
A Proofs579

Theorem 1 (Reward design over longer horizons). Let S be a set of states that each represent a580

decision context. Let ⇡L be an arbitrary listener policy. Consider the behavior of a speaker that581

chooses utterances u based on Eq. 7. As H ! 1, the expected utility generated by ⇡L increases.582

Proof. (sketch) The future utility for the listener in Eq. 6 is exactly the expected utility generated583

by ⇡L, averaged across all possible decision contexts. Thus, the limit of Eq. 7 as H ! 1 is the584

expected utility generated by ⇡L. Then, consider two utterances u1, u2, with UFuture(u1|w) >585

UFuture(u2|w). The odds ratio PS1 (u1)
PS1 (u2)

between can be shown to increase with H by taking the586

derivative. Thus, utterances become increasingly preferred by the speaker, hence the expected utility587

of the updated listener policy ⇡L(a|s, u) under those utterances increases.588

Theorem 2 (Reward design with instructions is equivalent to demonstrations.). Let s be a state,589

represented as a local context with a set of actions a 2 s that can be taken. Let Uinstruct be a set590

of instruction utterances that reference each a 2 s and let
⇠
R be the following set of (proxy) reward591

functions {R(a) = I[a = a
0]|a0 2 s}, where I represents the indicator function. Then, the posterior592

distribution obtained after an observation of noisily-optimal behavior is the same as that obtained593

from a speaker maximizing Eq. (5) and that obtained from IRD with the set of proxies
⇠
R.594

Proof. The likelihood function for noisily-optimal behavior gives P (a|s, w) / exp (�R(a,w)).595

Thus, the posterior distribution over reward, given that action a was taken in state s can be written596

P (w|s, a) = exp (�R(a,w))P
a02s

exp (�R(a0, w))
. (13)

To show that this is equivalent to the posterior from observing an instruction from a short-sighted597

speaker that can select utterances from Uinstruct according to Eq. (2) with utility function Eq. 5, we598

observe that the utterance likelihood function and the action likelihood function are in one-to-one599

correspondence. The utterance likelihood is600

P (u|s, w) / exp

 
�S1

X

a2s

⇡L0(a|u, s)R(a,w)

!
. (14)

We can see that this is equivalent to Eq. 13 by substituting ⇡L from Eq. 8 and then using the one-to-one601

mapping from Uinstruct to {a 2 s} to rename variables.602

Next, we show that this is equivalent to (locally-optimal) reward design for s. In state s, the optimal603

policy, given the proxy, is to take the only action that gets reward according to the proxy. Thus, this is604

equivalent to Eq. 8. As a result, a reward designer optimizing over this set of proxies will behave as if605

they are selecting utterances from Uinstruct. A similar line of reasoning shows the result.606

B Speaker simulations and pragmatic inference607

B.1 Instructions vs Descriptions608

In the main text, we used a fixed number of available actions (a context S with |S| = 3 objects). Here,609

we further explore the effect of horizon on the choice of instructions vs. descriptions under different610

numbers of available actions. As in the main text, we assume that the speaker uses a near-optimal611

softmax temperature for clarity by setting �S1 = 10.612
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Figure S1: As noted in Section 3.6, speakers exhibit a strong preference for descriptions as their horizon
lengthens.

Figure S2: Breaking out speaker rewards (Fig. 2A) by reward type and utterance. “Horizon-Weighted Rewards”
(left) is the same as Fig. 2A. Instructions afford high “Present Rewards” (center) but generalize poorly (low
“Future Rewards”, right). As a result, rational speakers with access to instructions only remain biased towards
the present context even as their horizon lengthens. This can be seen by comparing “Present” and “Future”
rewards at long horizons (e.g. H = 10). Description-only speakers exhibit little bias towards the present context
(“Present” and “Future” rewards are nearly equal), while instruction-only speakers remain biased towards the
present context (“Present” > “Future” rewards).

We find that instructions become more useful as the number of available actions increases. They613

can always uniquely select the best action in a given state (even when all nine possible objects are614

present), whereas it is not always possible to use a description to identify the best action.615

Figure S3: A: Same as Fig. 2A, but with a state-size |S| of 5 instead of 3. At short horizons, the relative utility of
instructions increases with state size (e.g. as the action space grows, instructions are more useful). B: Speaker’s
probability of using an instruction as a function of number of available actions |S| and horizon H (note that
Fig. S1 shows the curve for |S| = 3). As the number of actions increases, speakers prefer instructions.

