
Appendix
A Definitions of the phases of learning

Table 1: Definitions of the four phases of learning
criteria

Phase training acc > 90%
within 105 steps

validation acc > 90%
within 105 steps

step(validation acc>90%)
−step(training acc>90%)<103

Comprehension Yes Yes Yes
Grokking Yes Yes No

Memorization Yes No Not Applicable
Confusion No No Not Applicable

B Applicability of our toy setting

In the main paper, we focused on the toy setting with (1) the addition dataset and (2) the addition
operation hard coded in the decoder. Although both simplifications appear to have quite limited
applicability, we argue below that the analysis of the toy setting can actually apply to all Abelian
groups.

The addition dataset is the building block of all Abelian groups A cyclic group is a group that
is generated by a single element. A finite cyclic group with order n is Cn = {e, g, g2, · · · , gn−1}
where e is the identify element and g is the generator and gi = gj whenever i = j (mod n). The
modulo addition and {0, 1, · · · , n− 1} form a cyclic group with e = 0 and g can be any number q
coprime to n such that (q, n) = 1. Since algorithmic datasets contain only symbolic but no arithmetic
information, the datasets of modulo addition could apply to all other cyclic groups, e.g., modulo
multiplication and discrete rotation groups in 2D.

Although not all Abelian groups are cyclic, a finite Abelian group G can be always decomposed into
a direct product of k cyclic groups G = Cn1

×Cn2
· · ·Cnk

. So after training k neural networks with
each handling one cyclic group separately, it is easy to construct a larger neural network that handles
the whole Abelian group.

The addition operation is valid for all Abelian groups It is proved in [27] that for a permutation
invariant function f(x1, x2, · · · , xn), there exists ρ and ϕ such that

f(x1, x2, · · · , xn) = ρ[

n∑

i=1

ϕ(xi)], (10)

or f(x1, x2) = ρ(ϕ(x1) + ϕ(x2)) for n = 2. Notice that ϕ(xi) corresponds to the embedding vector
Ei, ρ corresponds to the decoder. The addition operator naturally emerges from the commutativity
of the operator, not restricting the operator itself to be addition. For example, multiplication of
two numbers x1 and x2 can be written as x1x2 = exp(ln(x1) + ln(x2)) where ρ(x) = exp(x) and
ϕ(x) = ln(x).

C An illustrative example

We use a concrete case to illustrate why parallelograms lead to generalization (see Figure 9). For the
purpose of illustration, we exploit a curriculum learning setting, where a neural network is fed with a
few new samples each time. We will illustrate that, as we have more samples in the training set, the
ideal model M∗ (defined in Section 3.2) will arrange the representation R∗ in a more structured way,
i.e., more parallelograms are formed, which helps generalization to unseen validation samples. For
simplicity we choose p = 6.

• D1 = (0, 4) and D2 = (1, 3) have the same label, so (0, 4, 1, 3) becomes a parallelogram
such that E0 +E4 = E1 +E3 → E3 −E0 = E4 −E1. D3 = (1, 5) and D4 = (2, 4) have

14

the same label, so (1, 5, 2, 4) becomes a parallelogram such that E1 + E5 = E2 + E4 →
E4−E1 = E5−E2. We can derive from the first two equations that E5−E2 = E3−E0 →
E0 +E5 = E2 +E3, which implies that (0, 5, 2, 3) is also a parallelogram (see Figure 9(a)).
This means if (0, 5) in training set, our model can predict (2, 3) correctly.

• D5 = (0, 2) and D6 = (1, 1) have the same label, so E0 + E2 = 2E1, i.e., 1 is the middle
point of 0 and 2 (see Figure 9(b)). Now we can derive that 2E4 = E3 + E5, i.e., 4 is the
middle point of 3 and 5. If (4, 4) is in the training data, our model can predict (3, 5) correctly.

• Finally, D7 = (2, 4) and D8 = (3, 3) have the same label, so 2E3 = E2 +E4, i.e., 3 should
be placed at the middle point of 2 and 4, ending up Figure 9(c). This linear structure agrees
with the arithmetic structure of R.

In summary, although we have p(p+ 1)/2 = 21 different training samples for p = 6, we only need 8
training samples to uniquely determine the perfect linear structure (up to linear transformation). The
punchline is: representations lead to generalization.

Figure 9: As we include more data in the training set, the (ideal) model is capable of discovering
increasingly structured representations (better RQI), from (a) to (b) to (c).

D Definition of Âcc

Given a training set D and a representation R, if (i, j) is a validation sample, can the neural network
correctly predict its output, i.e., Dec(Ei +Ej) = Yi+j? Since neural network has never seen (i, j)
in the training set, one possible mechanism of induction is through

Dec(Ei +Ej) = Dec(Em +En) = Ym+n(= Yi+j). (11)

The first equality Dec(Ei + Ej) = Dec(Em + En) holds only when Ei + Ej = Em + En (i.e.,
(i, j,m, n) is a parallelogram). The second equality Dec(Em + En) = Ym+n, holds when (m,n)
is in the training set, i.e., (m,n) ∈ D, under the zero training loss assumption. Rigorously, given a
training set D and a parallelogram set P (which can be calculated from R), we collect all zero loss
samples in an augmented training set D

