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Abstract

We aim to understand grokking, a phenomenon where models generalize long after
overfitting their training set. We present both a microscopic analysis anchored by an
effective theory and a macroscopic analysis of phase diagrams describing learning
performance across hyperparameters. We find that generalization originates from
structured representations whose training dynamics and dependence on training set
size can be predicted by our effective theory in a toy setting. We observe empirically
the presence of four learning phases: comprehension, grokking, memorization, and
confusion. We find representation learning to occur only in a “Goldilocks zone”
(including comprehension and grokking) between memorization and confusion.
We find on transformers the grokking phase stays closer to the memorization phase
(compared to the comprehension phase), leading to delayed generalization. The
Goldilocks phase is reminiscent of “intelligence from starvation” in Darwinian
evolution, where resource limitations drive discovery of more efficient solutions.
This study not only provides intuitive explanations of the origin of grokking, but
also highlights the usefulness of physics-inspired tools, e.g., effective theories and
phase diagrams, for understanding deep learning.

1 Introduction

Perhaps the central challenge of a scientific understanding of deep learning lies in accounting for neu-
ral network generalization. Power et al. [1] recently added a new puzzle to the task of understanding
generalization with their discovery of grokking. Grokking refers to the surprising phenomenon of
delayed generalization where neural networks, on certain learning problems, generalize long after
overfitting their training set. It is a rare albeit striking phenomenon that violates common machine
learning intuitions, raising three key puzzles:

Q1 The origin of generalization: When trained on the algorithmic datasets where grokking occurs,
how do models generalize at all?

Q2 The critical training size: Why does the training time needed to “grok” (generalize) diverge as
the training set size decreases toward a critical point?

Q3 Delayed generalization: Under what conditions does delayed generalization occur?

We provide evidence that representation learning is central to answering each of these questions. Our
answers can be summarized as follows:

A1 Generalization can be attributed to learning a good representation of the input embeddings,
i.e., a representation that has the appropriate structure for the task and which can be predicted
from the theory in Section 3. See Figures 1 and 2.

A2 The critical training set size corresponds to the least amount of training data that can determine
such a representation (which, in some cases, is unique up to linear transformations).
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Initialization (0 iterations)
train acc: 0.0 — val acc: 0.0

Overfitting (1000 iterations)
train acc: 1.0 — val acc: 0.1

Representation Learning (20000 iterations)
train acc: 1.0 — val acc: 1.0

Figure 1: Visualization of the first two principal components of the learned input embeddings at
different training stages of a transformer learning modular addition. We observe that generalization
coincides with the emergence of structure in the embeddings. See Section 4.2 for the training details.

A3 Grokking is a phase between “comprehension” and “memorization” phases and it can be
remedied with proper hyperparmeter tuning, as illustrated by the phase diagrams in Figure 6.

This paper is organized as follows: In Section 2, we introduce the problem setting and build a
simplified toy model. In Section 3, we will use an effective theory approach, a useful tool from
theoretical physics, to shed some light on questions Q1 and Q2 and show the relationship between
generalization and the learning of structured representations. In Section 4, we explain Q3 by
displaying phase diagrams from a grid search of hyperparameters and show how we can “de-delay”
generalization by following intuition developed from the phase diagram. We discuss related work in
Section 5, followed by conclusions in Section 6.1

2 Problem Setting

Power et al. [1] observe grokking on a less common task – learning “algorithmic” binary operations.
Given some binary operation ◦, a network is tasked with learning the map (a, b) 7→ c where c = a ◦ b.
They use a decoder-only transformer to predict the second to last token in a tokenized equation of the
form “<lhs> <op> <rhs> <eq> <result> <eos>”. Each token is represented as a 256-dimensional
embedding vector. The embeddings are learnable and initialized randomly. After the transformer, a
final linear layer maps the output to class logits for each token.

