Supplementary material

A Closed-form updates of the assignment variables

In this section, we provide more details on the derivation of the closed-form update of variable \boldsymbol{U} at each iteration. Let F be the defined as the cost function in (10) and let $\partial F_{\boldsymbol{u}_{n}}(\boldsymbol{U}, \boldsymbol{W}, \boldsymbol{V})$ denote the Moreau subdifferential of F at $(\boldsymbol{U}, \boldsymbol{W}, \boldsymbol{V})$ with respect to variable \boldsymbol{u}_{n}. We define ψ as

$$
\left(\forall \boldsymbol{x}=\left(x_{k}\right)_{1 \leq k \leq K} \in \mathbb{R}^{K}\right) \quad \psi(\boldsymbol{x})= \begin{cases}\sum_{k=1}^{K} x_{k} \ln \left(x_{k}\right)-\frac{x_{k}^{2}}{2} & \text { if } \boldsymbol{x} \in \Delta_{K} \tag{11}\\ +\infty & \text { otherwise }\end{cases}
$$

It is well known that the proximity operator of ψ (see [34] Chap. 24] for a definition) is the softmax operator [44, Ex. 2.23].
At each step of the algorithm, \boldsymbol{u}_{n} is updated according to:

$$
\begin{array}{ll}
& 0 \in \partial F_{\boldsymbol{u}_{n}}(\boldsymbol{U}, \boldsymbol{W}, \boldsymbol{V}) \\
\Longleftrightarrow & 0 \in \frac{1}{2}\left(\left\|\boldsymbol{w}_{k}-\boldsymbol{z}_{n}\right\|^{2}\right)_{1 \leq k \leq K}-\lambda\left[\boldsymbol{A}^{*} \boldsymbol{V}\right]_{n}+\boldsymbol{u}_{n}+\partial_{\psi}\left(\boldsymbol{u}_{n}\right), \\
\Longleftrightarrow & -\frac{1}{2}\left(\left\|\boldsymbol{w}_{k}-\boldsymbol{z}_{n}\right\|^{2}\right)_{1 \leq k \leq K}+\lambda\left[\boldsymbol{A}^{*} \boldsymbol{V}\right]_{n}-\boldsymbol{u}_{n} \in \partial_{\psi}\left(\boldsymbol{u}_{n}\right), \\
\Longleftrightarrow & \boldsymbol{u}_{n}=\operatorname{softmax}\left(-\frac{1}{2}\left(\left\|\boldsymbol{w}_{k}-\boldsymbol{z}_{n}\right\|^{2}\right)_{1 \leq k \leq K}+\lambda\left[\boldsymbol{A}^{*} \boldsymbol{V}\right]_{n}\right), \tag{12}
\end{array}
$$

where we used the definition of the proximity operator [34] Eq. 24.2] to obtain (12). We thus retrieve the update in Algorithm 1.

B Proof of Proposition 1

Our proof relies on the convergence result established in [45]. Given a convex set X, we denote ι_{X} the indicator function of X, i.e. $\iota_{X}(x)=0$ if $x \in X, \iota_{X}(x)=+\infty$ otherwise. We rewrite problem 10 as the minimization of the following cost:

$$
\begin{align*}
F(\boldsymbol{U}, \boldsymbol{W}, \boldsymbol{V})=\frac{1}{2} \sum_{k=1}^{K} \sum_{n=1}^{N} u_{n, k}\left\|\boldsymbol{w}_{k}-\boldsymbol{z}_{n}\right\|^{2}+\lambda \sum_{k=1}^{K} e^{v_{k}-1} & -\lambda\left\langle\boldsymbol{V},\left(\boldsymbol{A} \boldsymbol{U}+\epsilon \mathbf{1}_{K}\right)\right\rangle \\
& +\sum_{n=1}^{N} \sum_{k=1}^{K} \varphi\left(u_{n, k}\right)+\iota_{C}(\boldsymbol{U}) \tag{13}
\end{align*}
$$