D(D,P) = D
⋃

{(i, j)|∃(m,n) ∈ D, (i, j,m, n) ∈ P}. (12)

Keeping D fixed, a larger P would probably produce a larger D, i.e., if P1 ⊆ P2, then D(D,P1) ⊆
D(P, P2), which is why in Eq. (3) our defined RQI ∝ |P | gets its name “representation quality
index", because higher RQI normally means better generalization. Finally, the expected accuracy
from a dataset D and a parallelogram set P is:

Âcc =
|D(D,P)|

|D0|
, (13)

which is the estimated accuracy (of the full dataset), and P = P (R) is defined on the representation
after training. On the other hand, accuracy Acc can be accessed empirically from trained neural
network. We verified Acc ≈ Âcc in a toy setup (addition dataset p = 10, 1D embedding space,
hard code addition), as shown in Figure 3 (c). Figure 3 (a)(b) show Acc and Âcc as a function of
training set ratio, with each dot corresponding to a different random seed. The dashed red diagonal
corresponds to memorization of the training set, and the vertical gap refers to generalization.

15

Although the agreement is good for 1D embedding vectors, we do not expect such agreement can
trivially extend to high dimensional embedding vectors. In high dimensions, our definition of RQI is
too restrictive. For example, suppose we have an embedding space with N dimensions. Although the
representation may form a linear structure in the first dimension, the representation can be arbitrary
in other N − 1 dimensions, leading to RQI ≈ 0. However, the model may still generalize well if the
decoder learns to keep only the useful dimension and drop all other N − 1 useless dimensions. It
would be interesting to investigate how to define an RQI that takes into account the role of decoder in
future works.

E The gap of a realistic model M and the ideal model M∗

Realistic models M usually form fewer number of parallelograms than ideal models M∗. In this
section, we analyze the properties of ideal models and calculated ideal RQI and ideal accuracy,
which set upper bounds for empirical RQI and accuracy. The upper bound relations are verified via
numerical experiments in Figure 10.

Similar to Eq. (12) where some validation samples can be derived from training samples, we
demonstrate how implicit parallelograms can be ‘derived’ from explicit ones in P0(D). The so-called
derivation follows a simple geometric argument that: if A1B1 is equal and parallel to A2B2, and
A2B2 is equal and parallel to A3B3, then we can deduce that A1B1 is equal and parallel to A3B3

(hence (A1, B2, A2, B1) is a parallelogram).

Recall that a parallelogram (i, j,m, n) is equivalent to Ei + Ej = Em + En (∗). So we are
equivalently asking if equation (∗) can be expressed as a linear combination of equations in
A(P0(D)). If yes, then (∗) is dependent on A(P0(D)) (defined in Eq. (7)), i.e., A(P0(D)) and
A(P0(D)

⋃
(i, j,m, n)) should have the same rank. We augment P0(D) by adding implicit parallel-

ograms, and denote the augmented parallelogram set as

P (D) = P0(D)
⋃

{q ≡ (i, j,m, n)|q ∈ P0, rank(A(P0(D))) = rank(A(P0(D)
⋃

q))}. (14)

We need to emphasize that an assumption behind Eq. (14) is that we have an ideal model M∗. When
the model is not ideal, e.g., when the injectivity of the encoder breaks down, fewer parallelograms
are expected to form, i.e.,

P (R) ⊆ P (D). (15)
The inequality is saying, whenever a parallelogram is formed in the representation after training, the
reason is hidden in the training set. This is not a strict argument, but rather a belief that today’s neural
networks can only copy what datasets (explicitly or implicitly) tell it to do, without any autonomous
creativity or intelligence. For simplicity we call this belief Alexander Principle. In very rare cases
when something lucky happens (e.g., neural networks are initialized at approximate correct weights),
Alexander principle may be violated. Alexander principle sets an upper bound for RQI:

RQI(R) ≤ |P (D)|
|P0|

≡ RQI, (16)

and sets an upper bound for Âcc:

Âcc ≡ Âcc(D,P (R)) ≤ Âcc(D,P (D)) ≡ Acc. (17)

In Figure 10 (c)(f), we verify Eq. (16) and Eq. (17). We choose δ = 0.01 to compute RQI(R,δ). We
find the trained models are usually far from being ideal, although we already include a few useful
tricks proposed in Section 4 to enhance representation learning. It would be an interesting future
direction to develop better algorithms so that the gap due to Alexander principle can be reduced
or even closed. In Figure 10 (a)(b)(d)(e), four quantities (RQI, RQI, Acc, Acc) as functions of the
training data fraction are shown, each dot corresponding to one random seed. It is interesting to
note that it is possible to have RQI = 1 only with < 40% training data, i.e., 55× 0.4 = 22 samples,
agreeing with our observation in Section 3.

Realistic representations Suppose an ideal model M∗ and a realistic model M which train on the
training set D give the representation R∗ and R, respectively. What is the relationship between R
and R∗? Due to the Alexander principle we know P (R) ⊆ P (D) = P (R∗). This means R∗ has
more parallelograms than R, hence R∗ has fewer degrees of freedom than R.

