraic approach and involve lattice reduction
algorithms such as BKZ [22]. The LWE problem can be turned into a BDD problem (Bounded
Distance Decoding) by considering the lattice generated by LWE instances, and BDD can be solved
by Babai’s Nearest Plane algorithm [44] or the pruned enumeration [45], this is known as the primal
BDD attack. The primal uSVP attack constructs a lattice via Kannan’s embedding technique [36]
whose unique shortest vector encodes the secret information. The Dual attack [48] finds a short
vector in the dual lattice which can be used to distinguish the LWE samples from random samples.
Moreover, there are also attacks that do not use lattice reduction. For instance, the BKW style attack
[5] uses combinatorial methods; however, this assumes access to an unbounded number of LWE
samples.

Binary and ternary secret distributions are widely used in homomorphic encryption schemes. In
fact, many implementations even use a sparse secret with Hamming weight h. In [14] and [47], both
papers give reductions of binary-LWE to hard lattice problems, implying the hardness of binary-
LWE. Specifically, the (n, q)-binary-LWE problem is related to a (n/t, q)-LWE problem where
t = O(log(q)). For example, if n = 256 is a hard case for uniform secret, we can be confident that
binary-LWE is hard for n = 256 log(256) = 2048. But [11] refines this analysis and gives an attack
against binary-LWE. Their experimental results suggest that increasing the secret dimension by a
log(log(n)) factor might be already enough to achieve the same security level for the corresponding
LWE problem with uniform secrets.

Let us now turn to the attacks on (sparse) binary/ternary secrets. The uSVP attack is adapted to
binary/ternary secrets in [11], where a balanced version of Kannan’s embedding is considered. This
new embedding increases the volume of the lattice and hence the chance that lattice reduction
algorithms will return the shortest vector. The Dual attack for small secret is considered in [6] where
the BKW-style techniques are combined. The BKW algorithm itself also has a binary/ternary-LWE
variant [7]. Moreover, several additional attacks are known which can exploit the sparsity of an LWE
secret, such as [16, 23] . All of these techniques use a combinatorial search in some dimension d, and
then follow by solving a lattice problem in dimension n− d. For sparse secrets, this is usually more
efficient than solving the original lattice problem in dimension n.

B Additional Modular Arithmetic Results (§3)

Table 6: q values used in our experiments

⌈log2(q)⌉ q ⌈log2(q)⌉ q

5 19, 29 18 147647, 222553
6 37, 59 19 397921, 305423
7 67, 113 20 842779, 682289
8 251, 173 21 1489513, 1152667
9 367, 443 22 3578353, 2772311
10 967, 683 23 6139999, 5140357
11 1471, 1949 24 13609319, 14376667
12 3217, 2221 25 31992319, 28766623
13 6421, 4297 26 41223389, 38589427
14 11197, 12197 27 94056013, 115406527
15 20663, 24659 28 179067461, 155321527
16 42899, 54647 29 274887787, 504470789
17 130769, 115301 30 642234707, 845813581

16

Here, we provide additional information on our single and multidimensional modular arithmetic
experiments from §3.1. Before presenting experimental results, we first highlight two useful tables.
Table 6 shows the q values used in our integer and multi-dimension modular arithmetic problems.
Table 7 is an expanded version of Table 1 in the main paper body. It shows how the log2 samples
required for success changes with the base representation for the input/output, but includes additional
values of base B (secret is fixed at 728).

Table 7: Base-2 logarithm of the number of examples needed to reach 95% accuracy, for different values of
⌈log2(q)⌉ and bases.

⌈log2(q)⌉
Base

2 3 4 5 7 17 24 27 30 31 63 81 128

15 23 21 21 23 22 20 20 23 22 21 21 20 20
16 24 22 23 22 22 23 22 22 22 23 22 22 21
17 - 23 24 25 22 26 23 24 22 24 23 22 22
18 - 23 23 25 23 - 23 24 25 - 23 22 22
19 - 23 - - 25 23 25 24 - - 25 25 24
20 - - - - - 24 25 24 26 - - 24 25
21 - 24 - - 25 - - - - - - - 25
22 - - - - - - - 25 - 26 - - 25
23 - - - - - - - - - - 25 - -
24 - - - - - - - - - - - - -