where we have introduced an additional parameter $\epsilon>0$, the role of which will become clearer in the rest of the proof. The optimum of the cost function $F(\boldsymbol{U}, \boldsymbol{W}, \cdot)$ for given $\boldsymbol{U} \in C$ and $\boldsymbol{W} \in\left(\mathbb{R}^{d}\right)^{K}$ is reached when

$$
\begin{equation*}
\boldsymbol{V}=\mathbf{1}_{K}+\ln \left(\boldsymbol{A} \boldsymbol{U}+\epsilon \mathbf{1}_{K}\right) \in \mathbb{V}_{\epsilon}=[1+\ln \epsilon, 1+\ln (1+\epsilon)]^{K} . \tag{14}
\end{equation*}
$$

Thus, minimizing F is actually equivalent to minimizing

$$
\begin{align*}
\tilde{F}(\boldsymbol{U}, \boldsymbol{W}, \boldsymbol{V})=\frac{1}{2} \sum_{k=1}^{K} \sum_{n=1}^{N} u_{n, k}\left\|\boldsymbol{w}_{k}-\boldsymbol{z}_{n}\right\|^{2}+\lambda & \sum_{k=1}^{K} e^{v_{k}-1}-\lambda\left\langle\boldsymbol{V},\left(\boldsymbol{A} \boldsymbol{U}+\epsilon \mathbf{1}_{K}\right)\right\rangle \\
& +\sum_{n=1}^{N} \sum_{k=1}^{K} \varphi\left(u_{n, k}\right)+\iota_{C}(\boldsymbol{U})+\iota_{\mathbb{V}_{\epsilon}}(\boldsymbol{V}) . \tag{15}
\end{align*}
$$

The following algorithm for minimizing \tilde{F} turns out to be a simple modified version of PADDLE (see Algorithm 1):

Algorithm 2: Alternating algorithm for minimizing \tilde{F}
Initialize $\boldsymbol{W}^{(0)}$ as the prototypes computed on the support, and $\boldsymbol{V}^{(0)}=\mathbf{0}$.
for $\ell=1,2, \ldots$, do

$$
\begin{aligned}
& \boldsymbol{U}^{(\ell)}=\operatorname{softmax}\left(-\frac{1}{2}\left(\left\|\boldsymbol{w}_{k}-\boldsymbol{z}_{n}\right\|^{2}\right)_{\substack{1 \leq n \leq N \\
1 \leq k \leq K}}+\lambda \boldsymbol{A}^{*} \boldsymbol{V}^{(\ell-1)}\right), \\
& v_{k}^{(\ell)}=1+\ln \left(\left(\boldsymbol{A} \boldsymbol{U}^{(\ell)}\right)_{k}+\epsilon\right), \forall k \in\{1, \ldots, K\}, \\
& \boldsymbol{w}_{k}^{(\ell)}=\sum_{n=1}^{N} \boldsymbol{u}_{n, k}^{(\ell-1)} \boldsymbol{z}_{n} / \sum_{n=1}^{N} \boldsymbol{u}_{n, k}^{(\ell-1)}, \forall k \in\{1, \ldots, K\} .
\end{aligned}
$$

According to [45, Thm 4.1], if the following assumptions are satisfied:

1. The set $\left\{(\boldsymbol{U}, \boldsymbol{W}, \boldsymbol{V}): \tilde{F}(\boldsymbol{U}, \boldsymbol{W}, \boldsymbol{V}) \leq \tilde{F}\left(\boldsymbol{U}^{(0)}, \boldsymbol{W}^{(0)}, \boldsymbol{V}^{(0)}\right)\right\}$ is compact;
2. \tilde{F} is continuous on $C \times\left(\mathbb{R}^{d}\right)^{K} \times \mathbb{V}_{\epsilon}$;
3. At each iteration ℓ, the partial functions $\tilde{F}\left(\cdot, \boldsymbol{W}^{(\ell)}, \boldsymbol{V}^{(\ell)}\right), \tilde{F}\left(\boldsymbol{U}^{(\ell+1)}, \cdot, \boldsymbol{V}^{(\ell)}\right)$ and $\tilde{F}\left(\boldsymbol{U}^{(\ell+1)}, \boldsymbol{W}^{(\ell+1)}, \cdot\right)$ admit a unique minimizer,
then the sequence generated by the algorithm is bounded and every of its cluster points is a coordinatewise minimizer of \tilde{F}. We now show that the above assumptions hold.
4. Let us show that \tilde{F} is coercive. We derive a lower bound on \tilde{F} using the Cauchy-Schwarz inequality:

$$
\begin{array}{r}
\tilde{F}(\boldsymbol{U}, \boldsymbol{W}, \boldsymbol{V}) \geq \frac{1}{2} \sum_{k=1}^{K} \sum_{n=|\mathbb{Q}|+1}^{N} y_{n, k}\left\|\boldsymbol{w}_{k}-\boldsymbol{z}_{n}\right\|^{2}+\lambda \sum_{k=1}^{K} e^{v_{k}-1}-\lambda\|\boldsymbol{V}\|\|\boldsymbol{A} \boldsymbol{U}\| \\
-\epsilon\left\langle\boldsymbol{V}, \mathbf{1}_{K}\right\rangle+\sum_{n=1}^{N} \sum_{k=1}^{K} \varphi\left(u_{n, k}\right)+\iota_{C}(\boldsymbol{U})+\iota_{\mathbb{V}_{\epsilon}}(\boldsymbol{V}) . \tag{16}
\end{array}
$$

Since the functions $\boldsymbol{U} \mapsto\|\boldsymbol{A} \boldsymbol{U}\|$ and $\boldsymbol{U} \mapsto \sum_{n=1}^{N} \sum_{k=1}^{K} \varphi\left(u_{n, k}\right)$ are continuous on the compact set C, there exist constants μ and θ such that

$$
\begin{align*}
& \tilde{F}(\boldsymbol{U}, \boldsymbol{W}, \boldsymbol{V}) \geq \frac{1}{2} \sum_{k=1}^{K} \sum_{n=|\mathbb{Q}|+1}^{N} y_{n, k}\left\|\boldsymbol{w}_{k}-\boldsymbol{z}_{n}\right\|^{2}+\lambda \sum_{k=1}^{K} e^{v_{k}-1}-\theta\|\boldsymbol{V}\| \\
&-\epsilon\left\langle\boldsymbol{V}, \mathbf{1}_{K}\right\rangle+\mu+\iota_{C}(\boldsymbol{U})+\iota_{\mathbb{V}_{\epsilon}}(\boldsymbol{V}) . \tag{17}
\end{align*}
$$

The lower bound obtained in (17) is separable in $(\boldsymbol{U}, \boldsymbol{W}, \boldsymbol{V})$. The term with respect to variable \boldsymbol{W} is coercive when, for every $k \in\{1, \ldots, K\}$, there exists $n \in\{|\mathbb{Q}|+1, \ldots, N\}$ such that $y_{n, k}>0$. In other words, it is coercive if the support set includes at least one example of each class, which is a reasonable assumption. The terms with respect to variables \boldsymbol{U} and \boldsymbol{V} are clearly coercive too. Hence, the cost function \tilde{F} is coercive. Finally, since \tilde{F} is lower semi-continuous, condition 1 . is satisfied.
2. The continuity of \tilde{F} on $C \times \mathbb{R}^{k \times d} \times \mathbb{V}_{\epsilon}$ is clear.
3. Let $\ell \in N^{*}$. We already proved in Appendix A that the partial function with respect to variable \boldsymbol{U} has a unique minimizer. It follows from the same arguments as above that the partial function with respect to \boldsymbol{W} is strictly convex, continuous, and coercive as soon as the support set contains at least one example of each class. Hence, it admits a unique minimizer. Regarding the partial function with respect to variable \boldsymbol{V}, we first remark that given the definition of the softmax operator, $\boldsymbol{A} \boldsymbol{U}^{(\ell+1)}$ is necessarily strictly positive component-wise. Up to some additive term independent of \boldsymbol{V}, the partial function reads

$$
\begin{equation*}
\boldsymbol{V} \mapsto \lambda \sum_{k=1}^{K}\left(e^{v_{k}-1}-v_{k}\left(\left[\boldsymbol{A} \boldsymbol{U}^{(\ell+1)}\right]_{k}+\epsilon\right)+\iota_{[\ln \epsilon, \ln (1+\epsilon)]}\left(v_{k}-1\right)\right) . \tag{18}
\end{equation*}
$$