16

0.0 0.2 0.4 0.6 0.8 1.0

training data fraction
0.0

0.2

0.4

0.6

0.8

1.0

R
Q

I

(a)

0.0 0.2 0.4 0.6 0.8 1.0

training data fraction
0.0

0.2

0.4

0.6

0.8

1.0

R
Q

I

(b)

0.0 0.2 0.4 0.6 0.8 1.0

RQI
0.0

0.2

0.4

0.6

0.8

1.0

R
Q

I

Id
ea

l A
lg
or

ith
m

A
le

x
an

d
er

P
ri

n
ci

p
le

(c)

0.0 0.2 0.4 0.6 0.8 1.0
training data fraction

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

M
em

or
iza

tio
n

(d)

0.0 0.2 0.4 0.6 0.8 1.0
training data fraction

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

M
em

or
iza

tio
n

(e)

0.0 0.2 0.4 0.6 0.8 1.0

Acc
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

Id
ea

l A
lg
or

ith
m

A
le

x
an

d
er

P
ri

n
ci

p
le

(f)

Figure 10: We compare RQI and Acc for an ideal algorithm (with bar) and a realistic algorithm
(without bar). In (a)(b)(d)(e), four quantities (RQI, RQI, Acc, Acc) as functions of training data
fraction are shown. In (c)(f), RQI and Acc of the ideal algorithm sets upper bounds for those of the
realistic algorithm.

We illustrate with the toy case p = 4. The whole dataset contains p(p+ 1)/2 = 10 samples, i.e.,

D0 = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}. (18)

The parallelogram set contains only three elements, i.e.,

P0 = {(0, 1, 1, 2), (0, 1, 2, 3), (1, 2, 2, 3)}, (19)

Or equivalently the equation set

A0 = {A1 : E0 +E2 = 2E1,A2 : E0 +E3 = E1 +E2,A3 : E1 +E3 = 2E2}. (20)

Pictorially, we can split all possible subsets {A|A ⊆ A0} into different levels, each level defined by
|A| (the number of elements). A subset A1 in the ith level points an direct arrow to another subset
A2 in the (i + 1)th level if A2 ⊂ A1, and we say A2 is a child of A1, and A1 is a parent of A2.
Each subset A can determine a representation R with n(A) degrees of freedom. So R should be a
descendant of R∗, and n(R∗) ≤ n(R). Numerically, n(A) is equal to the dimension of the null space
of A.

Suppose we have a training set

D = {(0, 2), (1, 1), (0, 3), (1, 2), (1, 3), (2, 2)}, (21)

and correspondingly P (D) = P0, A(P) = A0. So an ideal model M∗ will have the linear structure
Ek = a+ kb (see Figure 11 leftmost). However, a realistic model M may produce any descendants
of the linear structure, depending on various hyperparameters and even random seeds.

In Figure 12, we show our algorithms actually generates all possible representations. We have
two settings: (1) fast decoder (η1, η2) = (10−3, 10−2) (Figure 12 left), and (2) relatively slow
decoder (η1, η2) = (10−2, 10−3) (Figure 12) right). The relatively slow decoder produces better
representations (in the sense of higher RQI) than a fast decoder, agreeing with our observation in
Section 4.

17

Figure 11: p = 4 case. Equation set A (or geometrically, representation) has a hierarchy: a → b
means a is a parent of b, and b is a child of a. A realistic model can only generate representations that
are descendants of the representation generated by an ideal model.

Figure 12: p = 4 case. Representations obtained from training neural networks are displayed. η1 and
η2 are learning rates of the representation and the decoder, respectively. As described in the main text,
(η1, η2) = (10−2, 10−3) (right) is more ideal than (η1, η2) = (10−3, 10−2) (left), thus producing
representations containing more parallelograms.

F Conservation laws of the effective theory

Recall that the effective loss function

ℓeff =
ℓ0
Z0

, ℓ0 ≡
∑

(i,j,m,n)∈P0(D)

|Ei +Ej −Em −En|2/|P0(D)|, Z0 ≡
∑

k

|Ek|2 (22)

where ℓ0 and Z0 are both quadratic functions of R = {E0, · · · ,Ep−1}, and ℓeff = 0 remains zero
under rescaling and translation E′

i = aEi + b. We will ignore the 1/|P0(D)| factor in ℓ0 since
having it is equivalent to rescaing time, which does not affect conservation laws. The representation
vector Ei evolves according to the gradient descent

dEi

dt
= −∂ℓeff

∂Ei
. (23)

We will prove the following two quantities are conserved:

C =
∑

k

Ek, Z0 =
∑

k

|Ek|2. (24)

Eq. (22) and Eq. (23) give

dEi

dt
= − ℓeff

∂Ei
= −

∂(ℓ0
Z0

)

∂Ei
= − 1

Z0

∂ℓ0
∂Ei

+
ℓ0
Z2
0

∂Z0

∂Ei
. (25)

18

Then
dZ0

dt
= 2

∑

i

Ek · dEk

dt
(26)

=
2

Z2
0

∑

i

Ei · (−Z0
∂ℓ0
∂Ek

+ 2ℓ0Ek)

=
2

Z0
(−

∑

k

∂ℓ0
∂Ek

·Ek + 2ℓ0)

= 0.