Toy Model We primarily study grokking in a simpler toy model, which still retains the key behaviors
from the setup of [1]. Although [1] treated this as a classification task, we study both regression
(mean-squared error) and classification (cross-entropy). The basic setup is as follows: our model
takes as input the symbols a, b and maps them to trainable embedding vectors Ea,Eb ∈ Rdin . It
then sums Ea,Eb and sends the resulting vector through a “decoder” MLP. The target output vector,
denoted Yc ∈ Rdout is a fixed random vector (regression task) or a one-hot vector (classification
task). Our model architecture can therefore be compactly described as (a, b) 7→ Dec(Ea + Eb),
where the embeddings E∗ and the decoder are trainable. Despite its simplicity, this toy model can
generalize to all abelian groups (discussed in Appendix B). In sections 3-4.1, we consider only the
binary operation of addition. We consider modular addition in Section 4.2 to generalize some of our
results to a transformer architecture and study general non-abelian operations in Appendix H.

Dataset In our toy setting, we are concerned with learning the addition operation. A data sample
corresponding to i+ j is denoted as (i, j) for simplicity. If i, j ∈ {0, . . . , p− 1}, there are in total
p(p+ 1)/2 different samples since we consider i+ j and j + i to be the same sample. A dataset D
is a set of non-repeating data samples. We denote the full dataset as D0 and split it into a training
dataset D and a validation dataset D′, i.e., D

⋃
D′ = D0, D

⋂
D′ = ∅. We define training data

fraction = |D|/|D0| where | · | denotes the cardinality of the set.

1Project code can be found at: https://github.com/ejmichaud/grokking-squared
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(a) Memorization in toy addition
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(b) Generalization in toy addition
Accuracy - train: 1.0, validation: 0.1
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(c) Memorization in toy modular addition
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(d) Generalization in toy modular addition

Figure 2: Visualization of the learned set of embeddings (p = 11) and the decoder function associated
with it for the case of 2D embeddings. Axes refer to each dimension of the learned embeddings. The
decoder is evaluated on a grid of points in embedding-space and the color at each point represents
the highest probability class. For visualization purposes, the decoder is trained on inputs of the form
(Ei +Ej)/2. One can read off the output of the decoder when fed the operation i ◦ j from this figure
simply by taking the midpoint between the respective embeddings of i and j.

3 Why Generalization Occurs: Representations and Dynamics

We can see that generalization appears to be linked to the emergence of highly-structured embeddings
in Figure 2. In particular, Figure 2 (a, b) shows parallelograms in toy addition, and (c, d) shows a
circle in toy modular addition. We now restrict ourselves to the toy addition setup and formalize a
notion of representation quality and show that it predicts the model’s performance. We then develop a
physics-inspired effective theory of learning which can accurately predict the critical training set size
and training trajectories of representations. The concept of an effective theory in physics is similar
to model reduction in computational methods in that it aims to describe complex phenomena with
simple yet intuitive pictures. In our effective theory, we will model the dynamics of representation
learning not as gradient descent of the true task loss but rather a simpler effective loss function ℓeff
which depends only on the representations in embedding space and not on the decoder.

3.1 Representation quality predicts generalization for the toy model

A rigorous definition for structure in the learned representation is necessary. We propose the following
definition,
Definition 1. (i, j,m, n) is a δ-parallelogram in the representation R ≡ [E0, · · · ,Ep−1] if

|(Ei +Ej)− (Em +En)| ≤ δ.

In the following derivations, we can take δ, which is a small threshold to tolerate numerical errors, to
be zero.
Proposition 1. When the training loss is zero, any parallelogram (i, j,m, n) in representation R
satisfies i+ j = m+ n.

Proof. Suppose that this is not the case, i.e., suppose Ei +Ej = Em +En but i+ j ̸= m+ n, then
Yi+j = Dec(Ei + Ej) = Dec(Em + En) = Ym+n where the first and last equalities come from
the zero training loss assumption. However, since i+ j ̸= m+ n, we have Yi+j ̸= Yn+m (almost
surely in the regression task), a contradiction.
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Figure 3: We compute accuracy (of the full dataset) either measured empirically Acc, or predicted
from the representation of the embeddings Âcc. These two accuracies as a function of training data
fraction are plotted in (a)(b), and their agreement is shown in (c).