The latter function is strictly convex, lower-semicontinuous, and coercive, which concludes the proof.
Note that, since

$$
\begin{equation*}
v_{k} \mapsto \lambda\left(e^{v_{k}-1}-v_{k}\left(\left[\boldsymbol{A} \boldsymbol{U}^{(\ell+1)}\right]_{k}+\epsilon\right)\right) \tag{19}
\end{equation*}
$$

is decreasing on $\left.]-\infty, 1+\ln \left(\left[\boldsymbol{A} \boldsymbol{U}^{(\ell+1)}\right]_{k}+\epsilon\right)\right]$ and increasing on $\left[1+\ln \left(\left[\boldsymbol{A} \boldsymbol{U}^{(\ell+1)}\right]_{k}+\right.\right.$ $\epsilon),+\infty[$, the resulting cluster points are also coordinatewise minimizers of F.
In summary, PADDLE can be understood as the limit case of Algorithm 2 when ϵ goes to zero. This simplification is justified by the fact that ϵ can be chosen arbitrarily small and that we did not observe any change in practical behaviour of the proposed algorithm by setting $\epsilon=0$.

C Label cost relaxation

The plot in Figure 5 illustrates in the case $K=2$ how our model-complexity term in (2) could be viewed as a continuous relaxation of the discrete label cost function defined in (3).

Figure 5: Label cost as a function of \hat{u}_{1} and our proposed relaxation $\hat{u}_{1} \mapsto-\hat{u}_{1} \ln \left(\hat{u}_{1}\right)-(1-$ $\left.\hat{u}_{1}\right) \ln \left(1-\hat{u}_{1}\right)$.

D Plots obtained using WRN backbone

In Figure 6, we provide additional comparisons of PADDLE with state-of-the-art methods using a WRN28-10 network. We report the accuracy obtained for each method as a function of $K_{\text {eff }}$. These plots point to the same conclusions drawn in Section 5

E About the hyper-parameter in our method

As discussed in Section 3. PADDLE does not require parameter tuning. In Figure 7, we investigate the optimal value of parameter λ in (10) as a function of the size of the query set, for 3 different values of $K_{\text {eff }}$. We observe that the optimal value of λ increases linearly with $|\mathbb{Q}|$. As it could be expected, the higher the level of class imbalance $\left(K_{\text {eff }}=2\right)$, the higher the optimal value of λ (w.r.t. its theoretical value). On the contrary, when the query is better balanced ($K_{\text {eff }}=10$), the optimal value of λ is slightly under its theoretical value. However, Figure 8 shows that the gap of performance when using the theoretical value of λ instead of the optimal one, is only of the order of a few percents.
\simeq PADDLE \quad TIM \qquad

Figure 6: Evolution of the accuracy as a function of $K_{\text {eff }}$. Each row represents a dataset, and each column a fixed number of shots. All methods use the same WRN28-10 network. Results are averaged across 10,000 tasks.

Figure 7: Evolution of the optimal parameter λ (i.e. the one with which the best accuracy is reached) as a function of $|\mathbb{Q}|$. Each column represents a fixed number of effective classes. The black line represents the identity function. The results were computed on the tiered dataset with a Resnet18 as a backbone.

Figure 8: Evolution of the accuracy as a function of λ. Each column represents a fixed number of effective classes. The results were computed on the tiered dataset with a Resnet 18 as a backbone, and the size query set was fixed to $|\mathbb{Q}|=75$. The blue dotted line represents the optimal value of λ while the black dashed line represents the theoritical value of λ, i.e. $\lambda=|\mathbb{Q}|$.