where the last equation uses the fact that
∑

k

∂ℓ0
∂Ek

·Ek = 2
∑

k

∑

(i,j,m,n)∈P0(D)

(Ei +Ej −Em −En)(δik + δjk − δmk − δnk) ·Ek

= 2
∑

(i,j,m,n)∈P0(D)

(Ei +Ej −Em −En)
∑

k

(δik + δjk − δmk − δnk) ·Ek

=
∑

(i,j,m,n)∈P0(D)

(Ei +Ej −Em −En) · (Ei +Ej −Em −En)

= 2ℓ0

The conservation of Z0 prohibits the representation from collapsing to zero. Now that we have
demonstrated that Z0 is a conserved quantity, we can also show

dC

dt
=

∑

k

dEk

dt
(27)

= − 1

Z0

∑

k

∂ℓ0
∂Ek

= − 2

Z0

∑

k

∑

(i,j,m,n)∈P0(D)

(Ei +Ej −Em −En)(δik + δjk − δmk − δnk)

= 0.

The last equality holds because the two summations can be swapped and
∑

k(δik+δjk−δmk−δnk) =
0.

G More phase diagrams of the toy setup

We study another three hyperparameters in the toy setup by showing phase diagrams similar to
Figure 6. The toy setup is: (1) addition without modulo (p = 10); (2) training/validation is split into
45/10; (3) hard code addition; (4) 1D embedding. In the following experiments, the decoder is an
MLP with size 1-200-200-30. The representation and the encoder are optimized with AdamW with
different hyperparameters. The learning rate of the representation is 10−3. We sweep the learning
rate of the decoder in range [10−4, 10−2] as the x axis, and sweep another hyperparameter as the
y axis. By default, we use full batch size 45, initialization scale s = 1 and zero weight decay of
representation.

Batch size controls the amount of noise in the training dynamics. In Figure 13, the grokking region
appears at the top left of the phase diagram (small decoder learning rate and small batch size).
However, large batch size (with small learning rate) leads to comprehension, implying that smaller
batch size seems harmful. This makes sense since to get crystals (good structures) in experiments,
one needs a freezer which gradually decreases temperature, rather than something perturbing the
system with noise.

Initialization scale controls distances among embedding vectors at initialization. We initialize
components of embedding vectors from independent uniform distribution U [−s/2, s/2] where s

19

1e-4 1e-3 1e-2
learning rate

1

12

45

b
at

ch
si

ze

co
m

p
re

h
en

si
o
n

memorization

grokking

confusion

Addition group (regression)

1e-4 1e-3 1e-2
learning rate

1

12

45

b
at

ch
si

ze

co
m

p
re

h
en

si
o
n

memorization

g
ro

k
k
in

g

confusion

Addition group (classification)

Figure 13: Phase diagrams of decoder learning rate (x axis) and batch size (y axis) for the addition
group (left: regression; right: classification). Small decoder leanrning rate and large batch size
(bottom left) lead to comprehension.

1e-4 1e-3 1e-2
learning rate

0.01

1.0

100.0

in
it

ia
liz

at
io

n
sc

al
e comprehension

memorization

confusion

Addition group (regression)

1e-4 1e-3 1e-2
learning rate

0.01

1.0

100.0

in
it

ia
liz

at
io

n
sc

al
e comprehension

memorization

confusion

Addition group (classification)

Figure 14: Phase diagrams of decoder learning rate (x axis) and initialization (y axis) for the addition
group (left: regression; right: classification). Small intialization scale (top) leads to comprehension.

is called the initialization scale. Shown in Figure 14, it is beneficial to use a smaller initialization
scale. This agrees with the physical intuition that closer particles are more likely to interact and form
structures. For example, the distances among molecules in ice are much smaller than distances in gas.

Representation weight decay controls the magnitude of embedding vectors. Shown in Figure 15,
we see the representation weight decay in general does not affect model performance much.

H General groups

H.1 Theory

We focused on Abelian groups for the most part of the paper. This is, however, simply due to
pedagogical reasons. In this section, we show that it is straight-forward to extend definitions of
parallelograms and representation quality index (RQI) to general non-Abelian groups. We will also
show that most (if not all) qualitative results for the addition group also apply to the permutation
group.

20

1e-4 1e-3 1e-2
learning rate

0.0

5.0

10.0

w
ei

gh
t

d
ec

ay
(r

ep
re

se
nt

at
io

n
)

co
m

p
re

h
e
n
sio

n

memorization
g
ro

k
k
in

g

Addition group (regression)

1e-4 1e-3 1e-2
learning rate

0.0

5.0

10.0

w
ei

gh
t

d
ec

ay
(r

ep
re

se
nt

at
io

n
)

co
m

p
re

h
e
n

si
o
n

m
e
m

o
ri

za
ti

o
ng

ro
k
k
in

g

co
n

fu
si

o
n

Addition group (classification)

Figure 15: Phase diagrams of decoder learning rate (x axis) and representation weight decay (y axis)
for the addition group (left: regression; right: classification). Representation weight decay does not
affect model performance much.