It is convenient to define the permissible parallelogram set associated with a training dataset D
(“permissible” means consistent with 100% training accuracy) as

P0(D) = {(i, j,m, n)|(i, j) ∈ D, (m,n) ∈ D, i+ j = m+ n}. (1)

For simplicity, we denote P0 ≡ P0(D0). Given a representation R, we can check how many
permissible parallelograms actually exist in R within error δ, so we define the parallelogram set
corresponding to R as

P (R, δ) = {(i, j,m, n)|(i, j,m, n) ∈ P0, |(Ei +Ej)− (Em +En)| ≤ δ}. (2)

For brevity we will write P (R), suppressing the dependence on δ. We define the representation
quality index (RQI) as

RQI(R) =
|P (R)|
|P0|

∈ [0, 1]. (3)

We will use the term linear representation or linear structure to refer to a representation whose
embeddings are of the form Ek = a+ kb (k = 0, · · · , p− 1;a,b ∈ Rdin). A linear representation
has RQI = 1, while a random representation (sampled from, say, a normal dstribution) has RQI = 0
with high probability.

Quantitatively, we denote the “predicted accuracy” Âcc as the accuracy achievable on the whole
dataset given the representation R (see Appendix D for the full details). In Figure 3, we see that
the predicted Âcc aligns well with the true accuracy Acc, establishing good evidence that structured
representation of input embeddings leads to generalization. We use an example to illustrate the origin
of generalization here. In the setup of Figure 2 (b), suppose the decoder can achieve zero training
loss and E6 +E8 is a training sample hence Dec(E6 +E8) = Y14. At validation time, the decoder
is tasked with predicting a validation sample E5 + E9. Since (5, 9, 6, 8) forms a parallelogram
such that E5 + E9 = E6 + E8, the decoder can predict the validation sample correctly because
Dec(E5 +E9) = Dec(E6 +E8) = Y14.

3.2 The dynamics of embedding vectors

Suppose that we have an ideal model M∗ = (Dec∗,R∗) such that:2

• (1) M∗ can achieve zero training loss;

• (2) M∗ has an injective decoder, i.e., Dec∗(x1) ̸= Dec∗(x2) for any x1 ̸= x2.

Then Proposition 2 provides a mechanism for the formation of parallelograms.

2One can verify a posteriori if a trained model M is close to being an ideal model M∗. Please refer to
Appendix E for details.
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(c) Theory: trajectory
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(d) Empirical: trajectory

Figure 4: (a) The effective theory predicts a phase transition in the probability of obtaining a linear
representation around rc = 0.4. (b) Empirical results display a phase transition of RQI around
rc = 0.4, in agreement with the theory (the blue line shows the median of multiple random seeds).
The evolution of 1D representations predicted by the effective theory or obtained from neural network
training (shown in (c) and (d) respectively) agree creditably well.

Proposition 2. If a training set D contains two samples (i, j) and (m,n) with i + j = m + n,
then M∗ learns a representation R∗ such that Ei + Ej = Em + En, i.e., (i, j,m, n) forms a
parallelogram.

Proof. Due to the zero training loss assumption, we have Dec∗(Ei + Ej) = Yi+j = Ym+n =
Dec∗(Em +En). Then the injectivity of Dec∗ implies Ei +Ej = Em +En.

