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1 Layers and architecture of RegretFormer

Multi-head attention Popularized by Vaswani et al. [10], the attention function maps a query
vector and a set of key-value vector pairs to an output vector. The procedure is typically applied
to a set or a sequence of queries. The output vector is a weighted sum of the values, and each
weight reflects the compatibility of the query with the corresponding key. While different attention
mechanisms exist, softmax attention is the most common:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where Q, K, and V are respectively the matrices of queries, keys, and values, and dk is the number
of keys. Self-attention is a special case of attention in which Q, K, and V are linear projections of
the same inputs. Typically, layer normalization is applied to the input before projecting [1]. Vaswani
et al. [10] also propose multi-head attention (MHA). In this extension, H different attention heads
are created, and for each attention head the input matrices are projected with head-specific weight
matrices QWQ

h , KWK
h , VWV

h to calculate the inputs to attention:

MHA(Q,K, V ) = Concat(head1, ..., headH)WO (2)

headh = Attention(QWQ
h ,KWK

h , V WV
h ) (3)

Attention is equivariant to the order of elements in the input, which is a useful property when learning
symmetric auctions since any optimal symmetric auction can be represented by a permutation-
equivariant function [2]. In applications where this order is important (e.g. order of words in
a sentence), Positional Encoding (PE) is usually applied. This technique augments the initial
representation of the input data with information about the order of the elements. We demonstrate
how PE can be applied to learn optimal asymmetric auctions in the main text.

Exchangeable Layers The exchangeable layer [3] is inspired by deep sets [12] and is defined as
follows. A layer is specified by the number of input channels K, the number of output channels O
and five learnable parameters w1, w2, w3, w4 ∈ RKxO and w5 ∈ RO. The input is a tensor B of size
(K, n, m) and the output is tensor Y of size (O, n, m). The element (i, j) of the o-th output channel
Y

(o)
i,j is given by:
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(4)

This layer constitutes the main building block of EquivariantNet [8] and is also used as the first layer
of RegretFormer.

Architecture of RegretFormer There are several high-level differences between the architectures
of RegretFormer and RegretNet. Whereas RegretNet uses two separate networks to calculate alloca-
tions and payments, our architecture has a single shared network with both outputs. Unlike RegretNet
where the input is flattened into a vector, the input of RegretFormer is the two-dimensional matrix of
bids Bnm. Furthermore, unlike RegretNet, n and m are not fixed in RegretFormer.

We now describe the architecture in detail. Note that each described layer except the output layers is
followed by a Tanh activation.

First, we apply an exchangeable layer (4) to transform each bid into an initial vector of features that
already contains information about other bids. According to our definition of the exchangeable layer,
this requires adding a third dummy dimension to the bid matrix Bnm → Bnm1:

Lnmk
1 = ExchangeableLayer(Bnm1) (5)

Then, we sequentially apply several attention-based blocks. Each block consists of two multi-head
self-attention layers with residual connections, one applied item-wise and one applied participant-
wise. For each layer, we accordingly reshape the input. After applying the attention layers, we
concatenate their predictions and apply the same fully-connected layer (FC) to the feature vectors of
each bid (to reduce the dimensionality of the feature vectors to the initial size):

Lnmk
t+1,item = MHAitem(Lt, Lt, Lt) + Lt (6)

Lnmk
t+1,part = MHApart(Lt, Lt, Lt) + Lt (7)

Lnmk
t+1 = FCt+1(Concat(Lt+1,item, Lt+1,part)) + Lt (8)

After applying the attention-based block N times (in our experiments, we set N to 1 or 2), we obtain
the attended feature matrix Lnmk

N+1. From this matrix, we create two separate matrices by averaging
over one of the dimensions: the participant feature matrix Pnk

N+1 = 1
m

∑
j(L

njk
N+1) and the item

feature matrix Imk
N+1 = 1

n

∑
i(L

imk
N+1). These matrices are essentially embeddings of participants and

items respectively and are used to compute the allocation matrix and the payment vector.

To compute the allocation matrix, we multiply the item and the participant matrices, which gives us
an n by m matrix of unscaled probabilities (logits). Before scaling, we need to additionally consider
the possibility of each item remaining unallocated. To this end, we introduce a dummy participant
n+ 1, the unscaled probability for which is estimated for each item as a negated sum of the unscaled
probabilities over the real participants. Finally, we apply the softmax function along the participants
to scale the probabilities. When summarized, the allocation matrix is obtained in the following way:

Lnm
N+2 = MatMul(Pnk

N+1, (I
mk
N+1)

T ) (9)

L(n+1)m
norm = Concat(Lnm

N+2,−
∑
i

(Lim
N+2)) (10)

Z
(n+1)m
out = SoftMax(L(n+1)m

norm ) (11)