Matrix representation for general groups Let us first review the definition of group representation.
A representation of a group G on a vector space V is a group homomorphism from G to GL(V), the
general linear group on V . That is, a representation is a map ρ : G → GL(V) such that

ρ(g1g2) = ρ(g1)ρ(g2), ∀g1, g2 ∈ G. (28)
In the case V is of finite dimension n, it is common to identify GL(V) with n by n invertible matrices.
The punchline is that: each group element can be represented as a matrix, and the binary operation is
represented as matrix multiplication.

A new architecture for general groups Inspired by the matrix representation, we embed each
group element a as a learnable matrix Ea ∈ Rd×d (as opposed to a vector), and manually do matrix
multiplication before sending the product to the deocder for regression or classification. More
concretly, for a ◦ b = c, our architecture takes as input two embedding matrices Ea and Eb and
aims to predict Yc such that Yc = Dec(EaEb), where EaEb means the matrix multiplication of Ea

and Eb. The goal of this simplication is to disentangle learning the representation and learning the
arithmetic operation (i.e, the matrix multiplication). We will show that, even with this simplification,
we are still able to reproduce the characteristic grokking behavior and other rich phenomenon.

Generalized parallelograms we define generalized parallelograms: (a, b, c, d) is a generalized
parallelogram in the representation if ||EaEb −EcEd||2F ≤ δ, where δ > 0 is a threshold to tolerate
numerical errors. Before presenting the numerical results for the permutation group, we show an
intuitive picture about how new parallelograms can be deduced from old ones for general groups,
which is the key to generalization.

Deduction of parallelograms We first recall the case of the Abelian group (e.g., addition group). As
shown in Figure 16, when (a, d, b, c) and (c, f, d, e) are two parallelograms, we have

Ea +Ed = Eb +Ec,

Ec +Ef = Ed +Ed.
(29)

We can derive that Ea +Ef = Eb +Ee implying that (a, f, b, e) is also a parallelogram. That is, for
Abelian groups, two parallelograms are needed to deduce a new parallelogram.

For the non-Abelian group, if we have only two parallelograms such that
EaEd = EbEc,

EfEc = EeEd,
(30)

we have E−1
b Ea = EcE

−1
d = E−1

f Ee, but this does not lead to something like EfEa = EeEb,
hence useless for generalization. However, if we have a third parallelogram such that

EeEh = EfEg (31)

21

Figure 16: Deduction of parallelograms

we have E−1
b Ea = EcE

−1
d = E−1

f Ee = EgE
−1
h , equivalent to EaEh = EbEg, thus establishing a

new parallelogram (a, h, b, g). That is, for non-Abelian groups, three parallelograms are needed to
deduce a new parallelogram.

H.2 Numerical Results

In this section, we conduct numerical experiments on a simple non-abelian group: the permutation
group S3. The group has 6 group elements, hence the full dataset contains 36 samples. We embed each
group element a into a learnable 3×3 embedding matrix Ea. We adopt the new architecture described
in the above subsection: we hard code matrix multiplication of two input embedding matrices before
feeding to the decoder. After defining the generalized parallelogram in the last subsection, we can
continue to define RQI (as in Section 3) and predict accuracy Âcc from representation (as in appendix
D). We also compute the number of steps needed to reach RQI = 0.95.

Representation We flatten each embedding matrix into a vector, and apply principal component
analysis (PCA) to the vectors. We show the first three principal components of these group elements
in Figure 17. On the plane of PC1 and PC3, the six points are organized as a hexagon.

PC 1
3 2 1 0 1 2 3

PC 2
1.5

1.0
0.5

0.0
0.5

1.0
1.5

PC 3

1.5
1.0
0.5

0.0
0.5
1.0
1.5

[0, 1, 2]
[0, 2, 1]

[1, 0, 2]

[1, 2, 0]

[2, 0, 1]

[2, 1, 0]

3 2 1 0 1 2 3

PC1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

PC
2

[0, 1, 2][0, 2, 1]
[1, 0, 2]

[1, 2, 0]
[2, 0, 1]

[2, 1, 0]

3 2 1 0 1 2 3

PC1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

PC
3 [0, 1, 2]

[0, 2, 1]

[1, 0, 2]

[1, 2, 0]

[2, 0, 1]

[2, 1, 0]

1.5 1.0 0.5 0.0 0.5 1.0 1.5

PC2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

PC
3 [0, 1, 2]

[0, 2, 1]

[1, 0, 2]

[1, 2, 0]

[2, 0, 1]

[2, 1, 0]

Figure 17: Permuation group S3. First three principal components of six embedding matrices R3×3.

RQI In Figure 18 (a), we show RQI as a function of training data fraction. For each training data
fraction, we run 11 random seeds (shown as scatter points), and the blue line corresponds to the
highest RQI.

Steps to reach RQI= 0.95 In Figure 18 (b), we whow the steps to reach RQI > 0.95 as a function
of training data fraction, and find a phase transition at r = rc = 0.5. The blue line corresponds to the
best model (smallest number of steps).

22

0.4 0.6 0.8

training data fraction

0.0

0.2

0.4

0.6

0.8

1.0

R
Q

I

(a)

0.4 0.6 0.8

training data fraction

103

104

st
ep

s
to

R
Q

I>
0.