The dynamics of the trained embedding vectors are determined by various factors interacting in
complex ways, for instance: the details of the decoder architecture, the optimizer hyperparameters,
and the various kinds of implicit regularization induced by the training procedure. We will see that
the dynamics of normalized quantities, namely, the normalized embeddings at time t, defined as

Ẽ
(t)
k =

E
(t)
k −µt

σt
, where µt =

1
p

∑
k E

(t)
k and σt =

1
p

∑
k |E

(t)
k − µt|2, can be qualitatively described

by a simple effective loss (in the physics effective theory sense). We will assume that the normalized
embedding vectors obey a gradient flow for an effective loss function of the form

dẼi

dt
= −∂ℓeff

∂Ẽi

, (4)

ℓeff =
ℓ0
Z0

, ℓ0 ≡
∑

(i,j,m,n)∈P0(D)

|Ẽi + Ẽj − Ẽm − Ẽn|2/|P0(D)|, Z0 ≡
∑

k

|Ẽk|2, (5)

where | · | denotes Euclidean vector norm. Note that the embeddings do not collapse to the trivial
solution E0 = · · · = Ep−1 = 0 unless initialized as such, because two conserved quantities exist, as
proven in Appendix F:

C =
∑

k

Ek, Z0 =
∑

k

|Ek|2. (6)

We shall now use the effective dynamics to explain empirical observations such as the existence of a
critical training set size for generalization.

Degeneracy of ground states (loss optima) We define ground states as those representations
satisfying ℓeff = 0, which requires the following linear equations to hold:

A(P ) = {Ei +Ej = Em +En|(i, j,m, n) ∈ P}. (7)

Since each embedding dimension obeys the same set of linear equations, we will assume, without loss
of generality, that din = 1. The dimension of the null space of A(P ), denoted as n0, is the number of
degrees of freedom of the ground states. Given a set of parallelograms implied by a training dataset
D, the nullity of A(P (D)) could be obtained by computing the singular values 0 ≤ σ1 ≤ · · · ≤ σp.
We always have n0 ≥ 2, i.e., σ1 = σ2 = 0 because the nullity of A(P0), the set of linear equations
given by all possible parallelograms, is Nullity(A(P0)) = 2 which can be attributed to two degrees
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of freedom (translation and scaling). If n0 = 2, the representation is unique up to translations and
scaling factors, and the embeddings have the form Ek = a + kb. Otherwise, when n0 > 2, the
representation is not constrained enough such that all the embeddings lie on a line.

We present theoretical predictions alongside empirical results for addition (p = 10) in Figure 4. As
shown in Figure 4 (a), our effective theory predicts that the probability that the training set implies a
unique linear structure (which would result in perfect generalization) depends on the training data
fraction and has a phase transition around rc = 0.4. Empirical results from training different models
are shown in Figure 4 (b). The number of steps to reach RQI > 0.95 is seen to have a phase transition
at rc = 0.4, agreeing with the proposed effective theory and with the empirical findings in [1].

Time towards the linear structure We define the Hessian matrix of ℓ0 as

Hij =
1

Z0

∂2ℓ0
∂Ei∂Ej

, (8)

Note that ℓeff = 1
2R

THR, R = [E0,E1, · · · ,Ep−1], so the gradient descent is linear, i.e.,

dR

dt
= −HR. (9)

If H has eigenvalues λi = σ2
i (sorted in increasing order) and eigenvectors v̄i, and we have the initial

condition R(t = 0) =
∑

i aiv̄i, then we have R(t) =
∑

i aiv̄ie
−λit. The first two eigenvalues

vanish and th = 1/λ3 determines the timescale for the slowest component to decrease by a factor
of e. We call λ3 the grokking rate. When the step size is η, the corresponding number of steps is
nh = th/η = 1/(λ3η).

We verify the above analysis with empirical results. Figure 4 (c)(d) show the trajectories obtained
from the effective theory and from neural network training, respectively. The 1D neural representation
in Figure 4 (d) are manually normalized to zero mean and unit variance. The two trajectories agree
qualitatively, and it takes about 3nh steps for two trajectories to converge to the linear structure. The
quantitative differences might be due to the absence of the decoder in the effective theory, which
assumes the decoder to take infinitesimal step sizes.

Dependence of grokking on data size Note that ℓeff involves averaging over parallelograms in the
training set, it is dependent on training data size, so is λ3. In Figure 5 (a), we plot the dependence of
λ3 on training data fraction. There are many datasets with the same data size, so λ3 is a probabilistic
function of data size.