Base vs. Secret. We empirically observe that the base B used for integer representation in our
experiments may provide side-channel information about the secret s in the 1D case. For example, in
Table 8, when the secret value is 729, bases 3, 9, 27, 729 and 3332 all enable solutions with much
higher q (8 times higher than the next highest result). Nearly all these are powers of 33 as is the secret
729 = 36. In the table, one can see that these same bases provide similar (though not as significant)
“boosts” in q for secrets on either side of 729 (e.g. 728, 730), as well as for 720 = 36 − 32. Based
on these results, we speculate that when training on (a, b) pairs with an unknown secret s, testing
on different bases and observing model performance may allow some insight into s’s prime factors.
More theoretical and empirical work is needed to verify this connection.

Ablation over transformer parameter choices. We provide additional experiments on model
architecture, specifically examining the effect of model layers, optimizer, embedding dimension
and batch size on integer modular inversion performance. Tables 9-12 show ablation studies for the
1D modular arithmetic task, where entries are of the form (best log2(q)/log2(samples)), e.g. the
highest modulus achieved and the number of training samples needed to achieve this. The best results,
meaning the highest q with the lowest log2(samples), are in bold. For all experiments, we use the
base architecture of 2 encoder/decoder layers, 512 encoder/decoder embedding dimension, and 8/8
attention heads (as in Section 3.1) and note what architecture element changes in the table heading.

We find that shallower transformers (e.g 2 layers, see Table 9) work best, allowing problem solutions
with a much higher q especially when the base B is large. The AdamCosine optimizer (Table 10)
generally worked best, but required a smaller batch size for success with larger base. For smaller
bases, a smaller embedding dimension of 128 performed better (Table 11), but increasing base size
and dimension simultaneously yielded good performance. Results on batch size (Table 12) do not
show a strong trend.

C Additional information on SALSA Secret Recovery (§4.3)

Here, we provide additional information about SALSA’s two secret recovery algorithms.

3And 3332 can easily be written out as a sum of powers of 3, e.g. 3332 = 38−37−36−35−34+32+3−1.

17

Table 8: Relationship between base and secret. Numbers in table represent the highest log2(q) value achieved
for a particular base/secret combo. Values of log2(q) >= 23, indicating high performance, are bold.

Base Secret value
720 721 722 723 724 725 726 727 728 729 730

2 - 18 16 - - - 16 16 - 16 -
3 19 16 18 16 18 18 19 18 21 24 20
4 18 18 18 18 18 - - - 18 18
5 18 17 16 16 16 18 18 17 16 19 16
7 - 18 - 18 - 20 - - 19 18 -
9 23 18 18 18 18 18 18 21 18 24 23
11 20 20 - 19 21 21 21 20 - - 19
17 18 18 - 19 19 18 18 20 20 -
27 23 - 23 18 18 18 21 22 21 24 22
28 - 20 18 - 20 18 - 19 23 18 -
49 18 22 18 19 21 18 - 18 19 18 18
63 20 21 18 20 19 19 18 19 18 - -
128 20 - 18 22 20 - 19 18 19 19 19
729 18 20 19 18 19 21 19 19 18 25 18
3332 22 22 22 23 22 22 21 22 23 23 22

Table 9: 1D case: Ablation over
number of transformer layers.

Base # Transformer Layers
2 4 6

27 19/24 18/27 20/25
63 18/25 16/25 15/22

3332 23/26 23/- 18/22

Table 10: 1D case: Ablation over optimizers. Parenthetical denotes (#
warmup steps, learning rate); * = batch size 128.

Base Optimizer
Adam (0, 5e−5) Adam (3000, 5e−5) AdamCosine (3000, 1e−5)

27 18/26 19/24 22/27
3332 23/26 23/27 22/26
3332* 23/26 23/26 23/25

Table 11: 1D case: Ablation over embedding.

Base Embedding Dimension
512 256 128 64

3 21/25 21/24 22/26 19/-
27 23/26 23/26 23/25 19/26
63 23/27 18/24 19/27 18/26

3332 23/25 23/26 23/26 23/27

Table 12: 1D case: Ablation over training batch size.