To estimate the payment vector, we average the participant feature matrix over the feature dimension
and apply the sigmoid activation to scale the output between 0 and 1:
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Table 1: Neural architecture hyperparameters
Hyperparameter 1x2 2x2 2x3 2x5 3x10 multi

RegretNet
fully-connected layers 3 3 3 6 6 6
hidden dim 200 200 200 200 200 200

EquivariantNet
exchangeable layers 3 3 5 6 6 6
hidden dim 32 32 32 32 32 32

RegretFormer
exchangeable layers 1 1 1 1 1 1
attention layers 1 1 1 2 2 2
attention heads 2 2 2 4 4 4
hidden dim 32 64 64 128 128 128

P̂n
out = Sigmoid(

1

k

∑
z

Pnz
N+1) (12)

Like in RegretNet, we calculate the final payments as pi = p̂i
∑m

j=1 zijbij for i = 1, . . . , n.

2 Technical details and hyperparameters

In all experiments, all networks are trained for 200000 iterations of outer optimization, each iteration
corresponding to one step of the optimizer on one mini-batch. The training dataset consists of
640000 profiles (same as in the RegretNet paper) divided into 1250 mini-batches of 512 profiles. The
validation dataset consists of 4096 profiles divided into 128 batches of 32 profiles. The number of
inner optimization steps per one outer update equals 50 during training and 1000 during validation.
The learning rate equals 0.001 for the outer optimization and 0.1 for the inner optimization. Both use
separate Adam optimizers [6]. The hyperparameters related to the neural architectures are reported in
Table 1. We report the sizes of neural networks in Table 7. All experiments are repeated three times
and the average metrics are reported. Experiments are run on an internal cluster with V100 GPUs.

The hyperparameters related to our budget-based approach are the following. In all our experiments,
we initialize γ = 1, set γ∆ = 0.5, set Rstart

max = 0.01, and set such Rmult
max that Rmax converges to

Rend
max in two-thirds of the training time. We set Rend

max = 0.001 by default but additionally investigate
the effect of choosing a lower budget Rend

max = 0.0001.

3 Additional results

3.1 Learning curves

We present the learning curves of the revenue, the regret, and the penalty coefficient γ for settings
{1x2, 2x2, 2x3, 2x5, 3x10} in Figures 1, 2, 3, 4, and 5, respectively. The results of the same
experiments are reported in Table 1 in the main text.

Note that the shapes of learning curves are a consequence of our regret budget schedule. Specifically,
we provide a higher regret budget at the beginning of the training so the network finds a solution with
high revenue (that does not satisfy the desirable budget), and then we tighten the regret budget (which
also causes the revenue to decrease). It can also be seen that both revenue and regret start flattening at
the same time as the regret penalty coefficient γ stops increasing. This happens approximately at 2/3
of the training time, in accordance with our choice of Rmult

max .
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Table 2: Network distillation using networks from Table 1 in the main text, Rmax = 10−3

setting metric misreports of RegretFormer → RegretNet RegretFormer → EquivariantNet
teacher student teacher student

1x2 revenue - 0.577 0.578 0.578 0.578
regret teacher 0.00087 0.00098 0.00090 0.00120

student 0.00051 0.00090 0.00024 0.00066

2x2 revenue - 0.912 0.912 0.913 0.917
regret teacher 0.00057 0.00074 0.00057 0.00154

student 0.00068 0.00148 0.00054 0.00404

2x3 revenue - 1.412 1.412 1.414 1.419
regret teacher 0.00097 0.00153 0.00093 0.00183

student 0.00129 0.00415 0.00090 0.00400

2x5 revenue - 2.439 2.436 2.440 2.449
regret teacher 0.00112 0.00125 0.00110 0.00178

student 0.00106 0.00416 0.00064 0.00577

3x10 revenue - 6.153 6.169 6.155 6.163
regret teacher 0.00238 0.00386 0.00237 0.00298

student 0.00258 0.02713 0.00220 0.01626

3.2 Network distillation

Here we elaborate on our validation procedure based on network distillation that was mentioned in
the main text.

The distillation procedure is based on training the ‘student‘ network ws to approximate the predictions
of a trained ‘teacher‘ network wt. We apply this procedure in five settings {1x2, 2x2, 2x3, 2x5,
3x10} given Rmax = 10−3 to distill RegretFormer onto RegretNet, as well as to distill RegretFormer
onto EquivariantNet. If the architecture of RegretFormer for some reason impairs its ability to
approximate optimal misreports, a RegretNet or an EquivariantNet trained to closely mimic the
predictions of a RegretFormer may find better misreports that produce higher regret values for the
RegretFormer. Specifically, since the predictions of allocation and payment modules can respectively
be treated as the categorical and the Bernoulli distributions, we train the student network to minimize
the KL divergence from its predictions to the predictions of the teacher network. For example, to
train the allocation module, the student minimizes KL(g(wt), g(ws)) =

1
|B|

∑
l∈B

∑
i,j zij(v

l;wt) ·
(log(zij(v

l;wt)) − log(zij(v
l;ws))), and likewise for the payment module. This approach was

initially proposed in Hinton et al. [4]. Furthermore, to satisfy DSIC on the whole support, the
KL-divergence is minimized at both the true valuations vl and the approximate optimal misreport for
each participant v′li (ws), estimated by the student network as per usual.