95

rc = 0.5

(b)

0.2 0.4 0.6 0.8 1.0

training data fraction

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

(c)

0.2 0.4 0.6 0.8 1.0

training data fraction

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Â
cc

(d)

0.2 0.4 0.6 0.8 1.0

Âcc

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

(e)

Figure 18: Permutation group S3. (a) RQI increases as training set becomes larger. Each scatter point
is a random seed, and the blue line is the highest RQI obtained with a fixed training set ratio; (b)
steps to reach RQI > 0.95. The blue line is the smallest number of steps required. There is a phase
transition around rc = 0.5. (c) real accuracy Acc; (d) predicted accuracy Âcc; (e) comparison of Acc

and Âcc: Âcc serves as a lower bound of Acc.

Accuracy The real accuracy Acc is shown in Figure 18 (c), while the predicted accuracy Âcc

(calculated from RQI) is shown in Figure 18 (d). Their comparison is shown in (e): Âcc is a lower
bound of Acc, implying that there must be some generalization mechanism beyond RQI.

Phase diagram We investigate how the model performance varies under the change of two knobs:
decoder learning rate and decoder weight decay. We calculate the number of steps to training accuracy
≥ 0.9 and validation accuracy ≥ 0.9, respectively, shown in Figure 6 (d).

I Effective theory for image classification

In this section, we show our effective theory proposed in Section 3.2 can generalize beyond algorith-
mic datasets. In particular, we will apply the effective theory to image classifications. We find that:
(i) The effective theory naturally gives rise to a novel self-supervised learning method, which can
provably avoid mode collapse without contrastive pairs. (ii) The effective theory can shed light on the
neural collapse phenomenon [28], in which same-class representations collapse to their class-means.

We first describe how the effective theory applies to image classification. The basic idea is again that,
similar to algorithmic datasets, neural networks try to develop a structured representation of the inputs
based on the relational information between samples (class labels in the case of image classification,
sum parallelograms in the case of addition, etc.). The effective theory has two ingredients: (i) samples
with the same label are encouraged to have similar representations; (ii) the effective loss function
is scale-invariant to avoid all representations collapsing to zero (global collapse). As a result, an
effective loss for image classification has the form

ℓeff =
ℓ

Z
, ℓ =

∑

(x,y)∈P

|f(x)− f(y)|2, Z =
∑

x

|f(x)|2 (32)

where x is an image, f(x) is its representation, (x,y) ∈ P refers to unique pairs x and y that have
the same label. Scale invariance means the loss function ℓeff does not change under the linear scaling
f(x) → af(x).

Relation to neural collapse It was observed in [28] that image representations in the penultimate
layer of the model have some interesting features: (i) representations of same-class images collapse
to their class-means; (ii) class-means of different classes develop into an equiangular tight frame. Our
effective theory is able to predict the same-class collapse, but does not necessarily put class-means
into equiangular tight frames. We conjecture that little explicit repulsion among different classes can
help class-means develop into an equiangular tight frame, similar to electrons developing into lattice
structures on a sphere under repulsive Coulomb forces (the Thomson problem [29]). We would like
to investigate this modification of the effective theory in the future.

Experiment on MNIST We directly apply the effective loss Eq. (32) to the MNIST dataset. Firstly,
each image x is randomly encoded to a 2D embedding f(x) via the same encoder MLP whose weights
are randomly initialized. We then train these embeddings by minimizing the effective loss ℓeff with

23

Figure 19: Our effective theory applies to MNIST image classifications. Same-class images collapse
to their class-means, while class-means of different classes stay separable. As such, the effective
theory serves as a novel self-supervised learning method, as well as shed some light on neural collapse.
Please see texts in Appendix I.

an Adam optimizer (10−3 learning rate) for 100 steps. We show the evolution of these embeddings in
Figure 19. Images of the same class collapse to their class-means, and different class-means do not
collapse. This means that our effective theory can give rise to a good representation learning method
which only exploits non-contrastive relational information in datasets.

Link to self-supervised learning Note that ℓ itself is vulnerable to global collapse, in the context
of Siamese learning without contrastive pairs. Various tricks (e.g., decoder with momentum, stop
gradient) [13, 30] have been proposed to avoid global collapse. However, the reasons why these
tricks can avoid global collapse are unclear. We argue ℓ fails simply because ℓ → a2ℓ under scaling
f(x) → af(x) so gradient descent on ℓ encourage a → 0. Based on this picture, our effective theory
provides another possible fix: make the loss function ℓ scale-invariant (by the normalized loss ℓeff),
so the gradient flow has no incentive to change representation scales. In fact, we can prove that
the gradient flow on ℓeff preserve Z (variance of representations) so that global collapse is avoided
provably:

24

∂ℓeff
∂f(x)

=
1

Z

∂ℓ

∂f(x)
− l

Z2

∂Z

∂f(x)
=

2

Z

∑

y∼x

(f(x)− f(y))− 2ℓ

Z2
f(x),

dZ

dt
= 2

∑

x

f(x) · df(x)
dt

= 2
∑

x

f(x) · ∂ℓeff
∂f(x)

=
4

Z

∑

x

f(x) · (
∑

y∼x

(f(x)− f(y))− ℓ

Z
f(x))

=
4

Z

[∑

x

f(x) ·
∑

y∼x

(f(x)− f(y))−
∑

x

ℓ

Z
|f(x)|2

]

= 0.