Two insights on grokking can be extracted from this plot: (i) When the data fraction is below some
threshold (around 0.4), λ3 is zero with high probability, corresponding to no generalization. This
again verifies our critical point in Figure 4. (ii) When data size is above the threshold, λ3 (on average)
is an increasing function of data size. This implies that grokking time t ∼ 1/λ3 decreases as training
data size becomes larger, an important observation from [1].

To verify our effective theory, we compare the grokking steps obtained from real neural network
training (defined as steps to RQI > 0.95), and those predicted by our theory tth ∼ 1

λ3η
(η is the

embedding learning rate), shown in Figure 5 (b). The theory agrees qualitatively with neural networks,
showing the trend of decreasing grokking steps as increasing data size. The quantitative differences
might be explained as the gap between our effective loss and actual loss.

Limitations of the effective theory While our theory defines an effective loss based on the Euclidean
distance between embeddings Ei +Ej and En +Em, one could imagine generalizing the theory to
define a broader notion of parallogram given by some other metric on the representation space. For
instance, if we have a decoder like in Figure 2 (d) then the distance between distinct representations
within the same “pizza slice” is low, meaning that representations arranged not in parallelograms
w.r.t. the Euclidean metric may be parallelograms with respect to the metric defined by the decoder.

4 Delayed Generalization: A Phase Diagram

So far, we have (1) observed empirically that generalization on algorithmic datasets corresponds with
the emergence of well-structured representations, (2) defined a notion of representation quality in a
toy setting and shown that it predicts generalization, and (3) developed an effective theory to describe
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Figure 5: Effective theory explains the dependence of grokking time on data size, for the addition
task. (a) Dependence of λ3 on training data fraction. Above the critical data fraction (around 0.4),
as data size becomes larger, λ3 increases hence grokking time t ∼ 1/λ3 (predicted by our effective
theory) decreases. (b) Comparing grokking steps (defined as RQI > 0.95) predicted by the effective
theory with real neural network results. η = 10−3 is the learning rate of the embeddings.

the learning dynamics of the representations in the same toy setting. We now study how optimizer
hyperparameters affect high-level learning performance. In particular, we develop phase diagrams for
how learning performance depends on the representation learning rate, decoder learning rate and the
decoder weight decay. These parameters are of interest since they most explicitly regulate a kind of
competition between the encoder and decoder, as we elaborate below.

4.1 Phase diagram of a toy model

Training details We update the representation and the decoder with different optimizers. For the
1D embeddings, we use the Adam optimizer with learning rate [10−5, 10−2] and zero weight decay.
For the decoder, we use an AdamW optimizer with the learning rate in [10−5, 10−2] and the weight
decay in [0, 10] (regression) or [0, 20] (classification). For training/validation spliting, we choose
45/10 for non-modular addition (p = 10) and 24/12 for the permutation group S3. We hard-code
addition or matrix multiplication (details in Appendix H) in the decoder for the addition group and
the permutation group, respectively.

For each choice of learning rate and weight decay, we compute the number of steps to reach high
(90%) training/validation accuracy. The 2D plane is split into four phases: comprehension, grokking,
memorization and confusion, defined in Table 1 in Appendix A. Both comprehension and grokking are
able to generalize (in the “Goldilocks zone”), although the grokking phase has delayed generalization.
Memorization is also called overfitting, and confusion means failure to even memorize training data.
Figure 6 shows the phase diagrams for the addition group and the permutation group. They display
quite rich phenomena.

Competition between representation learning and decoder overfitting In the regression setup
of the addition dataset, we show how the competition between representation learning and decoder
learning (which depend on both learning rate and weight decay, among other things) lead to different
learning phases in Figure 6 (a). As expected, a fast decoder coupled with slow representation learning
(bottom right) lead to memorization. In the opposite extreme, although an extremely slow decoder
coupled with fast representation learning (top left) will generalize in the end, the generalization time is
long due to the inefficient decoder training. The ideal phase (comprehension) requires representation
learning to be faster, but not too much, than the decoder.