We report the results in Table 2. Like in the cross-misreport validation procedure, we do not find any
evidence that RegretFormer approximates regret worse than the alternative architectures. This can
be seen in Table 2 by comparing the teacher regret estimated on teacher misreports with the teacher
regret estimated on student misreports: the latter is never substantially higher than the former.

As additional evidence of the performance gap being genuine, in the distillation experiments, both
students achieve the same revenue as the teacher while consistently producing higher regret, up to a
magnitude on the hardest 3x10 setting. This can have two explanations. First, the student networks
get stuck in one of the multiple local optimums, which prevents them from reaching lower regrets.
Moreover, this consistently happens both when learning from scratch (since in Table 1 in the main
text both RegretNet and EquivariantNet achieve lower revenue than RegretFormer for the same regret
budgets) and when mimicking predictions of RegretFormer. Second, the better solutions with high
revenue and low regret that can be found by RegretFormer are simply absent from the space of the
mechanisms that can be represented by RegretNet and EquivariantNet.
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Table 3: Out-of-setting generalization
Training Validation EquivariantNet RegretFormer
setting setting revenue regret revenue regret

1x2 2x2 0.690 0.04403 0.669 0.03776
2x3 1.084 0.07074 1.056 0.07167
2x5 1.917 0.12465 1.863 0.13151
3x10 4.308 0.29291 4.197 0.29106

2x2 1x2 0.695 0.13343 0.768 0.21671
2x3 1.350 0.00071 1.412 0.01221
2x5 2.307 0.03169 2.402 0.03250
3x10 5.156 0.55869 4.943 0.32002

2x3 1x2 0.686 0.14900 0.775 0.20051
2x2 0.875 0.00116 0.904 0.00137
2x5 2.318 0.00615 2.432 0.00938
3x10 5.271 0.37967 4.929 0.27183

2x5 1x2 0.743 0.19830 0.816 0.23945
2x2 0.900 0.00066 0.903 0.00072
2x3 1.401 0.00103 1.415 0.00103
3x10 5.517 0.24757 4.884 0.28009

3x10 1x2 0.552 0.53700 0.801 0.18780
2x2 0.693 0.19767 1.053 0.05893
2x3 1.099 0.33665 1.611 0.07595
2x5 1.936 0.59959 2.754 0.10181

Table 4: Out-of-multi-setting generalization

Setting RegretNet RegretFormer
revenue regret revenue regret

average 2.733 0.0662 2.734 0.00478

2x4 2.115 0.083 1.943 0.00368
2x6 3.166 0.078 3.012 0.00592
3x3 1.743 0.010 1.718 0.00252
3x5 2.918 0.016 2.910 0.00313
3x7 3.722 0.144 4.086 0.00866

3.3 Out-of-setting generalization

In these experiments, we investigate how well the architectures generalize to unseen settings. It’s
clear that RegretNet cannot be applied out-of-domain since its layers rely on the constant input size,
so we compare our network with EquivariantNet. The networks are trained in five settings {1x2, 2x2,
2x3, 2x5, 3x10} and then tested in all settings but the setting used for training.

The results are reported in Table 3. Both networks look promising when the number of objects
varies and the number of bidders remains constant. However, generalization to the settings where
the number of bidders varies is poor for both networks due to complex interactions between the
participants. Similar results were observed by Rahme et al. [8]. Still, when the validation setting has
the number of participants same as or less than the training setting, RegretFormer usually outperforms
EquivariantNet by either achieving higher revenue or lower regret.

3.4 Cross-misreport validation in multi-settings

In Section 4.5 in the main text, we have mentioned performing cross-misreport validation in multi-
settings. Table 5 presents the full results of this experiment. It is evident that both RegretNet
and RegretFormer approximate the optimal misreports adequately since each estimates the highest
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Table 5: Cross-misreport regret estimates in the multi-setting. The highest regret for a network is
highlighted in bold. Notice that EquivariantNet poorly estimates misreports as its regret on misreports
of RegretFormer is consistently higher than on its own misreports.

setting regret of misreports of
RegretNet EquivariantNet RegretFormer

2x3
RegretNet 0.00305 0.00083 0.00134
EquivariantNet 0.00514 0.00258 0.00554
RegretFormer 0.00128 0.00105 0.00246