Next, building on Fig. 2B in the main text, we include full posteriors over reward functions and616

additional utterances.617
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Figure S4: Same as Fig. 2B, but with full utterance posteriors over possible reward functions and additional
utterances. For utterance posteriors, the gray dashed line indicates the prior (e.g. uniform over all possible
values). Note that descriptions suggest that unmentioned features are lower-magnitude (e.g. for the bottom-right
“Green is +2” utterance, the listener infers that all textures—Striped, Spotted, and Solid—are unlikely to be -2
or +2). Finally, note that with all descriptive utterances, the listener assigns non-negligible probability mass
to values other than the specified one (e.g. in the top-right, the listener infers a substantial probability that the
Spotted feature is actually +2). This suggests that integrating a “truthfulness bias” could improve our models
(see Section 4.2 for a discussion).

C Behavioral Experiment618

The full (anonymized) experiment can be viewed at pragmatic-bandits.herokuapp.com.619

Note that the app is running on free dynos so you may need to wait 5-10 seconds for it to load.620

C.1 Experiment Details621

Participant compensation. Participants earned an average hourly wage of $12.10 and the total622

amount spent on participant compensation was $444. The mean time spent in the experiment was623

18.5 minutes.624

IRB approvals. This study was approved by Anonymized University’s IRB. All participants gave625

informed consent; the consent form can be seen at the experiment URL above. As described in the626

Checklist, no significant participant risks were anticipated.627

18

pragmatic-bandits.herokuapp.com


Anonymized data. Anonymized data, including participant responses and free-form exit survey628

responses, is available in the supplementary zip file and will be released along with the code for this629

paper. Note that the worker IDs provided have been hashed to prevent re-identification of participants630

on the platform.631

Trials. We split our 84 states into 3 sets of 28; each participant saw one of these sets. Each participant632

additionally saw 8 “attention check” trials (constant across all participants). These “attention checks”633

forced the participant to use a description with a pre-selected feature (4 “Spotted” and 4 “Striped”).634

The participant then chose a value from [�1,+1]. The trials were selected to ensure that the true635

value would lead the learner to choose a good mushroom. Participants who failed to select the true636

value on at least 7/8 trials (e.g. >75% of the time) were still paid the full bonus, but their data was637

excluded from the analysis. We further exclude the attention check trials from the analysis.638

Feature Randomization. To avoid saliency biases (e.g. color may be more salient than texture),639

mushroom feature values were randomized across participants. Fig. S5 shows one example of an640

alternative featurization scheme. Note that all responses were converted back the the “canonical”641

feature map shown in Fig. 1 for analysis.642

Figure S5: Throughout the experiment, participants could trigger a pop-up giving them the value of all features
(and all actions). Note that features were randomized to avoid saliency biases, and so this set of feature values
does not match Fig. 1.

Instructions We include several screenshots of key instruction pages, but recommend viewing the643

full experiment at pragmatic-bandits.herokuapp.com for details.644
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Figure S6: One example quiz question. To ensure comprehension of the linear bandit setup, participants were
tested on their knowledge of all features. If they failed the quiz, the experiment terminated early and they earned
$2; if they passed, they completed the full experiment and earned $4.
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Figure S7: Experiment instructions: introducing the notion of the horizon. Participants were told they could
only accompany the tourist to one patch, but that depending on their itinerary, tourists could go on to visit other
(unknown) patches afterwards.
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Figure S8: Experiment instructions: introducing the notion of instructions and descriptions. Participants were
told to consider the tourist’s itinerary (Fig. S7) and help the tourist pick good mushrooms throughout their visit.

Figure S9: One example trial from the experiment. Clicking the “Teach Them” button revealed drop-down menus
to select a “Description” utterance, while clicking “Instruct Them” yielded menus to select an “Instruction.”

C.2 Participant Utterance Choices645

The supplementary materials contain all participant responses (see the Experiment Analysis Jupyter646

notebook for analysis code). Here, we summarize some of the key patterns in the data.647
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Figure S10: Breakdown of utterance types (instruction vs descriptions) for all participants. Most participants
used a mix of both: 3 used only instructions, 3 used only descriptions, and 93 used at least one message of each
type.