Base Batch size
64 96 128 192 256

3 21/26 21/25 21/26 22/26 23/26
27 21/25 24/27 22/27 23/26 24/28
63 - 20/27 23/25 - 23/26
3332 23/26 23/26 23/25 23/25 23/26

C.1 Direct Secret Recovery

Recovering Secrets from Predictions. During the direct secret recovery phase, we must transform
model predictions from sequences on integers in base B into binary secrets. This transformation
is denoted by the binarize function on line 7 of Algorithm 1. We first decode the n (one for each
special a input) predictions into integers and concatenate the predictions into one n-long vector s̃.
Then, we use each of the following methods to binarize this vector: mean comparison, softmax mean
comparison, and mode comparison.

• The mean comparison method takes the mean of s̃ and computes two potential secrets from it via
the following function: f01(s̃) sets all elements above the mean to be 0 and below it to be 1, and
f10(s̃) sets all elements above the mean to be 1 and below it to be 0.

• To use the softmax mean comparison, we first take the softmax of s̃. We then take the mean of s̃
and use the same binarization method as before to get two secret predictions.

18

• The mode comparison method is similar but instead of taking the mean, it uses the mode of s̃ as
the divider between 0 and 1 methods.

Altogether, these binarization methods produce six secret guesses. In our SALSA evaluation, all of
these are compared against the true secret s, and the number of matching bits is reported. If s̃ fully
matches s, model training is stopped. When s is not available for comparison, the methods in §4.4
can be used to verify s̃’s correctness.

K values. At the end of each epoch, we use 10K values for direct secret guessing, 5 of which are
fixed and 5 of which are randomly generated. The fixed K values are K = [239145, 42899, q −
1, 3q + 7, 42900], while the random K values are chosen from the range (q, 10q).

C.2 Distinguisher-Based Secret Recovery

Here, we provide more details on the parameters and subroutines used in Algorithm 2.

• τ : This parameter sets the bound on q that will be used for the distinguisher computation. In our
experiments, we set τ = 0.1.

• accτ : This denotes the distinguisher advantage. Let accτ denote the proportion of model predic-
tions which fall within the chosen tolerance (e.g. accuracy within tolerance as described in §4.2),
then advantage = accτ − 2 ∗ τ .

• LWESamples(t, n, q) is a subroutine that returns LWE samples (A,b) ∈ Zn×t
q × Zt

q , note that
now columns of A corresponds to LWE instances.

C.3 Secret Recovery in Practice

Empirically, we observe that direct secret recovery recovers the secret more quickly than the
distinguisher-based method. Figure 5 plots counts of which technique provided the successful
secret guess for 120 SALSA runs with varying n and d. The direct secret guessing method success
> 90% of the time, but occasionally the distinguisher is able to get the secret first. Occasionally, both
methods simultaneously recover the secret.

Which secret recovery

method finds secret first?

Distinguisher Direct Both

C
o
u
n
t

0

20

40

60

Figure 5: Frequency counts of which secret recovery method succeeds first for 90 successful SALSA runs.

D Additional SALSA Results (§5.2)

D.1 Effect of Architecture for (R)LWE Attacks

Several key architecture choices determine SALSA’s ability to recover secrets with higher n and
d, namely the encoder and decoder dimension as well as the number of attention heads. Other
architecture choices determine the time to solution but not the complexity of problems SALSA could
solve. For example, universal transformers (UT) are more sample efficient than regular transformers.
Using gated loops in the UT with more loops on the decoder than the encoder reduced both model
training time and the number of samples needed. Here, we present ablation results for all these
architectural choices.

Universal Transformers vs. Regular Transformers. First, we see if universal transformers improve
experimental efficiency or success. We run dueling experiments on medium size problems (N = 50,
d = 0.06, q = 251, Bin/Bout = 81). For one experiment, we use regular transformers with between

19

Table 13: Transformers vs UTs.
Ratio of training samples required
for success for UTs with X/X
encoder/decoder loops vs. reg-
ular transformers with X/X en-
coder/decoder layers.

Encoder
Loops/Layers

Decoder
Loops/Layers
2 4 8

2 1.2 4.7 0.8
4 0.7 0.4 0.6
8 0.1 0.1 0.1

Table 14: Gated vs Ungated UTs.
Ratio of training samples required
for success for gated UTs with X/X
encoder/decoder loops vs. ungated
UTs with same loop numbers.

Encoder
Loops

Decoder Loops
2 4 8

2 1.0 1.3 0.3
4 0.3 0.3 0.3
8 0.1 0.1 0.1

Table 15: Loops. Average log2
of training samples required for
N = 50, h = 3, q = 251,
basein/baseout = 81 as loops
vary.