Drawing from an analogy to physical systems, one can think of embedding vectors as a group of
particles. In our effective theory from Section 3.2, the dynamics of the particles are described only
by their relative positions, in that sense, structure forms mainly due to inter-particle interactions (in
reality, these interactions are mediated by the decoder and the loss). The decoder plays the role of an
environment exerting external forces on the embeddings. If the magnitude of the external forces are
small/large one can expect better/worse representations.
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Figure 6: Phase diagrams of learning for the addition group and the permutation group. (a) shows the
competition between representation and decoder. (b)(c)(d): each phase diagram contains four phases:
comprehension, grokking, memorization and confusion, defined in Table 1. In (b)(c)(d), grokking is
sandwiched between comprehension and memorization.

Universality of phase diagrams We fix the embedding learning rate to be 10−3 and sweep instead
decoder weight decay in Figure 6 (b)(c)(d). The phase diagrams correspond to addition regression (b),
addition classification (c) and permutation regression (d), respectively. Common phenomena emerge
from these different tasks: (i) they all include four phases; (ii) The top right corner (a fast and capable
decoder) is the memorization phase; (iii) the bottom right corner (a fast and simple decoder) is the
confusion phase; (iv) grokking is sandwiched between comprehension and memorization, which
seems to imply that it is an undesirable phase that stems from improperly tuned hyperparameters.

4.2 Beyond the toy model

We conjecture that many of the principles which we saw dictate the training dynamics in the toy
model also apply more generally. Below, we will see how our framework generalizes to transformer
architectures for the task of addition modulo p, a minimal reproducible example of the original
grokking paper [1].

We first encode p = 53 integers into 256D learnable embeddings, then pass two integers to a decoder-
only transformer architecture. For simplicity, we do not encode the operation symbols here. The
outputs from the last layer are concatenated and passed to a linear layer for classification. Training
both the encoder and the decoder with the same optimizer (i.e., with the same hyperparameters)
leads to the grokking phenomenon. Generalization appears much earlier once we lower the effective
decoder capacity with weight decay (full phase diagram in Figure 7).

Early on, the model is able to perfectly fit the training set while having no generalization. We study
the embeddings at different training times and find that neither PCA (shown in Figure 1) nor t-SNE
(not shown here) reveal any structure. Eventually, validation accuracy starts to increase, and perfect
generalization coincides with the PCA projecting the embeddings into a circle in 2D. Of course, no
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Figure 7: Left: Evolution of the effective dimension of the embeddings (defined as the exponential of
the entropy) during training and evaluated over 100 seeds. Center: Effect of dropout on speeding up
generalization. Right: Phase diagram of the transformer architecture. A scan is performed over the
weight decay and learning rate of the decoder while the learning rate of the embeddings is kept fixed
at 10−3 (with zero weight decay).

choice of dimensionality reduction is guaranteed to find any structure, and thus, it is challenging
to show explicitly that generalization only occurs when a structure exists. Nevertheless, the fact
that, when coupled with the implicit regularization of the optimizer for sparse solutions, such a clear
structure appears in a simple PCA so quickly at generalization time suggests that our analysis in
the toy setting is applicable here as well. This is also seen in the evolution of the entropy of the
explained variance ratio in the PCA of the embeddings (defined as S = −∑

i σi log σi where σi is
the fractional variance explained by the ith principal component). As seen in Figure 7, the entropy
increases up to generalization time then decreases drastically afterwards which would be consistent
with the conjecture that generalization occurs when a low-dimensional structure is discovered. The
decoder then primarily relies on the information in this low-dimensional manifold and essentially
“prunes” the rest of the high-dimensional embedding space. Another interesting insight appears when
we project the embeddings at initialization onto the principal axes at the end of training. Some of the
structure required for generalization exists before training hinting at a connection with the Lottery
Ticket Hypothesis. See Appendix K for more details.