Figure S11: Instruction / description breakdown by horizon for 8 random participants. While individual
preferences varied substantially, virtually all participants displayed an increasing preference for descriptions as
the horizon increased.
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Figure S12: Within-type distribution of utterances chosen by participants. A: When giving instructions partici-
pants (unsurprisingly) almost always chose positive-reward actions, e.g. “Take the spotted green mushroom,”
in the top-left quadrant. B: When giving descriptions, participants almost always chose true utterances (e.g.
“Spotted is +1”), even though our reward-maximizing model predicts exaggeration (e.g. “Spotted is +2”). See
Section 4.2 for discussion.

C.3 Choosing �S1648

To choose a �S1 for our behavioral experiment, we used a grid search over integers �S1 2 [1, 10] and649

evaluated our primary models (Pragmatic - Known H and Pragmatic - Latent H). We chose �S1 = 3,650

which optimized future reward from the human data for both speakers. Note that while “Pragmatic -651

Known H was numerically optimal at �S1 = 2 (expected reward = 0.9308, SD = 0.39), there was652

not find a significant difference between this and �S1 = 3 (expected reward = 0.9295, SD = 0.40);653

paired-samples t(2771) = �1.70, p = 0.09.654

Figure S13: Performance of different pragmatic listener models as a function of horizon H and speaker-
optimality �S1 . Qualitatively, the Latent-H model (right) was less sensitive than the Known-H model (left).
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�S1 Known H Latent H
1 0.87 0.85
2 0.93 0.93
3 0.93 0.94

4 0.92 0.94
5 0.91 0.93
6 0.90 0.92
7 0.90 0.92
8 0.89 0.91
9 0.89 0.91

10 0.89 0.91
Table S1: Mean “Future Rewards” for our two primary models of interest as a function of the �S1 parameter.
Note that while “Pragmatic - Known H was slightly higher at �S1 = 2 there was not find a significant difference
between this value and �S1 = 3, hence we use the latter to be consistent across both models.

C.4 Simulating model behavior655

To compare the empirical pattern of utterances observed from humans in our experiment against656

the predictions of our theoretical speaker model, we use simulations to generate a distribution over657

utterances and directly compare the results (Fig. 3, “Model Predictions”). We set �S1 = 3 as658

described above. The utterance set is composed of the 9 instructions and 16 descriptions defined in659

Section 4.1, for a total of 25 possible utterances.660

First, for each H 2 [1, 2, 4] and each of the 84 states s 2 S, we run the speaker model to produce661

a distribution over the 25 possible utterances (Eq. 7). We then calculate the literal future rewards662

resulting from each utterance (Eq. 8 for instructions and Eqs.9, 10 for descriptions). We then calculate663

the expected future reward obtained by the literal listener by weighting the rewards for each utterance664

by the probability of the speaker producing that utterance, and averaging over all 84 start states.665

Similarly, to evaluate the pragmatic listener, we perform pragmatic inference over each utterance666

(Eq. 11) to recover the speaker’s reward function, evaluate the future rewards (Eq. 6) from the667

resulting beliefs, and again weight by the speaker’s distribution over utterances.668

D Statistical testing669

See the R notebook for statistical testing code.670

D.1 Paired T-Tests (§ 4.2)671

Comparison Mean Difference 95% CI t df p-val
vs. Pragmatic (Known H) 0.011 0.006 0.017 4.1798 2771 <.001
vs. Pragmatic (H = 4) 0.026 0.022 0.031 10.81 2771 <.001
vs. Pragmatic (H = 1 ) 0.11 0.10 0.13 20.545 2771 <.001
vs. Literal 0.15 0.13 0.16 23.364 2771 <.001

Table S2: Pairwise t-tests comparing the “Future Rewards” obtained by the Latent-H listener to other models for
the 2772 utterances from our behavioral experiment. These results indicate that the Latent H model outperforms
all other models.
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Comparison Mean Difference 95% CI t df p-val
vs. Pragmatic (Known H) -0.13 -0.15 -0.12 -19.854 2771 <.001
vs. Pragmatic (H = 4) -0.12 -0.13 -0.11 -23.324 2771 <.001
vs. Pragmatic (H = 1) -0.03 -0.05 -0.01 -3.202 2771 <.01

Table S3: Pairwise t-tests comparing the “Future Rewards” obtained by the Literal listener to the remaining
other models for the 2772 utterances from our behavioral experiment. These results indicate that all pragmatic
models outperform the Literal model.