Encoder
Loops

Decoder Loops
2 4 8

2 23.5 25.4 23.4
4 23.3 24.2 24.4
8 23.1 22.3 22.5

2 and 8 encoder/decoder layers. For the other, we use gated universal transformers with between 2
and 8 loops. We then compare the relative number of training samples needed to achieve success for
both methods. As Table 13 shows, when model size increases, universal transformers prove more
sample efficient, so we use them exclusively.

Gated vs Ungated UTs. To understand the effect of gating on sample efficiency, we run two
experiments with medium-size problems (N = 50, d = 0.06, q = 251, Bin/Bout = 81). For both
experiments, we use universal transformers with between 2 and 8 loops on the encoder/decoder. We
use gates for one experiment but not for the other. As Table 14 shows, gated UTs are much more
sample-efficient.

Number of Loops. Table 15 shows the average number of samples needed to recover the secret for
N = 50, h = 3 with different numbers of encoder/decoder loops (dimension=1025/512, heads=16/4).
There is a tradeoff between adding loops and increasing computation time, particularly for encoder
loops as n increases. In our experiments, we elect to use 2 encoder loops and 8 decoder loops due to
the significant training time needed for high n values with more encoder loops.

Encoder/Decoder Dimension. Table 3 in §5.2 demonstrates how increasing the encoder size and
decreasing the decoder sizes enables secret recovery with fewer samples. Here, we explore the effect
of encoder and decoder dimension on the n and hamming weight of secrets SALSA can recover. Our
results, shown in Tables 16 and 17, follow the same pattern as before: higher encoder dimension and
lower decoder dimension allow us to recover secrets with higher n. Furthermore, for n = 30, higher
encoder dimension and/or smaller decoder dimension allows recovery of hamming weight 4 secrets.

Table 16: Ablation over Encoder Dimension. Proportion of secret bits recovered for varying n and encoder
dimension. For all experiments, we fix decoder dimension to be 512, 2/2 layers, 2/8 loops. Green means secret
was guessed, yellow means all 1s, but not all 0s, were guessed, and red means SALSA failed.

n
Encoder Dimension

(hamming=3)
Encoder Dimension

(hamming=4)
512 1024 2048 3040 512 1024 2048 3040

30 1.0 1.0 1.0 1.0 0.87 1.0 1.0 1.0
50 1.0 1.0 1.0 1.0 0.94 0.94 0.94 0.94
70 0.97 1.0 1.0 1.0 0.96 0.97 0.94 0.96
90 0.97 0.98 1.0 1.0 0.96 0.96 0.97 0.97

Attention Heads. We run experiments for varying n with 2 encoder/decoder layers, 1024/512
embedding dimension, 2/8 encoder/decoder loops, and varying attention heads to observe the impact
of attention heads on SALSA’s success. Increasing the number of encoder attention heads while
keeping decoder heads at 4 allows SALSA to recover secrets for n > 70 (Table 18), although it
slightly increases the number of samples needed for recovery (Table 19). Increasing the number of
decoder heads increases the number of samples needed but does not provide the same scale-up for n.

20

Table 17: Ablation over Decoder Dimension. Proportion of secret bits recovered for varying n and encoder
dimension. For all experiments, we fix encoder dimension to be 1024, 2/2 layers, 2/8 loops. Green means secret
was guessed, yellow means all 1s, but not all 0s, were guessed, and red means SALSA failed.

n
Decoder Dimension

(hamming=3)
Decoder Dimension

(hamming=4)
256 768 1024 1536 256 768 1024 1536

30 1.0 1.0 1.0 1.0 1.0 1.0 0.90 0.87
50 1.0 1.0 1.0 0.94 0.94 0.92 0.92 0.92
70 1.0 1.0 1.0 0.96 0.96 0.94 0.94 0.94
90 1.0 0.97 0.97 0.97 0.97 0.96 0.97 -

Table 18: Attention Heads: Effect on secret recovery. Table of success for varying n with hamming 3 for
encoder/decoder head combinations. Green means secret was guessed, yellow means all 1s, but not all 0s, were
guessed.