In Figure 7 (right), we show a comparable phase diagram to Figure 6 evaluated now in the transformer
setting. Note that, as opposed to the setting in [1], weight decay has only been applied to the decoder
and not to the embedding layer. Contrary to the toy model, a certain amount of weight decay proves
beneficial to generalization and speeds it up significantly. We conjecture that this difference comes
from the different embedding dimensions. With a highly over-parameterized setting, a non-zero
weight decay gives a crucial incentive to reduce complexity in the decoder and help generalize in
fewer steps. This is subject to further investigation. We also explore the effect of dropout layers
in the decoder blocks of the transformer. With a significant dropout rate, the generalization time
can be brought down to under 103 steps and the grokking phenomenon vanishes completely. The
overall trend suggests that constraining the decoder with the same tools used to avoid overfitting
reduces generalization time and can avoid the grokking phenomenon. This is also observed in an
image classification task where we were able to induce grokking. See Appendix J for more details.

4.3 Grokking Experiment on MNIST

We now demonstrate, for the first time, that grokking (significantly delayed generalization) is a more
general phenomenon in machine learning that can occur not only on algorithmic datasets, but also
on mainstream benchmark datasets. In particular, we exhibit grokking on MNIST in Figure 8 and
demonstrate that we can control grokking by varying optimization hyperparameters. More details on
the experimental setup are in Appendix J.

5 Related work

Relatively few works have analyzed the phenomenon of grokking. [2] describe the circuit that
transformers use to perform modular addition, track its formation over training, and broadly suggest
that grokking is related to the phenomenon of “phase changes” in neural network training. [3, 4]
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Figure 8: Left: Training curves for a run on MNIST, in the setting where we observe grokking. Right:
Phase diagram with the four phases of learning dynamics on MNIST.

provided earlier speculative, informal conjectures on grokking [3, 4]. Our work is related to the
following broad research directions:

Learning mathematical structures [5] trains a neural network to learn arithmetic operation from
pictures of digits, but they do not observe grokking due to their abundant training data. Beyond
arithmetic relations, machine learning has been applied to learn other mathematical structures,
including geometry [6], knot theory [7] and group theory [8].

Double descent Grokking is somewhat reminiscent of the phenomena of “epoch-wise” double
descent [9], where generalization can improve after a period of overfitting. [10] find that regularization
can mitigate double descent, similar perhaps to how weight decay influences grokking.

Representation learning Representation learning lies at the core of machine learning [11–14].
Representation quality is usually measured by (perhaps vague) semantic meanings or performance on
downstream tasks. In our study, the simplicity of arithmetic datasets allows us to define representation
quality and study evolution of representations in a quantitative way.

Physics of learning Physics-inspired tools have proved to be useful in understanding deep learning
from a theoretical perspective. These tools include effective theories [15, 16], conservation laws [17]
and free energy principle [18]. In addition, statistical physics has been identified as a powerful tool in
studying generalization in neural networks [19–22]. Our work connects a low-level understanding of
models with their high-level performance. In a recent work, researchers at Anthropic [23], connect a
sudden decrease in loss during training with the emergence of induction heads within their models.
They analogize their work to statistical physics, since it bridges a “microscopic”, mechanistic
understanding of networks with “macroscopic” facts about overall model performance.

6 Conclusion

We have shown how, in both toy models and general settings, that representation enables generalization
when it reflects structure in the data. We developed an effective theory of representation learning
dynamics (in a toy setting) which predicts the critical dependence of learning on the training data
fraction. We then presented four learning phases (comprehension, grokking, memorization and
confusion) which depend on the decoder capacity and learning speed (given by, among other things,
learning rate and weight decay) in decoder-only architectures. While we have mostly focused on a
toy model, we find preliminary evidence that our results generalize to the setting of [1].

Our work can be viewed as a step towards a statistical physics of deep learning, connecting the
“microphysics” of low-level network dynamics with the “thermodynamics” of high-level model
behavior. We view the application of theoretical tools from physics, such as effective theories [24], to
be a rich area for further work. The broader impact of such work, if successful, could be to make
models more transparent and predictable [23, 25, 26], crucial to the task of ensuring the safety of
advanced AI systems.
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