(33)

where we use the fact that∑

x

f(x) ·
∑

y∼x

(f(x)− f(y)) =
∑

(x,y)∈P

(f(x)− f(y)) · (f(x)− f(y)) = ℓ (34)

J Grokking on MNIST

To induce grokking on MNIST, we make two nonstandard decisions: (1) we reduce the size of the
training set from 50k to 1k samples (by taking a random subset) and (2) we increase the scale of the
weight initialization distribution (by multiplying the initial weights, sampled with Kaiming uniform
initialization, by a constant > 1).

The choice of large initializations is justified by [31–33] which find large initializations overfit data
easily but prone to poor generalization. Relevant to this, initialization scale is found to regulate
“kernel” vs “rich” learning regimes in networks [34].

With these modifications to training set size and initialization scale, we train a depth-3 width-200
MLP with ReLU activations with the AdamW optimizer. We use MSE loss with one-hot targets,
rather than cross-entropy. With this setup, we find that the network quickly fits the train set, and then
much later in training validation accuracy improves, as shown in Figure 8a. This closely follows the
stereotypical grokking learning, first observed in algorithmic datasets.

With this setup, we also compute a phase diagram over the model weight decay and the last layer
learning rate. See Figure 8b. While in MLPs it is less clear what parts of the network to consider
the “encoder” vs the “decoder”, for our purposes here we consider the last layer to be the “decoder”
and vary its learning rate relative to the rest of the network. The resulting phase diagram has some
similarity to Figure 7. We observe a “confusion”phase in the bottom right (high learning rate and
high weight decay), a “comprehension” phase bordering it, a “grokking” phase as one decreases
weight decay and decoder learning rate, and a “memorization“ phase at low weight decay and low
learning rate. Instead of an accuracy threshold of 95%, we use a threshold of 60% here for validation
accuracy for runs to count as comprehension or grokking. This phase diagram demonstrates that with
sufficient regularization, we can again “de-grok” learning.

We also investigate the effect of training set size on time to generalization on MNIST. We find a result
similar to what Power et al. [1] observed, namely that generalization time increases rapidly once one
drops below a certain amount of training data. See Figure 20.

K Lottery Ticket Hypothesis Connection

In Figure 21, we show the projection of the learned embeddings after generalization to their first
two principal components. Compared to the projection at initialization, structure clearly emerges in
embedding space when the neural network is able to generalize (> 99% validation accuracy). What
is intriguing is that the projection of the embeddings at initialization to the principal components
of the embeddings at generalization seem to already contain much of that structure. In this sense,
the structured representation necessary for generalization already existed (partially) at initialization.
The training procedure essentially prunes other unnecessary dimensions and forms the required
parallelograms for generalization. This is a nonstandard interpretation of the lottery ticket hypothesis

25

0 5000 10000 15000 20000 25000 30000
Train Points

104

105

St
ep

s t
o

Va
lid

at
io

n
Ac

cu
ra

cy
 >

 6
0%

Steps until generalization for MNIST (weight decay 5e-3)
Mean
Runs that didn't reach 60% val acc in 10^5 steps
Runs that reached 60% val acc in 10^5 steps

Figure 20: Time to generalize as a function of training set size, on MNIST.

−4 −2 0 2 4

Generalization PCA 1

−4

−2

0

2

4

G
en

er
al

iz
at

io
n

P
C

A
2

After generalization

−5.0 −2.5 0.0 2.5 5.0 7.5

Initialization PCA 1

−6

−4

−2

0

2

4

6

In
it

ia
li
za

ti
o
n

P
C

A
2

At initialization

−4 −2 0 2 4

Generalization PCA 1

−3

−2

−1

0

1

2

3

4

G
en

er
al

iz
at

io
n

P
C

A
2

At initialization

Figure 21: (Left) Input embeddings after generalization projected on their first 2 principal compo-
nents.(Center) Input embeddings at initialization projected on their first 2 principal components.
(Right) Input embeddings at initialization projected on the first 2 principal components of the embed-
dings after generalization at the end of training (same PCA as the left figure).

where the winning tickets are not weights or subnetworks but instead particular axes or linear
combinations of the weights (the learned embeddings).

In Figure 22, we show the original training curves (dashed lines). In solid lines, we recompute
accuracy with models which use embeddings that are projected onto the n principal components of
the embeddings at the end of training (and back). Clearly, the first few principal components contain
enough information to reach 99% accuracy. The first few PCs explain the most variance by definition,
however, we note that this is not necessarily the main reason for why they can generalize so well. In
fact, embeddings reconstructed from the PCA at the end of training (solid lines) perform better than
current highest variance axes (dotted line). This behavior is consistent across seeds.