2x4
RegretNet 0.00341 0.00060 0.00128
EquivariantNet 0.00609 0.00273 0.00925
RegretFormer 0.00154 0.00106 0.00317

2x5
RegretNet 0.00362 0.00050 0.00115
EquivariantNet 0.00726 0.00309 0.01270
RegretFormer 0.00188 0.00113 0.00391

2x6
RegretNet 0.00425 0.00065 0.00131
EquivariantNet 0.00873 0.00337 0.01597
RegretFormer 0.00248 0.00118 0.00439

2x7
RegretNet 0.00457 0.00048 0.00111
EquivariantNet 0.00961 0.00356 0.01951
RegretFormer 0.00242 0.00122 0.00481

3x3
RegretNet 0.00322 0.00070 0.00101
EquivariantNet 0.00254 0.00189 0.00358
RegretFormer 0.00110 0.00083 0.00251

3x4
RegretNet 0.00264 0.00042 0.00075
EquivariantNet 0.00354 0.00214 0.00508
RegretFormer 0.00138 0.00087 0.00336

3x5
RegretNet 0.00277 0.00032 0.00058
EquivariantNet 0.00426 0.00265 0.00709
RegretFormer 0.00167 0.00096 0.00421

3x6
RegretNet 0.00340 0.00030 0.00058
EquivariantNet 0.00501 0.00277 0.00916
RegretFormer 0.00171 0.00181 0.00476

3x7
RegretNet 0.00430 0.00027 0.00054
EquivariantNet 0.00610 0.00326 0.01101
RegretFormer 0.00198 0.00101 0.00553

regret on their own misreports. In contrast, EquivariantNet poorly approximates misreports and
underestimates regret in multi-settings since both RegretNet and RegretFormer find better misreports
for this network.

3.5 Out-of-multi-setting generalization

We define two subsets of settings to respectively train and validate networks:

1. Train: Strain={2x3, 2x5, 2x7, 3x4, 3x6}.

2. Test: Stest={2x4, 2x6, 3x3, 3x5, 3x7}.

We compare how networks generalize to unseen settings when trained in the multi-setting regime. To
this end, we train RegretNet and RegretFormer on Strain and then validate them on Stest. Because
EquivariantNet poorly underestimates regret in multi-settings (see Section 4.5 in the main text and
3.4), we do not include it for comparison.
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Table 6: Average wall-clock training time, hours
setting RegretNet EquivariantNet RegretFormer

1x2 2.5 5.2 12.5
2x2 2.5 5.3 12.0
2x3 2.5 8.4 11.0
2x5 3.1 9.8 28.7
3x10 4.7 11.2 82.1

Table 7: Number of parameters. In preliminary experiments, we found that RegretNet and Equivari-
antNet do not benefit from increasing the network sizes past what was used in the respective papers,
whereas RegretFormer requires more parameters to perform optimally.

setting RegretNet EquivariantNet RegretFormer

1x2 21305 4546 12705
2x2 22008 4546 49985
2x3 22711 12802 49985
2x5 84717 16930 362753
3x10 91343 16930 362753

The resulting revenue and regret values are reported in Table 4. In all out-of-domain settings,
RegretNet produced poor results. On average, its regret is more than an order of magnitude larger
compared to RegretFormer. In contrast, our approach stably generalizes to all unseen settings
while keeping regret low. Remarkably, its revenue is as high and its regret is as low as in the
experiments where all constant-sized settings are available during training (Table 5 in the main text).
The superiority of RegretFormer over RegretNet is especially prominent in the 3x7 setting where our
network achieves a larger revenue while producing 16 times as little regret.

3.6 Training time

We report the average wall-clock training time in hours in Table 6. It takes longer to train RegretFormer
than the baselines for two reasons. First, to perform optimally RegretFormer requires a bigger
network with more parameters than baselines, especially in the bigger settings. Please see Table 7 for
summarized sizes of the three neural architectures in all settings. Second, the attention layers have
quadratic O(n2) complexity (where n is the number of items or participants). If training time is an
issue, the attention layers can be replaced with one of the multiple modifications that have O(n log n)
or O(n) complexity [9, 7, 11, 5].
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Figure 1: Learning curves in the setting 1x2. The X-axis is in the thousands of training iterations.
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Figure 2: Learning curves in the setting 2x2. The X-axis is in the thousands of training iterations.
The shaded regions correspond to the min-max spread over three random seeds.
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Figure 3: Learning curves in the setting 2x3. The X-axis is in the thousands of training iterations.
The shaded regions correspond to the min-max spread over three random seeds.
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Figure 4: Learning curves in the setting 2x5. The X-axis is in the thousands of training iterations.
The shaded regions correspond to the min-max spread over three random seeds.
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Figure 5: Learning curves in the setting 3x10. The X-axis is in the thousands of training iterations.
The shaded regions correspond to the min-max spread over three random seeds.
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