D.2 Mixed-effects regression model (§ 4.3)672

The following analysis tests for a significant difference in regret when using the model’s social-673

learning posterior as a prior for individual learning (see Section F for details). Note that lower regret674

is better, so negative coefficients indicate better performance.675

We dummy-coded our different models as a categorical variable with the Latent H listener as the676

reference level. We included random intercepts for each unique utterance from our experiment677

(e.g. for each of the 2772 utterances chosen by participants) to account for some utterances being678

systematically easier or harder than others. The resulting coefficients indicate that the Latent H679

listener outperformed all models except for the Known H model, which achieved slightly lower680

regret.681

Effect Term Estimate Std Error Statistic df p value
1 fixed (Intercept) 9.55 0.05 195.66 14282.57 < 0.001
2 Fixed Individual 2.60 0.06 45.41 80383.00 < 0.001
3 Fixed Literal 0.68 0.06 11.93 80383.00 < 0.001
4 Fixed Prag (Known H) -0.12 0.06 -2.14 80383.00 0.03
5 Fixed Prag (H = 1) 0.22 0.06 3.77 80383.00 < 0.001
6 Fixed Prag (H = 4) 0.13 0.06 2.24 80383.00 0.03
7 Random Effect sd__(Intercept) 1.44
8 Residual sd__Observation 4.76

E When does pragmatic reasoning help?682

In this section, we examine the utterances produced in the human experiment (Section 4 and Ap-683

pendix C) to explore when, exactly, pragmatic reasoning is most useful. We analyze the performance684

of the Latent H pragmatic model in comparison to the Literal listener. Concretely, we take the685

2772 utterances produced in our behavioral experiment and evaluate the “future rewards” (Eq. 6,686

the expected rewards over all possible states, ) resulting from a literal interpretation of the utterance687

against those resulting from a pragmatic interpretation.688

Utterance Type Count Mean Pragmatic Gain
Instruction 1203 .42 ± .23
Description 1569 -.07 ± .22

Table S4: Average pragmatic gain for different utterance types (+/- standard deviations). Pragmatics on
instructions helps substantially by converting from partial policies to rewards, but pragmatics on descriptions
marginally reduces the average reward obtained.

We find that under these conditions, pragmatic inference primarily helps with instructions, rather689

than descriptions (Table S4): converting a partial policy into inference over the reward function690

allows much stronger generalization. Across the 1203 instruction utterances in our experiment,691

the pragmatic listener achieved a large and statistically-significant gain (M = .423, SD = .232),692

t(1202) = 63.34, p < .001. In contrast, on the 1569 descriptive utterances, the pragmatic listener693

suffered a small but statistically-significant loss (M = �.067, SD = .215), t(1568) = �12.29, p <694

.001.695
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Figure S14: Distribution of pragmatic gain (Pragmatic listener with Latent H vs. Literal listener) for the 2772
utterances in our behavioral experiment. Pragmatic inference substantially improves rewards for instructions,
but marginally reduces rewards for descriptions on expectation.

Analysis of utterance posteriors (Fig. S4) shows one notable disconnect with empirical human696

behavior regarding descriptive utterances. The pragmatic listener does not preserve the literal truth697

conditions of descriptive utterances: for the three descriptions shown in Fig. S4, the listener places698

substantial probability mass on values other than the specified one (e.g. believing that “Spotted is +1”699

suggests “Spotted is +2” is plausible). Yet in our experiment, participants almost always choose true700

utterances (see Fig. S12B). This suggests future work integrating truthfulness and reward objectives,701

effectively combining our current objective with classic Gricean notions.702

F Social vs. individual reinforcement learning (§ 4.3)703

To study the potential benefits of integrating social and reinforcement learning, we integrated the704

reward information learned from our behavioral experiment into a classic Thompson sampling705

individual learner in § 4.3. Here, we provide details on this integration. Code for these simulations706

can be found in the Supplemental Materials.707

F.1 Individual learning: Thompson sampling in linear bandits708

We first define a simple individual learner in our linear bandit setting using Thompson sampling [81–709