26

102 103 104

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

10 Components

Test Reconstructed (Final PCA)

Train Reconstructed (Final PCA)

Train Reconstructed (Current PCA)

Test Reconstructed (Current PCA)

Test

Train

102 103 104

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

6 Components

Test Reconstructed (Final PCA)

Train Reconstructed (Final PCA)

Train Reconstructed (Current PCA)

Test Reconstructed (Current PCA)

Test

Train

102 103 104

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

5 Components

Test Reconstructed (Final PCA)

Train Reconstructed (Final PCA)

Train Reconstructed (Current PCA)

Test Reconstructed (Current PCA)

Test

Train

102 103 104

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

2 Components

Test Reconstructed (Final PCA)

Train Reconstructed (Final PCA)

Train Reconstructed (Current PCA)

Test Reconstructed (Current PCA)

Test

Train

Figure 22: Train and test accuracy computed while using actual embeddings (dashed line) and
embeddings projected onto and reconstructed from their first n principal components (dotted lines)
and, finally, using embeddings projected onto and reconstructed from the first n PCs of the embeddings
at the end of training (solid lines).

27

L Derivation of the effective loss

In this section, we will further motivate the use of our effective loss to study the dynamics of
representation learning by deriving it from the gradient flow dynamics on the actual MSE loss in
linear regression. The loss landscape of a neural network is in general nonlinear, but the linear case
may shed some light on how the effective loss can be derived from actual loss. For a sample r (which
is the sum of two embeddings Ei and Ej), the prediction of the linear network is D(r) = Ar+ b.
The loss function is (y is its corresponding label):

ℓ =
1

2
|Ar+ b− y|2

︸ ︷︷ ︸
ℓpred

+
γ

2
||A||2F

︸ ︷︷ ︸
ℓreg

, (35)

where the first and the second term are prediction error and regularization, respectively. Both the
model (A,b) and the input r are updated via gradient flow, with learning rate ηA and ηx, respectively:

dA

dt
= −ηA

∂ℓ

∂A
,
db

dt
= −ηA

∂ℓ

∂b
,
dr

dt
= −ηx

∂ℓ

∂r
. (36)

Inserting ℓ into the above equations, we obtain the gradient flow:

dA

dt
= −ηA

∂ℓ

∂A
= −ηA[A(rrT + γ) + (b− y)rT],

db

dt
= −ηA

∂ℓ

∂b
= −ηA(Ar+ b− y)

dr

dt
= −ηx

∂ℓ

∂r
= −ηxA

T (Ar+ b− y).

(37)

For the db/dt equation, after ignoring the Ar term and set the initial condition b(0) = 0, we obtain
analytically b(t) = (1− e−2ηAt)y. Inserting this into the first and third equations, we have

dA

dt
= −ηA[A(rrT + γ)− e−2ηAtyrT],

dr

dt
= −ηxA

TAr︸ ︷︷ ︸
internal interaction

+ ηxe
−2ηAtATy︸ ︷︷ ︸

external force

.
(38)

For the second equation on the evolution of dr/dt, we can artificially decompose the right hand side
into two terms, based on whether they depend on the label y. In this way, we call the first term
"internal interaction" since it does not depend on y, while the second term "external force". Note
this distinction seems a bit artificial from a mathematical perspective, but it can be conceptually
helpful from a physics perspective. We will show below the internal interaction term is important for
representations to form. Because we are interested in how two samples interact, we now consider
another sample at r′, and the evolution becomes

dA

dt
= −ηA[A(rrT + r′r′T + 2γ)− e−2ηAty(r+ r′)T],

dr

dt
= −ηxA

TAr+ ηxe
−2ηAtATy,

dr′

dt
= −ηxA

TAr′ + ηxe
−2ηAtATy.

(39)

Subtracting dr/dt by dr′/dt and setting r′ = −r, the above equations further simply to

dA

dt
= −2ηAA(rrT + γ),

dr

dt
= −ηxA

TAr.

(40)

The second equation implies that the pair of samples interact via a quadratic potential U(r) =
1
2r

TATAr, leading to a linear attractive force f(r) ∝ r. We now consider the adiabatic limit where
ηA → 0.

28

The adiabatic limit Using the standard initialization (e.g., Xavier initialization) of neural networks,
we have AT

0 A0 ≈ I. As a result, the quadratic potential becomes U(r) = 1
2r

T r, which is time-
independent because ηA → 0. We are now in the position to analyze the addition problem. For two
samples x(1) = Ei +Ej and x(2) = Em +En with the same label (i+ j = m+ n), they contribute
to an interaction term

U(i, j,m, n) =
1

2
|Ei +Ej −Em −En|22. (41)

Averaging over all possible quadruples in the training dataset D, the total energy of the system is

ℓ0 =
∑

(i,j,m,n)∈P0(D)

1

2
|Ei +Ej −Em −En|22/|P0(D)|, (42)

where P0(D) = {(i, j,m, n)|i+ j = m+ n, (i, j) ∈ D, (m,n) ∈ D}. To make it scale-invariant,
we define the normalized Hamiltonian Eq. (42) as

ℓeff =
ℓ0
Z0

, Z0 =
∑

i

|Ei|22 (43)

which is the effective loss we used in Section 3.2.

29

	Definitions of the phases of learning
	Applicability of our toy setting
	An illustrative example
	Definition of Acc
	The gap of a realistic model M and the ideal model M*
	Conservation laws of the effective theory
	More phase diagrams of the toy setup
	General groups
	Theory
	Numerical Results

	Effective theory for image classification
	Grokking on MNIST
	Lottery Ticket Hypothesis Connection
	Derivation of the effective loss