N Encoder/Decoder Heads
8/8 16/4 16/8 16/16 32/4 32/8 32/16 32/32

30 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
70 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
90 0.97 1.0 0.97 0.99 1.0 0.98 0.98 0.97

D.2 Effect of data parameters for (R)LWE Attacks

Complex relationships between N , q, B, and d affect SALSA’s ability to fully recover secrets. Here,
we explore these relationships, with success measured by the proportion of secret bits recovered.
Table 20 shows SALSA’s performance as n and q vary with fixed hamming weight 3. SALSA
performs better for smaller and larger values of q, but struggles on mid-size ones across all N values
(when hamming weight is held constant). This stands in contrast to traditional attacks on LWE, which
only work well when q is large [20]. Table 21 shows the interactions between q and d with fixed
n = 50. Here, we find that varying q does not increase the density of secrets recovered by SALSA.
Finally, Table 22 shows the log2 samples needed for secret recovery with different input/output bases
with n = 50 and hamming weight 3. The secret is recovered for all input/output base pairs except for
Bin = 17, Bout = 3, and using a higher input base reduces the log2 samples needed for recovery.

D.3 Effect of training parameters on (R)LWE Attacks

We experiment with numerous training parameters to optimize SALSA’s performance (e.g. optimizer,
learning rate, floating point precision). While most of these settings do not substantively change
SALSA’s overall performance, we find that batch size has a significant impact on SALSA’s sample
efficiency. In experiments with n = 50 and Hamming weight 3, small batch sizes, e.g. < 50, allow
recovery of secrets with much fewer samples, as shown in Figure 6. The same model architecture is
used as for n = 50 in Table 2.

E Improving SALSA’s Sample Efficiency

Here, we provide both theoretical and empirical results highlighting ways to improve SALSA’s
sample efficiency.

Generating New Samples. We explain how to generate new LWE samples from existing ones via
linear combinations. Assume we have access to m LWE samples. Suppose a SALSA model can
still learn from samples following a family of Gaussian distributions with standard deviations less
than Nσ, where σ is the standard deviation of the original LWE error distribution. The number of
new samples we could make is equal to the number of vectors v = (v1, . . . , vm)T ∈ Zm such that

21

Table 19: Attention Heads: Effect on log2 samples. We test the effect of attention heads and report the log2
samples required to recover the secret in each setting. Experiments are run with n = 50, hamming 3.

Attention Heads
(1024/512, X/X, 2/8)

8/8 16/4,8,16 32/4,8,16,32

22.4 22.8, 22.9, 23.2 23.0, 23.1, 23.7, 24.7

log
2
 samples needed for secret recovery as

log
2
 batch size increases

lo
g

2
 s

a
m

p
le

s

log
2
 batch size

5 6 7 8 9 10 11

20

19

18

17

16

15

Figure 6: Batch size and sample efficiency. Smaller batch sizes allow SALSA to recover secrets
faster. Experiments are run with n = 50, Hamming weight 3.

∑m
i=1 |vi| ≤ N2. For simplicity, assume that v′is are nonnegative. Then, there are

∑N2

n=1
(m+n−1)!
(m−1)!(n)!

such vectors, and therefore this many new LWE samples one can generate.

Results on Generated Samples. Next, we show how SALSA performs when we combine different
numbers of existing samples to create new ones for model training. We use the above method but
do not allow the same sample to appear more than once in a given combination. We fix K, which
is the number of samples used in each linear combination of reused samples. Then, we generate K
coefficients for the combined samples, where each ki is randomly chosen from {−1, 0, 1}. Finally,
we randomly select K samples from a pregenerated set of samples, and produce a new sample from
their linear combination with the ki coefficients. These new samples follow error distribution with
the standard deviation less than or equal to

√
Kσ.

We experiment with different values of K, as well as different numbers of times we reuse a sample in
linear combinations before discarding it. The log2 samples required for secret recovery for each (K,
times reused) setting are reported in Table 8. The first key result is that the secret is recovered in all
experiments, confirming that the additional error introduced via sample combination does not disrupt
model learning. Second, as expected, sample requirements decrease significantly as we increase both
K and times reused.

Samples vs. Sigma. We observe that the number of samples needed for secret recovery increases
linearly with σ, see Figure 7.