83]. The agent begins with a prior distribution over possible reward functions. At each timestep, they710

(1) observe a new state st consisting of three possible actions; (2) sample a reward weight vector wt711

from their belief distribution over reward weights, and (3) act optimally according to that reward712

vector. They observe the reward of that action, and use this observation to update their beliefs for the713

next timestep.714

We implement this algorithm using a Gaussian prior and likelihood function, assuming observation715

noise from a unit Gaussian. Thus, after taking action a, the agent receives rewards according to:716

R(a) ⇠ N (�(a)>w, 1) (15)

We use a wide multivariate Gaussian prior: w0 ⇠ N (0,⌃0) where ⌃0 = 5I . After each action, we717

perform conjugate Bayesian updates to obtain a posterior (i.e. use Bayesian linear regression), which718

we use for for the next timestep.719

We perform rejection sampling to ensure the sampled belief is compatible with the (discrete, bounded)720

reward function. We first sample a (continuous) weight vector from our multivariate Gaussian beliefs,721

then round the weights to integer values and reject the sample if any of the resulting values fall722

outside the range of possible reward values, [�2, 2].723

We note that these simulation parameters are arbitrary. Our aim is to demonstrate the general utility724

of social information to reduce regret even when individual learning is entirely possible. We thus725
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defined a relatively straightforward, low-noise individual learning setting. However, we could easily726

make individual learning arbitrarily more difficult (e.g. by increasing the observation noise), which727

would in turn increase the relative value of social information.728

F.2 Integrating pragmatic inference: Importance sampling729

In order to integrate social information about the reward function, we incorporate an additional730

importance sampling step. Given a particular pragmatic model and a utterance-context-horizon tuple,731

we first use the pragmatic model to generate a social posterior over reward functions (Eq. 11 or 12).732

This defines a probability for every possible reward function (e.g. every reward weight vector w). We733

then initialize our individual learner as described above.734

When the individual learner performs Thompson sampling, it now performs an additional importance735

sampling step. Rather than sample a single reward vector from its Gaussian prior, it samples a736

minimum of 100 possible reward vectors. As described above, it first discretizes these vectors then737

re-weights them according to the probability of each vector from its pragmatic social inference.738

Finally, it samples a single reward vector from this re-weighted set and uses this to choose an action.739

F.3 Integrating literal information740

We use a similar procedure to test individual learning with our literal listener. For descriptive741

utterances, we use the listener’s posterior over reward functions (Eq. 9). However, because there742

are a handful of false utterances in the experimental data (e.g. “Spotted is -1”), using a hard743

constraint breaks the importance-sampling procedure described above. We therefore instead use744

soft-conditioning by setting a very low likelihood on inconsistent worlds (✏ = 1�10) instead of ruling745

them out entirely. We use this posterior for importance sampling as described above.746

For instructions, we modify the action selection step. We set the listener’s policy to take the instructed747

action if available. If the action is not available, then they follow the Thompson sampling procedure748

described above. This is the simplest and most “obedient” interpretation of instructions [14]. We749

find that it yields rapid learning early on, as the instruction guides exploration. However, 57% of750

instructions designate sub-optimal actions (see Fig. S12A). A literal listener instructed to take one751

of these (e.g. “Take solid green mushrooms”) is forced to continue taking them even after inferring752

spotted green mushrooms are likely worth more. This constraint on their policy eventually leads their753

regret to asymptote below the more flexible pragmatic learner (Fig. 4). As discussed in the main754

text and noted in prior work [14], more flexible approaches to instruction-following could avoid this755

pitfall.756

F.4 Simulation details757

All simulations were run on consumer hardware (a MacBook Pro). For each of the 2772 utterances in758

our behavioral experiment, we ran 5 independent Thompson sampling simulations, each spanning 25759

timesteps. We repeated this process for each of the pragmatic listener models (Known H , Latent H ,760

H = 1, and H = 4) in our experiment, giving us 13860 Thompson sampling simulations each model.761

We then ran the same number of independent simulations for the “Individual” learner (which used762

only the Gaussian prior described in Appendix F.1).763
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