22

Table 20: N vs q. Results reported are proportion of total secret bits recovered for various N /q combinations.
Green cells mean the secret was fully guessed, yellow cells all the 1 bits were correctly guessed during training,
and red cells mean SALSA failed. Fixed parameters: h = 3, basein = baseout = 81. 1/1 encoder layers,
1024/512 embedding dimension, 16/4 attention heads, 2/8 loops.

N
log2(q)

6 7 8 9 10 11 12 13 14 15
30 0.90 1.0 1.0 1.0 1.0 1.0 0.9 0.97 1.0 1.0
50 0.94 1.0 1.0 1.0 1.0 1.0 0.94 0.98 1.0 1.0
70 0.96 1.0 1.0 1.0 1.0 1.0 0.96 1.0 1.0 1.0
90 0.97 0.97 1.0 1.0 0.97 1.0 0.97 0.97 0.97 0.99

Table 21: q vs d. Results reported are proportion of total secret bits recovered for various q/d combinations.
Green cells mean the secret was fully guessed, yellow cells all the 1 bits were correctly guessed during training,
and red cells mean SALSA failed. Fixed parameters: N = 50, basein = baseout = 81. 1/1 encoder layers,
3040/1024 embedding dimension, 16/4 attention heads, 2/8 loops.

d log2(q)
6 7 8 9 10 11 12 13 14 15

.06 0.94 1.0 1.0 1.0 1.0 1.0 0.94 0.98 1.0 1.0

.08 0.92 0.92 1.0 0.92 0.94 0.92 0.94 0.94 0.94 0.94

.10 0.90 0.94 0.96 0.90 0.90 0.92 0.90 0.92 0.94 0.92

Table 22: Bin v. Bout. Effect of input and output integer base representation on log2 samples needed for
secret recovery. In each row, the bold numbers represent the lowest log2 samples needed for this value of Bin.
Fixed parameters: n = 50, hamming 3, 2/2 encoder layers, 1024/512 embedding dimension, 16/4 attention
heads, and 2/8 loops.

Bin
Bout

3 7 17 37 81
7 25.8 24.0 25.4 24.5 24.9

17 - 25.9 27.2 25.6 25.4
37 22.8 22.1 22.6 22.2 22.9
81 22.2 22.1 22.4 21.9 22.1

σ

lo
g

2
 s

a
m

p
le

s

Samples needed for secret recovery

as σ increases

17.5

18.0

18.5

19.0

19.5

6 8 10 12 14 16 18 20 22

Figure 7: log2 samples vs. σ, fixed n. As σ
increases, the log2 samples required for a fixed
n = 50, h = 3 increases linearly.

Figure 8: Effect of Sample Reuse on Sample Effi-
ciency. Sample reuse via linear combinations greatly
improves sample efficiency. The secret is recovered
in all experiments, indicating that error introduced by
sample combination does not degrade performance.
Parameters: n = 50, Hamming 3, 2/2 encoder layers,
1024/512 embedding, 16/4 attention heads, 2/8 loops.

K Times Samples Reused
5 10 15 20 25

1 20.42 21.915 20.215 17.610 17.880
2 19.11 20.605 18.695 18.650 16.490
3 20.72 19.825 17.395 18.325 16.200
4 19.11 19.065 17.180 15.405 16.355

23

	Introduction
	Lattice Cryptography and LWE
	Lattices and Hard Lattice Problems
	LWE

	Modular Arithmetic with Transformers
	Methods
	Results

	Introducing SALSA: LWE Cryptanalysis with Transformers
	SALSA Ingredients
	Model Training
	Secret Recovery
	Secret Verification.

	SALSA Evaluation
	Data generation
	Results
	Experiments with model architecture
	Increasing dimension and density
	Increasing error size

	SALSA in the Wild
	Related Work
	Conclusion
	Further Details of LWE
	Ring Learning with Errors (§2)
	Search to Decision Reduction for Binary Secrets (§2)
	Overview of Attacks on LWE

	Additional Modular Arithmetic Results (§3)
	Additional information on SALSA Secret Recovery (§4.3)
	Direct Secret Recovery
	Distinguisher-Based Secret Recovery
	Secret Recovery in Practice

	Additional SALSA Results (§5.2)
	Effect of Architecture for (R)LWE Attacks
	Effect of data parameters for (R)LWE Attacks
	Effect of training parameters on (R)LWE Attacks

	Improving SALSA's Sample Efficiency

